对焦化纯苯进行脱硫精制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过分析比较各种方法之后,提出了采用吸附法脱除焦化纯苯中CS_2、采用反应—精馏法脱除噻吩的工艺方法。吸附法具有能耗低,精制深度高,操作方便,不产生二次废物等优点;而反应—精馏法与常用的磺化法相比,耗酸量少,操作容易,精制深度高。
     分光光度法测定苯中CS_2和噻吩是有效的,该法操作简便、快速、测量精度高。所建立的标准曲线相关系数达0.99以上。
     本课题采用比表面积较大、空隙率较高的粒状活性炭进行吸附试验。低温有利于吸附进行,在静态吸附试验中,对CS_2浓度为0.001g/100mL的苯—CS_2溶液,在22℃时,活性炭对CS_2的吸附率可达74%以上,吸附后苯中CS_2的质量含量小于3×10~(-6)g/g。该吸附实验的Freundlich吸附等温式为q=0.047c~(0.3853),吸附热为597.9J/mol,属典型的物理吸附范围。在动态吸附实验中,在26℃、进料流率为2.12×10~(-4)m~3/m~2s、床层高度为25cm时,饱和吸附量为0.07536mg/g吸附剂。活性炭对CS_2的吸附动力学行为可用Elovich方程进行描述,进料流速为2.12×10~(-4)m~3/m~2s时传质系数最大。吸附后的活性炭可以通过热N_2吹扫再生,再生温度400℃,再生时间1h,经过三个周期的吸附—再生,活性炭的动态饱和吸附量仍可达最初的90%以上。
     在酸洗试验中,对100mL浓度为0.030g/100mL的苯—噻吩溶液,共用48mL浓硫酸时,噻吩的脱除率为100%。在反应—精馏试验中,对400mL苯—噻吩溶液,采用玻璃多圈柱状填料,填料层高度为40cm,硫酸用量为80mL,采用人工控制回流情况,噻吩脱除率可达94%以上,苯中噻吩的质量含量小于2×10~(-5)g/g。对处理相同质量的苯—噻吩溶液,实际上节省硫酸58.33%,在实际生产过程中,耗酸量的显著减少,大大降低了生产成本;而且,每次试验过程中的溶液量减少,所需塔釜热负荷降低,减少了能耗。硫酸用量的减少,产生的废酸量也相应减少,从而降低了废酸的处理量,降低了后续工作难度,也符合环保要求。
Carbon disulfide in benzene product from coking production is removed by adsorption and thiophene is removed by .reaction and distillation in this thesis after evaluating various methods for removal of carbon disulfide and thiophene in benzene product from coking production. Low energy consumption, deep refinement and convenient operation as well as no waste characterize adsorption. Distillation is characterized by less quantity of sulphur acid and easy operation as well as high refine extent.
    It is effective for carbon disulfide and thiophene in benzene to be measured by spectrophotometer. Operation of the experiment is easy, high-speed, and the precision is high.
    Correlative coefficient of standard curve can reach above 0.99.
    Granule activiated carbon, which has larger surface area and lacuna radio has been adopt to adsorb carbon disulfide. The result shows that low temperature favors the adsorption process. In the static adsorption experiment, as to 0.001g/100mL carbon disulfide-benzene solution, at 22 C, adsorption ratio can reach above 74%. After adsorption, the residual amount of carbon disulfide occurring in benzene is less than 3 10-6g/g. Freundlich adsorption formula of the adsorption experiment is q = 0.047c0.3853 The adsorption neat is 597.9J/mol, which prove the adsorption belongs to typical physics adsorption. In the dynamic adsorption experiment, at 26 C, on the condition of flow ratio 2. 12 10-4m3/m2s, bed height 25cm, saturation adsorption quantity is 0.07536mg/g. Adsorption kinetics can be described by Elovich equation, and mass transfer coefficient is the largest at the flow ratio of 2. 12 X 10-4m3/m2s. Activiated carbon after adsorption can be regenerated by hot N2. At the temperature of 400 C and time of 1h, af
    
    ter three period of adsorption regeneration, dynamic saturation adsorption quantity of activiated carbon can reach above 90% of which of initial activiated carbon.
    In the reaction and distillation experiment, as to 400mL benzene product from coking production (containing thiophene 0.030g/100mL), at the conditions of height of glass column packing 40cm, 80mL sulphuric acid and reflux controlled by manual work, the removal ratio of thiophene can be up to 94%, and the quality content of thiophene in benzene product from coking production is less than 2 10-5g/g. As to the same quantity benzene product from coking production, 58.33% sulphuric acid has been saved. In the production, the quantity of sulphuric acid is reduced obviously, so the cost of production is reduced greatly. Moreover, heat burden in the bottom of tower and energy consumption is reduced too. In addition, along with the quantity of sulphuric acid is reduced, the quantity of waste acid is reduced correspondly, and the difficulty of disposed work and enviroment protection is shortened.
引文
[1] 谭小耀、王祥生.脱噻吩精制焦化苯工艺的研究进展[J].化工进展,1998,(2):54-57。
    [2] 颜兹瑚.焦化苯净化与噻吩的提取[J].燃料与化工,1987,(1):34-41。
    [3] 曲义平.焦化粗苯加氢精制工艺的述评[J].燃料与化工,1997,28(4):210-214。
    [4] Jens Weitkanp, Manfzed Schwark., J. Chem. Soc.Chem. Commun[J], 1991, 1133。
    [5] 罗国华、张国英等.苯中噻吩与甲醇、乙醇在沸石分子筛上的脱硫反应[J].石油化工高等学校学报,2000.(1):23-27。
    [6] 王祥光,钱水林主编.小氮肥厂脱硫技术[S].1992,8。
    [7] 粘胶纤维生产工艺废气治理国内外同类技术分析报告[J],2000。
    [8] 徐志达等.吸附分离含硫化合物的进展[J].材料科学与工程,1997,(4):22-27。
    [9] 潘胜平.用吸附法除焦化苯中噻吩的研究:[硕士学位论文],大连:大连理工大学,1990。
    [10] EP,275885,1988;4SU,1705270[J],1992.
    [11] 谷振华、李英春等.吸附分离焦化苯中噻吩方法的研究[J].化学工程师,1996,53(2):21-22。
    [12] Weitkamp J, M Schwark, S Ernst. J Chem. Soc. Chem Comm. [J], 1991, 1133-1134。
    [13] 罗国华.脱除焦化苯中噻吩的研究:[硕士学位论文],大连:大连理工大学,1994。
    [14] 谭小耀等.液相吸附法脱除焦化苯中的噻吩[J].山东工程学院学报,2000,(4):4-9。
    [15] 徐新等.焦化苯中噻吩在酸性沸石催化剂上的催化裂解性能[J].过程工程学报,2001,(4):436-438。
    [16] Gsrcia C. L and J A Lercher J Phys. Chem. [J], 1992, 96 (6): 2669-2675。
    [17] De Angelis BA and G Appierto. J Colloid and Interface Sci.[J], 1975, 53 (1): 14-19。
    [18] 王祥生等.HZSM-5 沸石上焦化苯的精制脱硫[J].催化学报,1996,(6):530-534。
    [19] Jpn Kokai Tokyo Koho, Jp 80111840, 1980; US, 3409691[J], 1968。
    [20] 湘泉,刘家棋,郭崇涛.煤化工[J],1989,46(1):48-52。
    [21] CA108: 40274x; 96: 70948w; 87169721t11 De Los Reyes, JA, Mvrinat, C Geantet, et al. J Cat.[J], 1993, 142: 45512.
    [22] 柯良德尔,J.粗苯加氢新方法(中译本)[S].1986,北京:冶金工业出版社。
    [23] Jhonson D H. J Chem. Sco[J], 1967, 22: 2275-2281。
    [24] CA[J] 64: 11105f, 70: 114714m; 74: 87596S。
    [25] CA[J] 64: 1986d, 101: 6790h。
    [26] Ger Often 2041672[J], 1971。
    [27] 罗国华等.用氯甲基化脱除焦化苯中噻吩的研究[J].燃料与化工,2001,32(2)86-87。
    [28] 上官炬等.氧化铝基催化剂上二硫化碳水解反应性的研究[J].燃料化学学报,1997,(3):277-283。
    
    
    [29] Liu C L, Chuang T T, Dalla Lana I G. J Catal[J], 1972, 26 (3): 474。
    [30] 侯健等.低温等离子体处理工业废气中的硫化氢和二硫化碳[J].化学世界,2000,70-71。
    [31] 韩宝华,李伯骥,高桂英.环境科技,1989,9(4):30。
    [32] 金国杰等.活性炭对二硫化碳和水的共吸附动力学行为的热重研究[J].环境科学学报,1999,(1):379-383。
    [33] 罗国华等.焦化苯中的噻吩与乙醇在HZSM-5沸石上反应[J].催化学报,1998,(1):53-57。
    [34] 苏耀东等.间接原子吸收光谱法测定工业废水中痕量二硫化碳[J].理化检验—化学分册,2000,(4):151-152。
    [35] GB/T 14326—93,苯中二硫化碳含量的测定方法[S]。
    [36] GB/T 14327—93,苯中噻吩含量的测定方法[S]。
    [37] 冯尚彩,刘玉玲等.活性炭分离富集技术的应用新进展[J].理化检验—化学分册,1999,(8):380-383。
    [38] 冯孝庭.吸附分离技术[S].2000,化学工业出版社,22-27。
    [39] 叶振华.化工吸附分离过程[S].1992,中国石化出版社。
    [40] 刘永红等.活性炭对Cs,S的吸附性能研究[J].炭素技术,1998,(3):16-19。
    [41] 中国化工学会教育工作委员会组织.多级分离过程[S].1991,化学工业出版社,471-472。
    [42] Menendez J. A., Phillips J. Xia B., et al. On the modification of chemical surface properties of active carbon: in the search of carbon with stable basic properties. Langmuir[J], 1996, (12): 4404-4410。
    [43] 廖欣峰.负载添加剂型活性炭脱有机硫的评价[J].环境污染与防治,1999,(10):34-35。
    [44] 北川浩、铃木谦一郎.吸附的基础与设计[S].1983,化学工业出版社,33。
    [45] 谭天恩等编.化工原理[S].1984,化学工业出版社,172。
    [46] 立本英机、安部郁夫.活性炭的应用技术[S].2002,东南大学出版社,115。
    [47] H.凯利、E.巴德.活性炭及其工业应用[S].1990,中国环境科学出版社,192-193。
    [48] 戴闽光编.吸附理论[S].1985,福建人民出版社,52。
    [49] Hougen Q A, Marshall J R W R, Adsorption from a fluid stream flowing through a stationary granular bed chem. Eng Progr, 1947, 43: 197。
    [50] Eaglton L C, Harding Bliss, Drying of air in fixed beds, chem. Eng Progr, 1953, 49:543。
    [51] James I Nutter, George Burnet JR, Drying of air by fixed bed adsorption with molecular sieves, AIChE J, 1963,9: 202。
    [52] 邢存章,于跃芹.有机化学(下册).2001,山东大学出版社,628。