基于P型有限元法的裂纹结构动力学分析与故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂纹是工程结构中最常见的一种损伤模式,严重威胁着结构的完整性和安全性。基于振动特征的裂纹诊断方法由于具有测试整体性和在线性等诸多特点而受到了广泛的关注和重视。为了实现裂纹的定量辩识,通常的方法是对动力学模型中的裂纹参数通过某种方式加以调整使得计算结果与参考结果间差异最小,最后的裂纹参数即为辩识结果。由此可见,裂纹的定量辩识对动力学计算模型和裂纹参数搜索两方面的效率要求非常高,关系到其在工程实际中是否具有应用价值。论文的主要目的就是在基于振动信号的裂纹故障诊断理论框架下,研究提出精确而高效的动力学分析模型与裂纹辩识方法,为实现裂纹的在线监测和诊断提供一种切实可行的方案。
     论文分析了均质和非均质材料梁中各式裂纹在典型载荷作用下的局部柔度,给出了其显式表达式。提出了基于裂纹集中柔度模型和p型有限元方法的裂纹梁结构动力学特性和响应分析方法。通过与实验值以及常规有限元计算结果的比较表明该方法具有计算精度高、收敛速度快等优点。利用该p型有限元方法研究了在关键领域有广泛应用但以往研究鲜有涉及的几类工程结构,包括几何非均匀梁、材料非均匀梁和旋转变截面梁在出现裂纹前后的动力特性,讨论了相关参数如裂纹深度、裂纹位置、边界条件、高度变化率、材料梯度率、旋转速度等对于其振动特性的影响。
     针对单变量型有限元法在计算其它场变量时的精度损失问题,提出了多变量p型有限元方法。该方法以广义变分原理和函数逼近理论为基础,不仅能够同时准确地求解出多个场变量,而且还有很好的收敛性能。该方法可以作为基于应力、应变等变量的结构完整性监测和评估技术的有力支持。
     对现代免疫算法在裂纹定量辩识上的应用进行了初步的尝试。提出了一种用于裂纹辩识的改进型目标函数,并通过免疫智能算法对该目标函数模型进行寻优。算例和实验研究表明该方法能够有效地解决裂纹的定量辩识问题。该研究不仅拓宽了免疫算法的应用范围,同时也为裂纹的检测和识别开辟了一种新的途径。
Crack is one of the most common damage of engineering structures, which severely threatens the integrity and security of those structures. The vibration-based diagnosis techniques have been attracted a large number of research interest due to their prominent capabilities, such as they only depend on the global vibration signal and can be implemented in on-line manner. To identify crack parameters quantitatively, the dynamic model of structures should be established firstly and then the possible crack parameters are adjusted such that the difference between the calculated results based on the model containing crack parameters and the reference values is minimal. It can be seen that the efficiency of the dynamic model and the searching of crack parameters is crucial to the practical application of the quantitative crack identification techniques. Thus, the primary purpose of the dissertation is to present accurate and efficient dynamic models and crack identification approaches and provides a feasible scheme for on-line monitoring and diagnosis of cracks.
     Local flexibilities of cracks under different loading in homogeneous and non-homogeneous beams are derived firstly. Then a new methodology based on the lumped crack model and the p-version of finite element method (p-FEM) is developed to analyze the vibration characteristics and dynamic response of cracked structures. Comparisons between results by the proposed method and results in the literature and by conventional finite element method (CFEM) show that the p-FEM has superior accuracy and convergent to the CFEM. The proposed method is subsequently applied to analyze the dynamic properties of several kinds of cracked structures which have been widely used in various important engineering fields but received little attention in previous investigation, including geometrical non-uniform beams, physical non-uniform beams and rotating beams. The effect of some parameters such as crack location, crack size, boundary condition, taper ratio, material gradient and rotation speed are discussed.
     To avoid the accuracy loss of the rest field variables in the uni-variable finite element method, the multivariable p-FEM on the basis of the generalized variational principle and the function approximation theory is developed. The method can obtain multiple field variables simultaneously with very high precision as well as has excellent convergent, which will promote the application of structural integrity evaluation techniques with stress or strain as their inputs.
     As an elementary attempt, the modern immune algorithm (IA) is employed to tackle the quantitative crack identification. An improved objective function is put forward and the IA is used to solve this optimization problem. Numerical and experimental studies demonstrate that this strategy can effectively identify cracks with acceptable accuracy. This present work not only broadens the application fields of the IA, but also provides a novel way to crack detection and identification.
引文
[1] Sohn H, Farrar C R, Hemez F M, et al. A Review of Structural Health Monitoring Literature: 1996-2001. Los Alamos National Laboratory LA-13976-MS, 2003.
    [2]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展.土木工程学报, 2003, (05).
    [3]张德海,朱浮声.结构损伤智能诊断研究进展.力学与实践, 2003, 04: 1-5.
    [4]杨秋伟.基于振动的结构损伤识别方法研究进展.振动与冲击, 2007, 10: 86-91.
    [5]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展.力学进展, 2004, 34(02): 215-223.
    [6]任伟新,韩建刚,孙增寿.小波分析在土木工程结构中的应用,北京:中国铁道出版社, 2006.
    [7] Rytter A, Vibrational based inspection of civil engineering structures, vol. PhD Denmark: Aalborg University, 1993.
    [8] Friswell M I, Penny J E T. Crack Modeling for Structural Health Monitoring. Structural Health Monitoring, 2002, 1(2): 139-148.
    [9] Dimarogonas A D. Vibration of cracked structures: a state of the art review. ENGineering Fracture Mechanics, 1996, 55(5): 831-857.
    [10]吴宁祥,吴克勤,由美雁,等.裂纹梁的动态特性仿真.工程设计学报, 2006, 04: 236-240.
    [11]胡家顺,冯新,李昕,等.裂纹梁振动分析和裂纹识别方法研究进展.振动与冲击, 2007, 26(11): 146-152.
    [12] Kirmsher P G. The effect of discontinuities on the natural frequency of beams, Proc. American Society of Testing and Materials, 1944, 44:897-904.
    [13] Thomson W J. Vibration of slender bars with discontinuities in stiffness. Journal of Applied Mechanics, 1943, 17: 203-207.
    [14] Isalik A M. Free vibrations of reinforced concrete bars with crack in flexure. SOVIET APPLIED MECHANICS, 1967, 3: 71-73.
    [15] Petroski H J. Simple static and dynamic models for the elastic beam. International Journal of Fracture, 1981, 17: 71-76.
    [16] Ku D M, Chen L W. Dynamic stability of a shaft disk system with flaws. Computers & Structures, 1992, 43: 306-311.
    [17] Wendtland D, Aenderung der Biegeeigen frequenzen Einer Idealisierten Schaufel Durch Risse, vol. PhD: University of Karlsruhe, 1972.
    [18] Cawley P, Ray R. A comparison of natural frequency changes produced by cracks and slots. Journal of Vibration and Acoustics, Stress, Reliability in Design, Transactions of the ASME, 1988, 110: 366-370.
    [19] Silva J M M, Gomez A J M A. Experimental dynamic analysis of cracked free-free beams. Experimental Mechanics, 1990, 30: 20-25.
    [20] Gomez A J M A, Silva J M M. Theoretical and experimental data on crack depth effects in the dynamic beahviour of free-free beams, Int. Modal Analysis Conference, IMAC, 1991:274-283.
    [21] Irwin G R. Fracture mechanics Structrual Mechanics, 1960:557.
    [22] Liebowitz H, Claus W D. Failure of notched columns. ENGineering Fracture Mechanics, 1968, 1: 379-383.
    [23] Liebowitz H, Vanderveldt H, Harris D W. Carrying capacity of notched column. International Journal of Solids and Structures, 1967, 3: 489-500.
    [24] Ocamura H, Liu H W, Chu C S, et al. A cracked column under compression. ENGineering Fracture Mechanics, 1969, 1: 547-564.
    [25] Gudmunson P. The dynamic behavior of slender structures with cross-sectional cracks. Journal of Mechanics and Physics Solids, 1983, 31: 329-345.
    [26] Rice J R, Levy N. The part-through surface crack in an elastic plate. Journal of Applied Mechanics, 1972, 39: 185-194.
    [27] Dimarogonas A D, Stephen A P. Analytical methods in rotor dynamics. Applied Science Publishers, 1983.
    [28] Dimarogonas A D. Vibration Engineering, St. Paul: West Publishers, 1976.
    [29] Chondros T G, Dimarogonas A D. Identification of crackes in welded joints of complex structures. Journal of Sound and Vibration, 1980, 69: 531-538.
    [30] Papadopoulos C A, Dimarogonas A D. Coupling of bending and torsional vibrations of a cracked Timoshenko shaft. Ingenieur Archiv, 1987, 57: 257-266.
    [31] Ostachowicz W M, Krawczuk M. Analysis of the effect of crack on the natural frequecy of a cantilever beam. Journal of Sound and Vibration, 1991, 150(2): 191-201.
    [32] Krawczuk M, Zak A, Ostachowicz W. Elastic beam finite element with a transverse elasto-plastic crack. Finite Elements in Analysis and Design, 2000, 34(1): 61-73.
    [33] Christides S, Barr A D S. One-dimensional theory of cracked Bernoulli-Euler beams. International Journal of Mechanical Sciences, 1984, 26: 639-648.
    [34] Christides S, Barr A D S. Torsional vibration of cracked beams of non-circular cross-section. International Journal of Mechanical Sciences, 1986, 28(7): 473-490.
    [35] Shen M H H, Pierre C. Free vibration of beams with a single edge crack. Journal of Soundand vibration, 1994, 170(2): 237-259.
    [36] Shen M H H, Pierre C. Natural modes of Bernoulli–Euler beams with symmetric cracks. Journal of Sound and Vibration, 1990, 138(1): 115-134.
    [37] Chondros T G, Dimarogonas A D, Yao J. A consistent cracked bar vibration theory. Journal of Sound and Vibration, 1997, 200(3): 303-313.
    [38] Chondros T G, Dimarogonas A D, Yao J. Longitudinal vibration of a continuous cracked bar. Engineering Fracture Mechanics, 1998, 61(5-6): 593-606.
    [39] Chondros T G, Dimarogonas A D, Yao J. A continuous cracked beam vibration theory. Journal of Sound and Vibration, 1998, 215(1): 17-34
    [40] Chondros T G, Dimarogonas A D. Vibration of a cracked cantilever beam. Journal of Vibration and Acoustics, 1998, 120: 742-746.
    [41] Chondros T G. The continuous crack flexibility model for crack identification. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24(10): 643-650.
    [42] Chondros T G. Variational formulation of a rod under torsional vibration for crack identification. Theoretical and applied fracture mechanics, 2005, 44: 95-104.
    [43] Chondros T G, Labeas G N. Torsional vibration of a cracked rod by variational formulation and numerical analysis. Journal of Sound and Vibration, 2007, 301(3-5): 994-1006.
    [44] Carneiro S H S, Inman D J. Continuous model for the transverse vibration of cracked Timoshenko beams. Journal of Vibration and Acoustics, Transactions of the ASME, 2002, 124(2): 310-320.
    [45] Swamidas A S J, Yang X, Seshadri R. Identification of Cracking in Beam Structures Using Timoshenko and Euler Formulations. Journal of Engineering Mechanics, 2004, 130( 11): 1297-1308.
    [46] Yang X F, Swamidas A S J, Seshadri R. Crack identification in vibrating beams using the energy method. Journal of Sound and Vibration, 2001, 244(2): 339-357.
    [47] Ibrahim A, Ismail F, R.Martin H. Modelling of the dynamics of a continuous beam including nonlinear fatigue crack. International Journal of Analytic and Experimental Modal Analysis, 1987, 2: 76-82.
    [48] Pugno N, Surace C, Ruotolo R. Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks. Journal of Sound and Vibration, 2000, 235(5): 749-762.
    [49] Ruotolo R, Surace C, Crespo C, et al. Harmonic analysis of the vibrations of a cantilevered beam with a closing crack. Computers & Structures, 1996, 61(6): 1057-1074.
    [50] Chondros T G, Dimarogonas A D, Yao J. Longitudinal vibration of a bar with a breathing crack. Engineering Fracture Mechanics, 1998, 61(5-6): 503-518.
    [51] Chondros T G, Dimarogonas A D, Yao J. Vibration of a beam with a breathing crack. Journal of Sound and Vibration, 2001, 239(1): 57-67.
    [52] Shen M H H, Chu Y C. Vibration of beams with a fatigue crack. Computers & Structures, 1992, 45(1): 79-93.
    [53] Cheng S M, Wu X J, Wallace W, et al. Vibrational response of a beam with a breathing crack. Journal of Sound and Vibration, 1999, 225(1): 201-208.
    [54] Douka E, Hadjileontiadis L J. Time–frequency analysis of the free vibration response of a beam with a breathing crack. NDT and E International, 2005, 38(1): 3-10.
    [55] Loutridis S, Douka E, Hadjileontiadis L J. Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency. NDT and E International, 2005, 38(5): 411-419.
    [56] Kisa M, Brandon J. The effects of closure of cracks on the dynamics of a cracked cantilever beam. Journal of Sound and Vibration, 2000, 238(1): 1-18.
    [57] Andreaus U, Casini P, Vestroni F. Non-linear dynamics of a cracked cantilever beam under harmonic excitation. International Journal of Non-Linear Mechanics, 2007, 42(3): 566-575
    [58] Kogl M, Hurlebaus S, Gaul L. Finite element simulation of non-destructive damage detection with higher harmonics. NDT and E International, 2004, 37: 195-205.
    [59] Hirose S, Achenbach J D. Higher harmonics in the far field due to dynamic crack-face contacting. Journal of the Acoustical Society of America-, 1993, 93(1): 142-147.
    [60] FernáNdez-SáEz J, Rubio L, Navarro C. Approximate calculation of the fundamental frequency for bending vibrations of cracked beams. Journal of Sound and Vibration, 1999, 225: 345-352.
    [61] FernáNdez-SáEz J, Navarro C. Fundamental frequency of cracked beams in bending vibrations: an analytical approach. Journal of Sound and Vibration, 2002, 256(1): 17-31.
    [62] Lele S P, Maiti S K. Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. Journal of Sound and Vibration, 2002, 257(3): 559-583.
    [63] Patil D P, Maiti S K. Detection of multiple cracks using frequency measurements. ENGineering Fracture Mechanics, 2003, 70(12): 1553-1572.
    [64] Orhan S. Analysis of free and forced vibration of a cracked cantilever beam. NDT & E International, 2007, 40(6): 443-450
    [65] Rizos P F, Aspragathos N, Dimarogonas A D. Identification of crack location and magnitude of a cantilever beam from the vibration mode. Journal of Sound and Vibration, 1990, 138(3): 381-388.
    [66] Narkis Y, Elmalah E. Crack identification in a cantilever beam under uncertain endconditions. International Journal of Mechanical Sciences, 1996, 38(5): 499-507.
    [67] Chaudhari T D, Maiti S K. A study of vibration of geometrically segmented beams with and without crack. International Journal of Solids and Structures, 2000, 37: 761-779.
    [68] Chaudhari T D, Maiti S K. Modelling of transverse vibration of beam of linearly variable depth with edge crack. Engineering Fracture Mechanics, 1999, 63: 425-445.
    [69] Nandwana B P, Maiti S K. Modelling of vibration of beam in presence of inclined edge or internal crack for its possible detection based on frequency measurements .pdf. Engineering Fracture Mechanics, 1997, 58(3): 193-205.
    [70] Kasper D G, Swanson D C, Reichard K M. Higher-frequency wavenumber shift and frequency shift in a cracked, vibrating beam. Journal of Sound and Vibration, 2008, 312(1-2): 1-18.
    [71]江凡,薛冬新,宋希庚.裂纹悬臂梁的扭转弹簧模型及其实验验证.振动、测试与诊断, 2004, (02): 143-145.
    [72]王丹生,朱宏平.基于弯曲弹簧模型的裂纹混凝土梁动力特性分析.世界地震工程, 2006, 01: 45-48.
    [73]徐可君,陈华,江龙平.应用振型识别叶片裂纹故障初探.推进技术, 1998, 19(5): 66-69.
    [74] Lin H P, Chang S C, Wu J D. Beam vibrations with an arbitrary number of cracks. Journal of Sound and Vibration, 2002, 258(5): 987-999.
    [75] KHIEM N T, LIEN T V. A simplified method for natural frequency analysis of a multiple cracked beam. Journal of Sound and Vibration, 2001, 245(4): 737-751.
    [76] Khiem N T, Lien T V. Multi-crack detection for beam bythe natural frequencies. Journal of Sound and Vibration, 2004, 273: 175-184.
    [77]李学平,余志武.含多处裂纹梁的振动分析.应用力学学报, 2007, 24(01): 66-69.
    [78]吴国荣,张晓君.含裂纹梁自由振动分析.船舶力学, 2007, 11(05): 798-803.
    [79]王志华,赵勇刚,马宏伟.梁结构中裂纹参数识别方法研究.计算力学学报, 2006, 23(03): 307-312.
    [80] Khiem N T, Lien T V. The dynamic stiffness matrix method in forced vibration analysis of multiple-cracked beam. Journal of Sound and Vibration, 2002, 254(3): 541-555.
    [81] Khiem N T. Crack detection for structure based on the dynamic stiffness model and the inverse problem of vibration. Inverse Problems in Science and Engineering, 2006, 14(1): 85-96.
    [82] Ricci P, Viola E. Stress intensity factors for cracked T-sections and dynamic behaviour of T-beams. ENGineering Fracture Mechanics, 2006, 73(1): 91-111.
    [83] Viola E, Ricci P, Aliabadi M H. Free vibration analysis of axially loaded crackedTimoshenko beam structures using the dynamic stiffness method. Journal of Sound and Vibration, 2007, 304(1-2): 124-153.
    [84] Fan S C, Sheng N. Meshless formulation using NURBS basis functions for eigenfrequency changes of beam having multiple open-cracks. Journal of Sound and Vibration, 2004, 269(3-5): 781-793.
    [85] Andreaus U, C. B R, M. P. Vibrations of cracked Euler-Bernoulli beams using Meshless Local Petrov-Galerkin (MLPG) method. Computer Modeling in Engineering and Sciences, 2005, 9: 111-131.
    [86] Gounaris G, Dimarogonas A. A finite element of a prismatic beam for structure analysis. Computers & Structures, 1988, 28(3): 309-313.
    [87] Qian G L, Gu S N, Jiang J S. The dynamic behavior and crack dtection of a beam with a crack. Journal of Sound and Vibration, 1990, 138(2): 233-243.
    [88] Kam T Y, Lee T Y. Detection of cracks in structrues using modal test data. Engineering Fracture Mechanics, 1992, 42(2): 381-387.
    [89] Lee Y-S, Chung M-J. A study on crack detection using eigenfrequency test data. Computers & Structures, 2000, 77: 327-342.
    [90] Nahvi H, Jabbari M. Crack detection in beams using experimental modal data and finite element model. International Journal of Mechanical Sciences, 2005, 47: 1477-1497.
    [91] Zheng D Y, Kessissoglou N J. Free vibration analysis of a cracked beam by finite element method. Journal of Sound and Vibration, 2004, 273: 457-475.
    [92]雷宣扬,宋希庚.裂纹梁单元在曲轴裂纹分析中应用.大连理工大学学报, 2003, 05.
    [93] Tharp T M. A finite element for edge-cracked beam columns. International Journal for Numerical Methods in Engineering, 1987, 24: 1941-1950.
    [94]陈梦成,汤任基.裂纹梁动态响应有限元分析中的线弹簧模型.工程力学, 1996, (04).
    [95] Chinchalkar S. Determination of crack location in beams using natural frequencies. Journal of Sound and Vibration, 2001, 247(3): 417-429.
    [96] Xiang J W, Chen X F, Li B, et al. Identification of a crack in a beam based on the finite element method of a B-spline wavelet on the interval. Journal of Sound and Vibration, 2006, 296(4-5): 1046-1052.
    [97] Li B, Chen X F, Ma J X, et al. Detection of crack location and size in structures using wavelet finite element methods. Journal of Sound and Vibration, 2005, 285(4-5): 767-782.
    [98]陈雪峰,李兵,訾艳阳,等.梁类结构多裂纹微弱损伤的小波有限元定量检测方法.机械工程学报, 2005, (07).
    [99]陈雪峰,向家伟,董洪波,等.基于区间B样条小波有限元的转子裂纹定量识别.机械工程学报, 2007, 43(03).
    [100]李兵,陈雪峰,向家伟,等.基于小波有限元法的悬臂梁裂纹识别的试验研究.机械工程学报, 2005, 41(5): 114-117.
    [101]向家伟,陈雪峰,李兵,等.基于区间B样条小波有限元的裂纹故障定量诊断.机械强度, 2005, (02).
    [102] Kisa M. Free vibration analysis of a cantilever composite beam with multiple cracks. Composites Science and Technology, 2004, 64(9): 1391-1402.
    [103] Kisa M, Arif Gurel M. Modal analysis of multi-cracked beams with circular cross section. ENGineering Fracture Mechanics, 2006, 73(8): 963-977.
    [104] Kisa M, Arif Gurel M. Free vibration analysis of uniform and stepped cracked beams with circular cross sections. International Journal of Engineering Science, 2007, 45(2-8): 364-380.
    [105] Kisa M, Brandon J, Topcu M. Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods. Computers & Structures, 1998, 67(4): 215-223.
    [106] Farrar C R, Doebling S W. An overview of modal-based damage identification methods, Proceedings of DAMAS Conference, 1997,
    [107] Doebling S W, Farrar C R, Prime M B, et al. A Review of Damage Identification Methods that Examine Changes in Dynamic Properties. Shock and Vibration Digest, 1998, 30(2): 91-105.
    [108] Salawu O S. Detection of structural damage through changes in frequency: A review. Engineering Structures, 1997, 19(9): 718-723.
    [109] Cawley P, Admas R D. The location of defectss in structures from measurements of natrural frenquencies. Journal of Strain Analysis, 1979, 14(2): 49-57.
    [110] Dharmaraju N, Sinha J K. Some comments on use of antiresonance for crack identification in beams. Journal of Sound and Vibration, 2005, 286(3): 669-671.
    [111] Dilena M, Morassi A. The use of antiresonances for crack detection in beams. Journal of Sound and Vibration, 2004, 276: 195-214.
    [112] Dilena M, Morassi A. Damage detection in discrete vibrating systems. Journal of Sound and Vibration, 2006, 289(4-5): 830-850.
    [113] Yuen M M F. A numerical study of the eigenparameters of a damaged cantilever. Journal of Sound and Vibration, 1985, 103(3): 301-310.
    [114]李德葆,陆秋海.实验模态分析及其应用,北京:科学出版社, 2001.
    [115] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145(2): 321-332.
    [116] Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1998, 216: 791-808.
    [117] Panteliou S D, Chondros T G, Argyrakis V C, et al. Damping factor as an indicator of crack severity. Journal of Sound and Vibration, 2001, 241(2): 235-245.
    [118] Maia N M M, Silva J M M, Almas E A M, et al. Damage detection in structures: from mode shape to frequency response function methods. Mechanical systems and signal processing, 2003, 17: 489-498.
    [119] Pandy A K, Biswas M. Experimental verification of flexibility difference method for locating damages in structures. Joumal of Sound and Vibration, 1995, 184(2): 311-328.
    [120] Suh M W, Yu J M, Lee J H. Crack detection using classical optimization technique. Key Engineering Materials, 2000, 183-187: 61-66.
    [121] He Y, Guo D, Chu F. Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system. Mathematics and Computers in Simulation, 2001, 57: 95-108.
    [122] Zhong S, Oyadiji S O. Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mechanical systems and signal processing, 2007, 21(4): 1853-1884.
    [123] Chang C-C, Chen L-W. Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach. Mechanical systems and signal processing, 2005, 19: 139-155.
    [124] Loutridis S, Douka E, Trochidis A. Crack identification in double-cracked beams using wavelet analysis. Journal of Sound and Vibration, 2004, 277(4-5): 1025-1039.
    [125] Douka E, Loutridis S, Trochidis A. Crack identification in beams using wavelet analysis. International Journal of Solids and Structures, 2003, 40: 3557-3569.
    [126]管德清,蒋欣.基于小波分析的Timoshenko梁裂缝识别研究振动与冲击, 2007, 05.
    [127]张伟伟,王志华,马宏伟.基于小波分析的悬臂梁裂纹参数识别方法研究.机械强度, 2007, 02.
    [128]孙增寿韩任.基于小波分析的结构损伤检测研究进展.地震工程与工程振动, 2005, (02).
    [129] Guo D, Peng Z K. Vibration analysis of a cracked rotor using Hilbert-Huang transform. Mechanical systems and signal processing, 2007, 21(8): 3030-3041.
    [130]刘龙,孟光.支持向量回归算法在梁结构损伤诊断中的应用研究.振动与冲击, 2006, 25(3): 99-100.
    [131]郭惠勇,李正良,罗乐.基于频率响应和统计理论的结构损伤识别研究.振动与冲击, 2007, 11: 25-28.
    [132]冯新,李国强,周晶.土木工程结构健康诊断中的统计识别方法综述.地震工程与工程振动, 2005, 2: 105-111.
    [133]陆毅中.工程断裂力学,西安:西安交通大学出版社, 1989.
    [134] Erdogan F, Wu B H. The surface crack problem for a plate with functionally graded properties. Journal of Applied Mechancis, 1997, 64(3): 449-456.
    [135]王保林,韩杰才,张幸红.非均匀材料力学,北京:科学出版社, 2003.
    [136]关治,陆金甫.数值计算原理,北京:高等教育出版社, 1998.
    [137] Gudmunson P. Eigenfrequency change of structures due to cracks, notches or other geometrical changes. Journal of Mechanics and Physics Solids, 1982, 30(5): 339-353.
    [138] Lee Y-S, Chung M-J. A study on crack detection using eigenfrequency test data. computers and structures, 2000, 77: 327-342.
    [139] Bubaska I, Szabo B A, Katzs I N. The p-version of finite element method. Society for Industrial and Applied Mathematic Journal of Numerical Analysis, 1981, 18(3): 515-545.
    [140] Yan Y J, Yam L H, Cheng L, et al. FEM modeling method of damage structures for structural damage detection. Composite Structures, 2006, 72: 193-199.
    [141] G.B.沃伯顿[英],金咸定,戴宗信译.结构的动力性态,北京:地震出版社, 1983.
    [142] Li Q S. Free vibration analysis of non-uniform beams with an arbitrary number of cracks and concentrated masses. Journal of Sound and Vibration 2002, 252(3): 509-525.
    [143] Zheng D Y, Fan S C. Natural frequencies of a non-uniform beam with multiple cracks via modified fourier series. Journal of Sound and Vibration, 2001, 242(4): 701-717.
    [144]邢德顺.带单侧裂纹楔梁动力特性研究.航空动力学报, 1999, (04): 371-374.
    [145] Naguleswaran S. A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams Journal of Sound and Vibration, 1994, 172(3): 289-304.
    [146] Yu Z, Xiao K, Zhu X, et al. Using transfer matrix method and immune algorithm to identify cracks in segmented beams. Key engineering materials, 2007, 353-358: 1025-1028.
    [147] Cranch E T, Adler A A. Bending vibration of variable section beams. Journal of Applied Mechanics, ASME, 1956, 23(1): 103-108.
    [148] Tong X, Tabarrok B, Yeh K Y. Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section. Journal of Sound and Vibration, 1995, 186(5): 821-835.
    [149] Ece M C, Aydogdu M, Taskin V. Vibration of a variable cross-section beam. Mechanics Research Communications, 2007, 34(1): 78-84.
    [150] Woo J, Meguid S A, Ong L S. Nonlinear free vibration behavior of functionally graded plates. Journal of Sound and Vibration, 2006, 289(3): 595-611.
    [151] Efraim E, Eisenberger M. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. Journal of Sound and Vibration, 2007, 299(4-5): 720-738.
    [152] Roque C M C, Ferreira A J M, Jorge R M N. A radial basis function approach for the freevibration analysis of functionally graded plates using a refined theory. Journal of Sound and Vibration, 2007, 300(3-5): 1048-1070.
    [153] Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams with simply supported edges. Materials & Design, 2007, 28(5): 1651-1656.
    [154] Byrd L W, Birman V. Vibrations of damaged functionally graded cantilever beams, Multiscale and Functionally Graded Materials Conference 2006 (M&FGM2006), 2006.
    [155] Yang J, Chen Y. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 2008, 83(1): 48-60.
    [156] Yang J, Chen Y, Xiang Y, et al. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 2008, 312(1-2): 166-181.
    [157] Wang B L, Mai Y W, Noda N. Fracture mechanics analysis model for functionally graded materials with arbitrarily distributed properties. International Journal of Fracture, 2002, 116: 161-177.
    [158] Noda N, Jin Z H. Thermal stress intensity factors for a crack in a strip of a FGM. International Journal of Solids and Structures, 1993, 30(8): 1039-1056.
    [159] Rao S S, Gupta R S. Finite element vibration analysis of rotating timoshenko beams. Journal of Sound and Vibration, 2001, 242(1): 103-124.
    [160] Bazoune A, Khulief Y A, Stephen N G. Further results for modal characteristics of rotating tapered Timoshenko beams. Journal of Sound and Vibration, 1999, 219(1): 157-174.
    [161] Vinod K G, Gopalakrishnan S, Ganguli R. Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. International Journal of Solids and Structures, 2007, 44(18-19): 5875-5893.
    [162] Banerjee J R, Su H, Jackson D R. Free vibration of rotating tapered beams using the dynamic stiffness method. Journal of Sound and Vibration, 2006, 298(4-5): 1034-1054.
    [163] Wang G, Wereley N M. Free vibration analysis of rotating blades with uniform tapers. AIAA Journal 2004, 42(12): 2429-2437.
    [164] Ozdemir O, Kaya M O. Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. Journal of Sound and Vibration, 2006, 289(1-2): 413-420.
    [165]杨海燕,杨秉玉,刘启州.疲劳裂纹叶片振动的非线性特性研究西北工业大学学报, 1999, 17(02): 198-204.
    [166] Huang B-W. Effect of number of blades and distribution of cracks on vibration localization in a cracked pre-twisted blade system. International Journal of Mechanical Sciences, 2006, 48(1): 1-10.
    [167] Huang B-W, Kuang J-H. Variation in the stability of a rotating blade disk with a local crack defect. Journal of Sound and Vibration, 2006, 294(3): 486-502.
    [168]刘东远,汽轮机叶片动力特性、动强度理论及疲劳可靠性研究,能源与动力工程学院.西安:西安交通大学, 1997.
    [169] Chen L-W, Chen C-L. Vibration and stability of cracked thick rotating blades. Computers & Structures, 1988, 28(1): 67-74.
    [170] Chang C-C, Chen L-W. Damage detection of cracked thick rotating blades by a spatial wavelet based approach. Applied Acoustics, 2004, 65(11): 1095-1111.
    [171] Kim S-S, Kim J-H. Rotating composite beam with a breathing crack. Composite Structures, 2003, 60(1): 83-90.
    [172] Datta A K, Sil S N. An analysis of free undamped vibration of beams of varying cross-section. Computers & Structures, 1996, 59(3): 479-483.
    [173]刘晓波,黄其柏.转子叶片裂纹扩展故障诊断实验研究.华中科技大学学报(自然科学版), 2005, 33(9): 50-52.
    [174] Wright A D, Smith C E, Thresher R W, et al. Vibration modes of centrifugally stiffened beams. Journal of Applied Mechanics, 1982, 49(1): 197-202.
    [175]胡海昌.弹性力学的变分原理及其应用,北京:科学出版社, 1981.
    [176] Washizu K. Variational method in elasticity and plasticity, Oxford: Pergamon press, 1975.
    [177]钱伟长.变分法与有限元(上册),北京:科学出版社, 1980.
    [178] Melosh R J. Basis for derivation of matrices for the direct stiffness method. AIAA Journal, 1963, 1: 1631-1637.
    [179] Elias Z M. Theory and methods of structural analysis, New York: Wiley, 1986.
    [180]袁慎芳.结构健康监控,北京:国防工业出版社, 2007.
    [181] Reissner E. On a variational theorem in elasticity. Journal of Mathematics and Physics, 1950: 90-95.
    [182] Shen P, He P. Bending analysis of plates and spherical shells by multivariable spline element method based on generalized variational principle. Computers & Structures, 1995, 55: 151-157.
    [183] Shen P. Stability analysis for plates using multivariable spline element method. Computers & Structures, 1991, 45(5/6): 1073-1077.
    [184] Shen P. Vibration analysis for plates using multivariable spline element method. International Journal of Solids and Structures, 1992, 29(24): 3289-3295.
    [185] Shen P, Kan H B. The multivariable spline element analysis for plate bending problems. Computers & Structures, 1992, 40(6): 1343-1349.
    [186] Han J-G, Ren W-X, Huang Y. A multivariable wavelet-based finite element method andits application to thick plates. Finite Elements in Analysis and Design, 2005, 41(9-10): 821-833.
    [187]黄义,韩建刚.中厚板问题的多变量小波有限元法.工程力学, 2005, 22(2): 73-78.
    [188]韩建刚,小波有限元理论及其在结构工程中的应用, vol.博士.西安:西安建筑科技大学, 2003.
    [189]沈鹏程.多变量样条有限元法,北京:科学出版社, 1997.
    [190] MARES C, Surace C. An application of genetic algorithms to identify damage in elastic structures. Journal of Sound and Vibration, 1996, 195(2): 195-215.
    [191] Krawczuk M. Application of spectral beam finite element with a crack and iterative search technique for damage detection. Finite Elements in Analysis and Design, 2002, 38: 537-548.
    [192] Vakil-Baghmisheh M-T, Peimani M, Sadeghi M H, et al. Crack detection in beam-like structures using genetic algorithms. Applied Soft Computing, 2008, 8(2): 1150-1160.
    [193] Suh M W, Shim M B, Kim M Y. Crack identification using hybrid neuro-genetic techniquE. Journal of Sound and Vibration, 2000, 238(4): 617-635.
    [194] Friswell M I, Penny J E T, Garvey S D. A combined genetic and eigensensitivity algorithm location of damage in structures. Computers & Structures, 1998, 69: 547-556.
    [195] Jerne N K. Toward a network theory of the immune system. Annual Immunology, 1974, 125c: 373-389.
    [196] Farmer J D, Packard N H, Perelson A. The immune system.,adaption,and machine learning. Physica, 1986, 22D: 187-204.
    [197] Perelson A S. Immune network theory. Immunological Review, 1989, 10: 5-36.
    [198] Bersini H, J. V F. Hints for adaption problem solving gleaned from immune networks, Proceedings of the First Workshop on Parallel Problem Solving from Nature, 1990:343~354.
    [199] Varela F J, Stewart J. Dynamics of a class of immune network. Theoretical Biology, 1990, 144(1): 93-101.
    [200]黄席樾,张著洪,何传江,等.现代智能算法理论及应用,北京:科学出版社, 2005.
    [201] Castro L N d, Zuben F J V. Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251.
    [202]王凌.智能优化算法及其应用北京:清华大学出版社, 2001.
    [203]焦李成.免疫优化计算、学习与识别,北京:科学出版社, 2006.
    [204] Adams R D, Cawley P, Pye C J, et al. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 1978, 20(2): 93-100.