固定化微生物净化低浓度SO_2烟气工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤引起的SO_2问题是当前国际上最关注的热点环境之一,它不仅造成严重的环境污染,且是引起酸雨的主要物质。我国是世界上唯一以煤为主要能源的国家,是世界SO_2排放的第一大国,如不严格控制,SO_2问题将成为制约我国国民经济发展和社会发展的重要因素。目前对SO_2气体常用的处理方法多为物理和化学方法,虽然处理效果好,但成本较高,存在二次污染等问题,相比之下生物法具有运行成本低,能耗少,二次污染少等优点。
     固定化微生物技术具有微生物密度高、反应迅速、微生物流失少、产物易分离、反应过程易控制的优点,而成为当前研究的热点。本课题采用固定化微生物法净化SO_2气体。实验内容包括:①脱硫菌最佳驯化工艺条件的研究;②固定化微生物的制备条件和性能研究;③固定化微生物降解SO_2的工艺研究;④固定化微生物脱硫机理初探。
     实验采用诱导驯化方式对菌种进行驯化,最佳驯化工艺为:营养物质投加量为17.5ml/L菌种,供氧速率为0.4L/min,曝气时间为30min,间歇时间为60min,此时驯化菌种具有最佳的净化效率和降解速率。
     实验研究了固定化微生物在不同环境条件下的性能,结果表明:固定化后的微生物对热、pH值等的稳定性提高,对有毒物质的毒性抵抗力增强。在相同条件下,固定化微生物的生物降解性能明显高于游离微生物。固定化微生物在生化反应器连续运行60天,活性未出现下降趋势,一直保持较好的机械强度。
     固定床生化反应器净化SO_2气体的工艺研究表明,在无喷淋液、气体停留时间为5s、SO_2气体的入口浓度低于5g/m~3时,其净化效率可达95%。系统连续运行3个小时后采取喷淋液体并通入空气的方式可恢复整个系统的净化能力。
     本实验不仅为低浓度SO_2烟气的生物治理提供了一条新途径,而且还拓展了生物技术在废气治理领域的研究与应用。
The problem about air pollution caused by sulfur dioxide from coal burning is one of the focus issues concerned by all over the world. SO2 not only brings seriously air polluted but also causes acid rain for its water-solubility. China is the country where coral is the primary energy sources, the pollution problem caused by SO2 will become the important factor which limits the development of national economy and society if it is not strictly controlled. At present, the mostly physical or chemical method with high removal rate treating SO2 has a few disadvantages of high cost and second pollution, but Biological method has many advantages of low cost, few energy sources needed and little second pollution.
    Immobilized microorganism technique with high concentration, fast reaction rate, less loss of microorganism and easy control has become the focus researched. In present, the research on biological method treating SO2 is little in the world. The immobilized microorganisms technology treating SO2 flue gas has been discussed in this thesis. The project concludes the following:
    1. To study in the optimal domesticated condition on microorganism treating SO2.
    2. To study in preparation condition and degradation capability on immobilized microorganism cell.
    3. To research process treating sulfur dioxide by biochemical reaction system.
    4. To study mechanism of desulfurization by immobilized microorganism.
    Using induced domesticating method, the bacteria with strong SO32- " degradation capacity can be cultivated in the waste water. With high of degradation ratio and rapid of degradation rate, the optimal domesticating condition is: rate of oxygen supply 0.4L/min, aeration time 30mine, retention time 60min, quantity of nutrient 17.5ml/L microorganism.
    The experiment on performances of immobilized microorganism in different conditions showed that the optimal pH value and temperature range of SO32- degradation by immobilized microorganism were bigger than that of SO32- degradation by suspended microorganism. Immobilized microorganism had more resistence to poisonous substance such as heavy metal ion than that of suspended microorganism. In the same condition, biodegradation rate and enzymatic activity of immobilized microorganism are greater than that of suspended microorganism. When packed-red bioreactor had worked continuously 60 days, the strength change of
    
    
    
    immobilized cells was little, and activity of immobilized microorganism was not reduced.
    The SO2 removal experiment in packed-red bioreactor proved that the removal efficiency of system was above 98% in the absence of spay liquid, with the gas retention time 5s and concentrated of SO2 below 5g/m3. Additionally, the system saturated after continuous treating 3 hours, the biodegradation capacity of the system can be regenerated by washing and aerating. The whole research indicated the feasibility of immobilized microorganism technique degradation SOj.
    The experiment results not only show a new way for biological low concentration flue gas desulfurization, but also provide a potential application and study in waste gas treatment by biological technology.
引文
[1] 朱世勇,环境与工业气体净化技术,北京,化学工业出版社,2001:271-273
    [2] 《三废治理与利用》编委会.《三废治理与利用》.北京:冶金工业出版社,1995:355-357
    [3] 国家环保总局,中国环境状况公报,1995-2003年:71-77
    [4] 刘宗毫,孟凡华,国内SO_2污染现状及治理技术,辽宁城乡环境科技,2003(23):5-7
    [5] 李彩亭,曾光明.中国中小型燃煤锅炉脱硫技术现状.环境工程,1998,16(2):33-40
    [6] 冯玲,杨景玲,蔡树中.烟气脱硫技术的发展及应用现状.环境工程,1997,15(2):19-24
    [7] 陶其鸿,刘跃军.锅炉烟气SO_2防治对策探讨.冶金环境保护,1998,1:25-30
    [8] 武秀文,烟气脱硫技术的研究,环境保护,2002(10):7-9
    [9] 陈兵,张学学.烟气脱硫技术研究与进展.工业锅炉,2002,74(4):6-9
    [10] 庚晋,白木,周结,烟气脱硫的发展、技术与产业化探讨,煤化工,2003(1):61-64
    [11] 冯玲等,烟气脱硫技术的发展及应用现状,环境工程,1997(4):25-26
    [12] 陈峰,我国烟气脱硫技术获新突破,科学时报,2001(8):31-33
    [13] Leathan W.W. .et al. Bacteriology. 1956, 72(5): 700—703
    [14] 吴根.微生物脱硫技术的现状及发展前景.工程与技术,2001,1:20-22
    [15] Punjai T. Selvaraj, Mark. Hlittle&EeicN.little. Analysis of immobilized cell bioreactors for desulfurization of flue.gases and sulfate/sulfate-laden wastewater. Biodegradation, 1997. (8): 227~236.
    [16] 王玮,屠传经和胡亚才.微生物烟气脱硫技术的展望.环境污染与防治,1997,19(2):28-30
    [17] 王安,张永奎,陈华等,微生物法烟气脱硫技术研究.重庆环境科学,2001,23(2):37-39
    [18] 曹桂萍,昆明理工大学硕士学位论文,2003,4:1-57
    [19] 石蕙芳,陈春涛等.微生物烟气脱硫技术及其研究方向.郑州轻工业学院学报(自然科学版).2002,17(2)
    [20] G.Durand and J.M. Navarro. Immobilized Microbial Cells. Process Bioehemistry,
    
    1978,9:14-23
    [21] 刘钧,周力.固定化微生物技术在废水处理中的应用分析,净水技术1998,63(1):35-37
    [22] 沈耀良,黄勇,赵丹等.固定化微生物污水处理技术.北京:化学工业出版社,2002.5:26-27
    [23] 黄正,范玮等,固定化硝化细菌去除养殖废水中氨氮的研究,华中科技大学学报(医学版),2002,31(1):18~21.
    [24] 王建龙.生物固定化技术与水污染控制.科学出版社,2002:294~295
    [25] Joshi NT, Immobilization of activated sludge for the degradation of phenol[J]. J Environ Sci Health. 1999.34(8): 1689~1700.
    [26] Yang T P et al..Biological Wastes.1988.23:1
    [27] 周定,王建龙,侯文华等.固定化细胞在废水处理中的应用及前景.环境科学,1993,14(5):51-54
    [28] Kuhn, S.P: Appl. Microb. Biotechnol. 1989,31.(5-6):613~618.
    [29] 吴乾箐等.固定化酵母菌细胞去除Cd2+的研究.重庆环境科学,1996,19(5):10~14.
    [30] 杨云龙等.固定化PSB处理亚硫酸钠造纸废水.中国环境科学,2001,21(4):351~354.
    [31] 马红,李国建.固定化微生物处理含氨臭气的研究.中国环境科学,1995,15(4):302~305.
    [32] 袁志文等.固定化微生物法处理含甲硫醇恶臭气体.上海环境科学,2000,3,19(3):108~111.
    [33] 邵立明,何晶晶,傅钟等.固定化微生物处理含H2S气体的实验研究.环境科学,1999,20(1):19~22.
    [34] 王新,李培军等.采用固定化技术处理土壤中菲、芘污染物.环境科学,2002,23(3):84~88.
    [35] 胡自伟,潘志彦,王泉源.固定化技术在废水处理中的应用研究进展.环境污染治理技术与设备,2002,3(9):20-23
    [36] 程树培编.环境生物技术实验指南.南京:南京大学出版社,2001
    [37] 李海英,李小明.固定化微生物处理造纸漂白废水.工业用水与废水.2001,32(5):19-22.
    [38] 焦瑞身.微生物工程.北京:化学工业出版社.2003,7:34-36.
    
    
    [39] 曹军卫,马辉文.微生物工程.北京:科学出版社.2002(8):80-81.
    [40] 周群英、高廷耀.环境工程微生物学.北京:高等教育出版社,2000.7:50-53
    [41] 林清山等.固定化细胞技术在废水处理中的应用.上海环境科学,2000,19(10):469-472.
    [42] 罗建中,张新霞等.固定化细胞技术用于废水深度处理.环境污染治理技术与设备,2002,3(6):70-71.
    [43] 刘钧,周力.固定化微生物技术在废水处理中的应用分析.净水技术.1998,63 (1):55-56
    [44] 王新,李培军等.固定化细胞技术的研究与进展.农业环境保护,2001,20(2):120~122
    [45] 李月中,陈世和,固定化微生物细胞处理含氰废水的研究,上海环境科学,1991(10):10-11
    [46] Tanaka, H. et al. Biotechmol. Bioeng.1984 26(1):54-58
    [47] 齐水冰,罗建中等.固定化微生物技术处理废水.上海环境科学,2002,21(3):185-187
    [48] 马子俊,陆志号编.固定化细胞技术及其应用.银川:宁夏人民出版社,1989:100-101
    [49] 孙艳,谭立扬.用于生物降解酚类毒物的固定化细胞性能改进的研究.环境科学研究,1998,11(1):59-62
    [50] 孙艳,谭立扬.利用固定化细胞法降解含酚废水的研究.北京工业大学学报,1997,23(1):62-67
    [51] 雷乐成.污水厌氧处理微生物的固定化方法及硬化处理.水处理技术,1992,18 (1):46-51
    [52] Shreve G S, Vogel T M. Comparison of substrate utilization and growth kenetics between immobilized and suspended pseudomonas cells [J]. Biotechnol Bioeng, 1993,41:370-379.
    [53] 刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水.中国给水排水,2003,19(5):53-55
    [54] 刘宏斌,刘转年,金奇庭.固定化细胞技术在废水处理中的应用,环境污染治理技术与设备,2002,3(5):63-34
    [55] 邓良伟,唐一,吴彦.生物脱硫机理及其研究进展.上海环境科学,1998,17(5):35-39
    
    
    [56] 吴根,陈旭东,夏涛.微生物脱硫技术的现状及发展前景.环境保护,2001,(1):21-22
    [57] Charles D.Scott. Immobilized cells and Enzyme. Microb. Technol. 1987,9,(2):66-71
    [58] 黄秀梨.微生物学.北京:高等教育出版社,2003,7:119-217