甘蓝型油菜PGIP2的原核表达、蛋白功能及其遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜受菌核菌侵染时,菌丝必须首先要穿过渗透油菜的细胞壁,所以要分泌一系列降解细胞壁的水解酶。菌核菌分泌的第一个酶就是多聚半乳糖醛酸酶(PG),它会降解油菜细胞壁的主要成分果胶,所以PG是菌核菌重要的致病物质。而多聚半乳糖醛酸酶抑制蛋白(PGIP)可以与PG特异性结合,从而阻止油菜细胞壁的降解,所以对PGIP的研究是十分有意义的。
     1、本文从菌核菌侵染油菜的机理入手,根据抗菌核病甘蓝型油菜湘油15在接种菌核菌18h后会诱导pgip2基因表达增加,所以提取接种菌核菌18h湘油15的叶片的总RNA,根据甘蓝型油菜pgip2(登录号为EU142024)设计一对特异性引物,以cDNA为模板,RT-PCR扩增其CDS编码序列,应运生物学信息软件对湘油15pgip2核苷酸、氨基酸序列进行分析,并对其蛋白结构进行预测。发现其CDS序列与NCBI库(EU142024)公布的序列同源性为99.7%,其氨基酸序列与NCBI库公布的序列同源性为99.4%。发现湘油15 pgip2编码区CDS长996bp, PGIP2蛋白含331个氨基酸编码的ORF,分子量为37.1KDa,等电点为8.6。预测N端1~22个氨基酸是信号肽,且这一区域疏水性较强。具有5个N-糖基化位点,N端和C端还各具有4个参与二硫键形成的半胱氨酸残基。对其疏水性预测,发现PGIP2是一典型的疏水蛋白。其二、三级结构显示湘油15PGIP2有11个α-螺旋,12个p-延伸链,24个无规则卷曲,蛋白质凹面结构主要由β-折叠/β-转角区构成,凸面结构主要是α-螺旋。中心LRR结构域由5个串联的亮氨酸重复结构域(1 eucine-rich repeat, LRR)基序组成,是由β折叠和a螺旋通过1oop环连接,形成一个马蹄型分子。从第121个氨基酸出现且具有"xLxxLDLSxNxLTGxIPxxLxxL"序列的共同序列,是与PG结合反应的区域。这将为PGIP2蛋白的生物学功能研究提供一定的理论依据。
     2、将克隆的pgip2 CDS基因亚克隆到原核表达载体pET-32a (+),成功的构建了重组质粒pET-32a-pgip2。该重组质粒以pET-32a系统的起始密码子开始,包括pET-32a载体N端Trx、6×His-Tag、S-Tag和Pgip2基因的序列,C端以Pgip2基因的终止密码子终止。重组质粒转化E.coli BL21(DE3), IPTG终浓度为分别为0.5mmol/L,0.2mmol/L,温度为37℃、25℃,对其重组质粒分别诱导2h,4h,6h,8h,通过SDS-PAGE检测,在预期分子量52KDa处出现表达条带。对其进行可溶性检测,所表达的蛋白都是以包涵体的形式存在,没有可溶形式蛋白的表达。此结论为以后研究植物的Pgip基因在大肠杆菌中的原核表达提供了宝贵的参考依据。
     3、采用超声波破碎方法裂解包涵体pET-32a-pgip2细胞,通过低浓度变性剂的洗涤液2mol/LUrea、0.5%TritonX-100、1mmol/LEDTA进行洗涤,得到纯度较高的包涵体。再用高浓度的变性剂8mol/LUrea溶解包涵体。通过Ni2+-NTA树脂进行纯化,融合蛋白N端含6×His-Tag会结合在Ni2+柱上,经过不同浓度的咪唑洗脱,最后得到纯度较高的pET-32a-pgip2融合蛋白。纯化后的目的蛋白经Western bolt检测,结果显示,pET-32a-pgip2融合蛋白均可以与抗-His抗体发生免疫学反应,约52KDa处出现一条特异性的反应条带,更进一步的地说明pET-32a-pgip2融合蛋白在大肠杆菌中得到了正确地表达,且读码框正确。纯化的融合蛋白经过肠激酶酶切,再次经过Ni2+-NTA纯化,收集流出液得到PGIP2目的蛋白。最后通过逐渐降低透析液中尿素浓度的透析复性法对目的蛋白进行复性,得到有生物活性的PGIP2蛋白。
     4、通过对离体油菜叶片滴加PGIP2蛋白,再接种菌核菌菌丝来证明PGIP2蛋白可抑制菌核菌对油菜的侵染,实验显示在不同的天数里,滴加了PGIP2蛋白的叶片比对照滴加了灭菌水、PBS缓冲液的叶片,产生的病斑面积要小,且对油菜的侵害程度也轻,证明PGIP2蛋白对菌核菌侵染油菜有一定的抗性。DNS法测定PGIP2蛋白对PG的抑制作用,数据表明,随着PGIP2蛋白量的增加,PG降解多聚半乳糖醛酸生成D-半乳糖醛酸的量逐渐减少,充分证明PGIP2蛋白对PG有一定的抑制作用。琼脂糖扩散法测定PGIP2蛋白对PG的抑制作用,实验结果发现,随着PGIP2蛋白量在一定量PG里的增加,以多聚半乳糖醛酸作为底物的平板上,圆孔周围透明圈的面积逐渐变小,证明PGIP2蛋白对菌核菌产生的PG有较强的抑制作用,更进一步说明了,大肠杆菌中融合表达的PGIP2蛋白包涵体经过纯化、酶切、复性后是具有生物活性的。
     5、将克隆的pgip2基因,再次插入到带有CaMV35S强启动子和NOS终止子的植物表达载体pRI101-AN中,构建pRI101-pgip2超表达载体,通过农杆菌介导法转化甘蓝型油菜98c40中,经Kan抗性筛选,获得约300株左右的抗性苗。以CaMV35S启动子特异性引物,对其进行PCR检测,有34株扩增出422bp的目的条带,说明成功获得了转pgip2基因油菜。对其中4株进行半定量RT-PCR检测,发现其中有2株与非转基因植株对比,Pgip2基因表达量上调,并且对这两株油菜的离体叶片接种菌核菌菌丝进行抗性鉴定,发现转基因和非转基因油菜叶片相比,病斑面积明显比较小,受害程度也轻微。结果表明,将Pgip2基因转入了98c40体内并且能够成功的超表达,并且与非转基因对比有效的提高了抗菌核病能力。
The mycelium must pass through the cell wall of rapeseed firstly,When rapeseed was infectied by Sclerotinia sclerotiorum so it secreted a series of hydrolases which degraded the cell wall.the first enzyme was poly-galacturonic acid enzyme (PG) which secreted by Sclerotinia sclerotiorum.It can degraded the pectin of rapeseed cell wall,so PG was an important pathogenic substances of Sclerotinia sclerotiorum.Poly-galacturonic acid-inhibiting protein (PGIP) can react with PG spectificity,which preventing rapeseed cell wall to degrade.So the research on PGIP was very significant.
     1、In this paper, from the mechanism of rapeseed which infected by Sclerotinia sclerotiorum to start research.according to the expression of pgip2 increased after the resistant Sclerotinia sclerotiorum Brassica napus Xiangyou 15 inoculated Sclerotinia sclerotiorum 18 hours.So total RNA was extrated from leaves of rapeseed Xiangyoul5 which were induced with Sclerotinia sclertiorum 18 hours.CDS was amplified from cDNA by reverse transcription PCR (RT-PCR) with a pair of specific primers based on the Brassica napus pgip2 (accession No.EU 142024).Ribonucleotide and amino acid sequence of Xiangyou 15 PGIP were anaylsed. the protein structure were predicted by biological information software.The results showed a homology of the nucleotide and amino acid sequences were 99.7% and 99.4% respectively,which reported NCBI bank.CDS of Xiangyoul5 pgip2 code area was 101 lbp. PGIP2 protein encoding 331 amino acid open reading frame with a molecular mass of 37.1 kDa and isoelectric point of 8.6.1~22 amino acid was predict to the N-terminal signal peptide with stronger hydrophobic region. The deduced amino acid sequence contained 5 potential N-glycosylation sites and contained 4 cysteine residues on N-terminal and C-termianl respectively, which involved in constituting the disulfide linkages.PGIP2 was a typical hydrophobic protein by the hydrophobicity prediction.Secondary and tertiary structure displayed it contained 11α-helices,12β-extended and 24 random coils.The concave structure of protein was composed of P-sheets/β-turns,and convex structure was composed ofα-helices,the center LRR structural domain was composed of 5 tandemly LRRs motifs, LRR consisted of aβ-strands and a-helices connected by loops and forming a horseshone-shaped molecule with the common sequence "xLxxLDLSxNxLTGxIPxxLxxL" form the 121st amino acid,it reacted with PG.It will provided a theoretical basis of PGIP2 protein biological function.
     2、CDS of PGIP2 was subencoded into the prokaryotic expression vector pET-32a (+) constructing recombinant expression plasmid pET-32a-pgip2 successfully.It started to the initiation codon of pET-32a (+) including the Trx,6×His-Tag, S-Tag of N-terminal pET-32a (+) vector and pgip2 gene sequence.it stopped the stop code of pgip2 gene at C-terminal.The recombinant plasmid was transformed into Escherichia coli BL21 (DE3).The fusion protein pET-32a-pgip was successfully expressed under final concentration 0.2mmolL-1 and 0.5mmolL"1 IPTG at 37℃,25℃iuducing for 2 hours.4 hours,6 hours,8 hours respectively.Expression bands appeared at the place where expected molecular weight 52KDa by SDS-PAGE analysis.It mainly appeared as inclusion bodies,not appeared as soluble protein by testing the solubility of fusion protein. It laid the foundation of the further research about pgip gene of plant prokaryotic expressed in Escherichia Coli.
     3、Using for ultrasonic crushing methods to broken the cell of pET-32a-pgip2 inclusion bodies and low concentrations of denaturant washing buffer 2mol/LUrea, 0.5% TritonX-100, 1mmol/LEDTA were used to wash it.we obtain high purity inclusion bodies.Then.using the high concentrations of denaturant 8mol/LUrea dissolved inclusion bodies.Using the Ni2+-NTA resin purified it,because the fusion protein containing 6×His-Tag at N-terminal which can combine with the Ni2+-NAT resin, eluting with different concentrations of imidazole, and finally we obtained high purity of the pET-32a-pgip2 fusion protein. the purified protein was analysised by Western bolt,the results show that pET-32a-pgip2 fusion protein can be immune react with anti-His antibody occurring at a specific band at about 52KDa place, further illustrateing that the pET-32a-pgip2 fusion protein was correctly expressed in E.coli,and the reading frame was correct.The purified fusion protein was digested by enterokinase, then was purified by Ni2+-NTA,the effluent liquid was collected to be PGIP2 target protein.Finally,the bioactive PGIP2 protein was obtained by gradually reducing the urea concentration in dialysate and target protein was renatured by the method of dialysis refolding.
     4、Sclerotinia mycelial was inhibited to infect rapeseed by dropping the PGIP2 protein on the detached leaves and inoculated Sclerotinia mycelial.The research results showed the leaves lesion area was smaller the PGIP2 protein treated leaves than on the sterile water and PBS treated in different days treatment,which demonstrated there was the PGIP2 resistance to Sclerotinia mycelial infected rapeseed. DNS method was used to determine the inhibition effects of PGIP2 on PG.the date showed that with the amount of PGIP2 protein increased,the amount of D-galacturonic acid reduced gradually, which PG degraded poly-galacturonic acid to generate D-galacturonic acid.It adequately proved that PGIP2 protein can inhibit PG.Agarose diffusion method was used to detect the inhibition effects of PGIP2 on PG.The experiment results indicated that with the amount of PGIP2 protein increased in a certain amount of PG, the area of the transparent zone around the plate with poly-galacturonic acid as a substrate lessened gradually.It proved that PGIP2 protein can inhibit PG strongly which Sclerotinia secreted.Further demonstrated PGIP2 fusion protein which was expressed in Escherichia Coil had bioactive after purification,enzymes digestion and renaturation.
     5、The cloned pgip2 inserted into the palnt expression vector pRI01-AN with CaMV35S strong promoter and NOS terminator.constructing the super-expression vector of pRI101-pgip2. then transferred to Brassica napus 98c40 by Agrobacterium-mediated transformation, about 300 resistant seedlings were got by Kan resistance screening.They were detected for PCR with the CaMV35S promoter-specific primers and 34 plants were amplified 422bp of the target band. This results showed that we got the transgenic rapeseed of pgip2.Four of them were detected by semi-quantitative RT-PCR.The results found that pgip2 gene expression increased compared in two plants with the non-transgenic plants.The detached leaves of the two transgenic rapeseeds were inoculated Sclerotinia mycelial for the resistance indentification.We found that the leaves lesion area of transgenic was smaller than non-transgenic rapeseed leaves lesion, and the invasion was also slight.The results suggested that we transfered the pgip2 into 98c40 and over-expressed successfully.They could improve the resistance to Sclerotinia sclerotiorum than non-transgenic.
引文
[1]李丽丽.世界油菜病害研究概述[J].中国油料.1994(1):79-81.
    [2]李方球,官春云.油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展[J].作物研究,2001,3:85-91.
    [3]陈晓芳.油菜菌核病发生规律研究[J].安徽农业科学,2005,33(4):598.
    [4]Li G Q, Huang H C, Miao H J, Erickson R S, Jiang D H, Xiao Y N.Biological control of sclerotinia diseases of rapeseed by aerial application of the mycoparasite Coniothyrium minitans[J]. European Journal of Plant Pathology,2006,114:345-355.
    [5]何祖传,钱屹松,周健.油菜菌核病的发生规律及防治措施[J].现代农业科技,2008(8):87-88.
    [6]Mullins E,Quinlan C,Jones P.Isolation of mutants exhibiting altered resistance to Sclerotinia sclerotiorum small M2 population of an oilseed rape(Brassica napus) variety [J].European Journal of Plant Pathology,1999,105:465-467.
    [7]张志元,官春云.无菌苗法在鉴定油菜菌核病抗(耐)性上的应用[J].湖北农业科学,2005,2:50-53.
    [8]官春云,李方球,李栒,陈社员,王国槐,刘忠松.双低油菜湘油15(B. napus)对菌核病抗性的研究[J].作物学报,2003,29(5):715-718.
    [8]Jamaux I,Gelie B.Lamarque C.Early stages of infection of rapeseed petals and leaves by Sclerotinia sclerotiorum revealed by scanning electron microscopy [J].Plant Pathology,1995,44:22-30.
    [9]张瑞茂,李敏,李风华,汤晓华.甘蓝型优质无花瓣油菜NF001的发现与选育[J].贵州农业科学.2007,35(1):9-12.
    [10]Liu S. Wang H. Zhang J. Fit B D L, Xu Z, Evans N. Liu Y, Yang W. Guo X. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum[J]. Plant Cell Report,2005,24:133-144.
    [11]万海青.杨小燕.油菜菌核病及抗病研究进展[J].川北教育学院学报,1994,4(15):3-5.
    [12]Boland G J, Hall RI Index of plant hosts of Sclerotinia sclerotiorum [J].Canad J Plant Pathol,1994,(16):93-108.
    [13]黄建华,姜月霞.苏北沿海油菜菌核病的发生规律及防治对策[J].现代农业科学,2007,(11):79.
    [14]萨如拉.油菜菌核病的研究进展[J].西藏农业科技,2010,32(1):36-38.
    [15]DeBary A.In Comparatlye Morphology and Biology of the Fungi [M].Oxlord Mycetozoa and Bacteria Clarenelon Press,1887,380-382.
    [16]Purdy I H.Some facters affecting penetration and infection by S. sclerotiorum [J].Phytopathology,1958,48:605-609.
    [17]吴纯仁,刘后利.油菜菌核菌致病机理研究IV病菌侵入途径和附着胞结构观察[J].华中农业大学学报,1990,9(1):56-58.
    [18]罗宽.油菜病害及其治理[M].北京:中国商业出版社,1994:27.
    [19]Lumsden R D. Pectolytic enzymes of S clerotinia sclerotiorum and their location in infected bean[J].Can J Bot,1976,54:2630-2641.
    [20]Rai J N.Singh R P.Saxena V C.Phenolics and cell wall degrading enzymes in Scleratinia infection of resistance and Susceptible plants of Brassica[J],Indian J Mycol and Plant Pathol.1979,9(2):160-165.
    [21]Singh R P, John P R.Phenolics and cell wall degrading enzymes in Sclerotinia sclerotiorum infection of resistant and susceptible plants of Brassica juncea[J].India Journal of Mycol and Plant Pathoogy,1979,9(2):160-165.
    [22]刘小燕.油菜菌核病菌致病力与纤维素酶活性关系的初步研究[J].现代农业科学,2009,16(6):1-3.
    [23]Max Well D P, Lumsden R D. O xalic acid product ion by S clerotinia sclerotiorum in infected bean and inculture[J].Phytopathology,1970,60:1395-1398.
    [24]吴纯仁,刘胜毅,周必文.油菜菌核病致病机理的研究Ⅲ.感病组织内草酸毒素积累和分布的初步分析[J].植物病理学报,1991.21(2):135-139.
    [25]Godoy G.Steadman J R,Dickman,et al.Using of mutants to demonstate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on phaseolus vulgaris [J].Physiological and Molecular Plant Pathology,1990,37:179-191.
    [26]薛应龙.植物抗病的物质代谢基础[A].余叔文.植物生理与分子生物学[C].北京:科学出版社.1992.417-430.
    [27]赵建伟,陈爱武,孟金陵.甘蓝型油菜远缘杂交新品系某些酶的活性与抗菌核病的关系[J].中国油料作物学报,1998,20(1):38-41.
    [28]Brokaert W F,Boland G J,Smith E A,et al.Plant defensins:Novel antimicrobial peptides as components of the host defense system[J].Plant Physiol,1995,108:1353-1358.
    [29]Dring N Crowei L, Richard M.Induction sepcific mRNAs in culturedsoybean cells during eytokinin orauxin starvation[J].Plant Physiol,1991,95(3):711-715.
    [30]Lawton K,Hughes W G.Acidic and dacic class III chitinase mRNA accumulation on in response to TMV infection of tobacco[J].Plant Mol Biol,1992,19:735.
    [31]Dixon R A,Dickson M H,Grison R,et al.Molecular communication in interactions between plants and microbial pathogens[J].Ann Rrv Plant Physiol Plant Mol Biol,1990,41:339-367.
    [32]李宝柱,段玉玺,陈立杰.大豆抗病相关蛋白研究进展[J].安徽农业科学[J].2006,34(9):1762-1763.1765.
    [33]Van Loon L C.The nomenclature of pathogenesis-related protein[J].Plant Mol. Biol,1990.37:229.
    [34]Van Loon LC.Van Strien.The families of pathogenesis-related proteins,their activities,and comparative analysis of PR-1 type proteins[J].Physiol Mol.Plant Pathol,1999,55:85-97.
    [35]McHale L,Tan X.Koehl P,et al.Plant NBS-LRR proteins Adaptable guards[J]. Genome Bid.2006,7:212-223.
    [36]叶雪凌,谢华,曹鸣庆,马荣才.蔬菜作物抗病基因研究进展[J].农业生物技术学报[J].2008,16(5):898-904.
    [37]Kolade O O,Bamford V A,Ancillo Anton G, Jones J D G, Vera P and Hemmings A M.In vitro characterization of the cysteine-rich capping domains in a plant leucine rich repeat protein[J]. Biochimica et Biophysica Acta.2006,1764:1043-1053.
    [38]Meyers B C,Kozik A.Griego A,Kuang H and Michelmore R W.Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis[J].The Plant Cell.2003.15:809-834.
    [39]Martin G B.Bogdanove A J.Seasa G.Understanding the function of plant disease resistance proteins[J].Annu Rev Plant Biol,2003,54:23-61.
    [40]Dixon M S.Hatzixanthjs K,Jones D A.Harrison K and Jones J D.The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy numbef[J].The Plant Cell,1998,(10):1915-1925.
    [41]X uY, Tao X, Shen B, Horng T, Medzhitov Manley JL and Tong L. Structural basis for signal trnsduction by the Toll/interleukin-1 receptor domains [J].Nature,2000,408:111-115
    [42]Bostjan K, Andrey V K. The leucine-rich repeat as a protein recognition motif[J].Curr Opin in Struc Bio,2001,11:725-732.
    [43]Burch Smith T M,Schif M,Caplanl J Let al.A Novel role for the TIR domain in association with pathogen-derived elicitors[J].PLoS Biology,2007,5:501-514.
    [44]Padgett H S,Beachy R N.Analysis of a Tobacco mosaic virus strain capable of overcoming N gene-mediated resistance[J].Plant Cell,1993,5:577-586.
    [45]Whitham S,Dinesh-Kumar S P,Choi D,et al.The product of the Tobacco D'zosaiC virus resistance gene N:similarity to toil and the interleukin-1 receptor[J].Cell,1994,78:1101-1115.
    [46]Taylor C B.Defense responses in plants and animals-more of the same[J].The Plant Cell,1998,10(6):873-876.
    [47]Lorenzo G D.Ovidio R D.Cervone F.The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi[J].2001,39:313-315.
    [48]D'Ovidio R.Mattei B,Roberti S.Polygalacturonases,polygalacturonase-inhibiting protein and pectic oligomers in plant-pathogen interactions[J].Biochimica Biophysica Acta,2004,1696:237-244.
    [49]郑远旗,杨宗剑,李建吴等.小麦内切多聚半乳糖醛酸酶抑制蛋白的分离和纯化[J].生物化学与生物物理学报,1994,,26(5):555-558.
    [50]周立,阮期平,侯留记.烟草内切多聚半乳糖醛酸酶抑制蛋白分离纯化研究[J].中国烟草科学.1998,(4):21-25.
    [51]张开春,张军科.马哈利樱桃PGIP基因克隆及全序列测定[J].农业生物技术学报,2000,8(3):281-283.
    [52]李广平,乔玉山,陶建敏等.中国李PGIP基因的克隆及序列分析[J].2006,26(9):1870-1873.
    [53]王家福,朱春林,陈桂信等.龙眼梅PGIP基因的克隆及序列分析[J].果树学报,2007.24(1):55-58.
    [54]Chenglin Y,Conway W S,Ren R,et al.Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection[J].PlantMol.Biol,1999,39:1231-1241.
    [55]Albersheim P.Anderson A J.Protein from plant cell wall inhibit polygalacturonases secreted by plant pathogens[J].Proc NatlAcadSci USA,1971,68:1815-1819.
    [56]Toubart P,Desiderio A,Salvi G,et al.Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L [J].The Plant Journal,1992,2(3):367-373.
    [57]Willamson B, Johnston D J,Ramanathan V.el at.A polygalacturonase inhibitor from immature raspberry fruit:a possible new approach to grey mould control [J].Acta Itorticultuarae.1993,352:601-606.
    [58]Favaron F D,OvidioR,Poreeddu E,et al.Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein[J].Planta,1994,195(1):80-87.
    [59]Sharrock K R.Labavitch J M.Polygalacturonase inhibitor of Barlctt pear fruits:Differential effects on Botrytis cinerea polygalacturonase hydrolysis of pear cell walls and on ethylene introduction in cell culture[J].Physiol.Mol.plant pathol.1994,45:305-319.
    [60]Komjanc M S, Schmid F.Cervone und G.et al.Accumulation of Polygalacturonase-Inhibiling protein(PGIP)-like mRNA in apple is induced upon infection with Vcnturia inacqualis and salicyl acid treatment[J].IBOC/WPRS Buletin,1997,20(9):155-162.
    [61]Yao C, Conway W S, Ren R.et al.Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection[J].Plant Mol Biol,1999,39(6):1231-1241.
    [62]Kajava V.Structural diversity of leucine-rich repeat proteins[J].Mol Biol.1998.277:519-527.
    [63]Kobe B,Kajava AY.The leucine-rich repeat as a protein recognition motif.Current Opinion in structural Biology[J],2001,11:725-732.
    [64]Mattei B. Bernakia M S.Feserici L,et al.Secondary structure and post-translation modification of leucine-rich repeat protein PGIP from Phaselous vulgaris[J].Biochemistry,2001,40(2):569-576.
    [65]Peter Albersheim,Anne J.Anderson.Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens [J].Proc.Nat. Acad.Sci. USA, 1971.1815-1819.
    [66]Begmann C,Sheng-Cheng W.Albersheim P.Plant cell walls.www. ccrc.uga. edu/~ mao/plapath/PP text. htm.
    [67]Ellis J,Dodds P,Pryor T.Structure,function and evolution of plant disease resistance genes [J].Curr Opin Plant Biol,2000,3:278-284.
    [68]De Lorenzo G,D'Ovidio R.Cervone F.The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi[J].Annual Review of Phytopathology,2001,39:313-335.
    [69]Jones D A.Jones I D G.The role of leucine-rich repeats in plant defences [J].Advances in Botanical Research,1997,24:89-167.
    [70]Kobe B.Kajava AY.The leucine-rich repeat as a protein recognition motif.Current Opinion in structural Biology,2001,11:725-732.
    [71]Brown A E, Adikaram N K B. A role for pectinase and proteinase inhibitors in fungal rot development in tomatofruits. Phyopathol Z,1983,(106):239-251.
    [72]Lafitte C, Barthe J P. Montillet J L, Touze A.1984. Glycoprotein inhibitors of colletotriclum Lindemuthianum endopolygalacturonase in near isogenic lines of phaseolus vulgaris resistant and suscept ible to anthracnose. Physiol Plant Pathol,25:39-53.
    [73]Hoffman R M, Turner J G.Occurence and specificity of an endopolygalacuronase inhibit or in Pisum sat ivum [J]. Physiol Plant Pathol,1984,24:49-59.
    [74]Turner J G.Hoffman R M,1985. Effect of the PGIP from Pea on the hydrolysis of Pea cell walls by the endo-PG from Ascochyta pisi.Plant Pathol,34:54-60.
    [75]Salvi G. Giarrizzo F, De Lorenzo G, Cervone F. A PGIP in the flowers of phaseouls vulgaris. J Plant Physiol,1990,136:513-518.
    [76]Bergmann C W.Ito Y,Singer D,et al.Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L.in response to wounding.elicitors and fungal infection [J].Plant J.1994,5(5):625-634.
    [77]阮期平.周立.郑远旗PGIP在植物抗病方面的研究进展[J].植物学通 报,2000,17(1):60-63.
    [78]Liang F,Zhang K,Zhou C,et al.Cloning,characterization and expression of the gene encoding polygalacturonase-inhibiting proteins (PGIPs) of peach [prunus persica (L.) Batch[J].Plant Science,2005,168(2):481-486.
    [79]Cervone F, Hahn M G, Lorenzo interactionXXXIII A plantt protein conveys a fungal pathogenesis factor onto an elicitor of plant defense reponses[J].1989,90:542-548.
    [80]阮期平,周立,刘勇.小麦在损伤、真菌感染应答过程中内源PGIP积累的研究初报[J].2000,30(4):372-373.
    [81]Li R G,Rimmer R,Yu M.et al.Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses[J].Planta,2003,217(2):299-308.
    [82]Ferrari S,Vairo D,Ausubel F M,et al.Tandemly duplicated Arabidopsis genes that encode polygalacturonase inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection[J].The Plant Cell,2003,15:93-106.
    [83]Di Matteo A.Bonivento D,Tsernoglou D.et al.Polygalacturonase-inhibiting protein (PGIP) in plant defence:a structural view [J].Phytochemistry,2006,67(6):528-533.
    [84]De Lorenzo G,Ferrari S.Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi [J].Current Opinion in Plant Biology,2002,5(4):295-299.
    [85]Favaron F.Gel detection of Allium porrum polygalacturonase inhibiting protein reveals a high number of isoforms[J].Physiological and Molecular Plant Pathology,2001,58:239-245.
    [86]Bennett A,Labavitch J M.Powell A,et al.Plant inhibitors of fungal polygalacturonasc and their use to control fungal disease[P].US Patent 5,569,830.Oct29.1996.
    [87]Desiderio A.Cracri B.Leckie F.et a.lPolygalacturonas-inhibiting protecins with different specilicities are expressed in Phaseolus vulgaris[J].Mol Plant Microbe Interact, 1997,10(7):852-860.
    [88]Berger D.Crop genetic engineering for disease resistance an African perspective. International Center of Genetic Engineering and Biotechnology China Workshop on Plant Biotechnology Beijing,1999,19-22.
    [89]Powell A L,van Kan J,ten Have A,et al.Transgenic expression of pear PGIP in tomato limits fungal colonization.Molecular Plant Microbe Interact,2000,(13):942-950.
    [90]Dean O,lan A D,Riaan M,et al.Apple polygalacturonse inhibiting protein expressed in transgenic tobaccoinhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen[J].Phytochemistry.2006,67:255-263.
    [91]Joubert D A,Slaughter A R, Kemp G,et al.The grapevine polygalaeturonase-inhibiting protein(VvPGIPI) reduces Botrytis cirterea susceptibility in transgenic tobacco and diferentially inhibits fungal polygalacturonases[J].Transgenie Research,2006,15(6):687-702.
    [92]Richter A,Jacobsen H J,Kathen A,et al.Transgenic peas(Pisum sativum) expressing polygalaeturonase inhibiting protein from raspbemy(Rubus idaeus) and stilbene synthase from grape(Vitis vinifera)[J].Plant Cell Reports,2006,25(11):1166-1173.
    [93]Ferrari S,Galletti R,Vairo D,et al.Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalaeturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea[J].Molecular Plant-Microbe Interactions,2006,19(8):931-936.
    [94]Pressy R.Polygalactumnase inhibitors in bean pods[J].Phytovhemistry,1996,42(5): 1267-1270.
    [95]余波,程安春,汪铭书.大肠杆菌中重组蛋白可溶性表达的研究进展及展望[J].黑龙江畜牧兽医,2008.10:9-11.
    [96]邝爱丽,陈圆圆,彭志峰等.包涵体的形成原因及其处理方法[J].上海畜牧兽医通讯,2009,(1):62-63.
    [97]Ito M,Nagata K,Kato Y,et al.Expression,oxidative re-folding.and characterization of six-histidine-tagged recombinant human LECT2, a 16-kDa chemotactic protein with three disulfide bonds.Protein Expr Purif,2003,27(2):272-278.
    [98]King J.Unexpected pathways to protein stabilization[J].Nat Biotechnol,1996,14(4):436.
    [99]赵喜红,何小维,李文姜等.大肠杆菌表达包涵体蛋白体外复性研究进展[J].食品工业科技2010.31(6):379-383.
    [100]Rudolph R, Lilie H.In vitro folding of inclusion body proteins[J].RVIEW,1996,1(10):753.49-56.
    [101]Clark E.Refolding of recombinant proteins [J]. Current Opinion In Biotechnology,1998,9(2):157-163.
    [102]Broglie K.Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani[J].Science.1991,254:1194-1197.
    [103]Oppenheim A B,Chet I.Cloned chitinases in fungal plant-pathogen control strategies[J].Trend in Biotechnology,1992,10:392-394.
    [104]Grison G B,Lumsden R D,Christtine R.et al.Field tolerance to fungal plant-pathogen of Brassica napus constitutively expressing chimeric chitinase gene[J].Nature Biotechnology,1996,14(5):643-646.
    [105]张丽华,党本元,周奕华等.抗菌核病转基因油菜的获得[J].云南大学学报(自然科学版),1999,,21(3):177-178.
    [106]杨仲毅,王兰岚.利用微束激光穿刺法将菜豆几丁质酶基因导入油菜的研究[J].激光生物学报,1999,,8(1),8-11.
    [107]蓝海燕,张正华.农杆菌介导法将β-1,3-葡聚糖苷酶基因导入油菜的研究初报[J].中国油料作物学报,2000,22(1):6-10.
    [108]蓝海燕,王长海,张丽华等.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究[J].遗传学报,2000,16(2):142-146.
    [109]王新发,王汉中,刘贵华等.导入双价基因的转基因杂交油菜亲本及其对菌核病抗性的研究[J].植物学通报,2005,22(3):292-301.
    [110]Thompson C,Dunwell L M,Johnstone C E,Lay V,Ray J,Schmitt M,Watson H,Nisbet G.Degradation of oxalic acid transgenic oilseed rape plant expressing oxalate oxidase[J].EuPhiea.1995.85:169-172.
    [111]Poulsen G.Genetic transformation of Brassica napus[J].Plant Breeding,1996,115:209-225.
    [112]郭学兰,王汉中,李均等.玉米转座子Ac转基因甘蓝型油菜的遗传变异[J].中国油料作物学报,2001,23(1):7-11.
    [113]董祥柏.葡萄糖氧化酶基因和草酸氧化酶基因在甘蓝型油菜中的表达研究[D].北京:中国农业科学院,2004.
    [114]景岚.草酸氧化酶基因转入烟草和油菜的研究[D].陕西杨凌:西北农林科技大学.2004.
    [115]马建华,孙毅.转基因油菜研究进展[J].分子植物育种.2006,4(2):275-279.
    [116]侯丙凯,黄健.利用农杆菌介导法将抗虫基因导入油菜的研究[J].山东大学学报,2002,5:467-470.
    [117]李学宝,秦明辉,施荣华等.芥菜型油菜抗虫转基因植株及其后代株系的研究[J].生物工程学报,1999,15(4):482-488.
    [118]Fukuoka H.Ogawa T,Matsuoka M,Ohkawa Y,Yano H.Direct gene delivery into isolated microspores of rapeseed(Brassica napus)and the production offertile transgenic plants[J].Plant Cell Pep,1998,17(5):323-328
    [119]熊兴华,官春云,李珣等.基因枪法向甘蓝型油菜转移反义FAD2基因的研究[J].湖南农业大学学报,,2003,29(3):188-191.
    [120]侯丙凯,张中林,周奕华等.油菜叶绿体定点转化载体的构建及其杀虫性[J].高技术通讯,2000,(7):5-11.
    [121]石东桥,周奕华,胡赞民等.基因枪法转移反义油酸脱饱和酶基因获得转基因油菜[J].农业生物技术学报,2001,9(4):359-362.
    [122]Krens F Aetal.Invitrotrans formation of Plant Proto Plasts with Ti-Plasmid DNA[J].Nature,1982,296:72-74.
    [123]Rasmussen J O,Rasmussen.PEG mediated DNA uptake and transient GUS expression in Carrot,rapeseed and soybean protoplasts[J].Plant Sci,1993,89:199-207.
    [124]Cheng Z D, Wei Z M, Xu Z H.Transformation of Brassica napus using Agrobacterium tumefaciens and regeneration of transgenic plants[J] Acta Botanica Sinica,1994,36(9):657-663.
    [125]林良斌,官春云.油菜高效转化系统的研究[J].作物学报,1999,25(4):447-450.
    [126]王景雪,孙毅,崔桂梅,胡晶晶.花粉介导法获得玉米转基因植株[J].植物学报.2001,,43(3):275-279.
    [127]杜春芳.花粉介导法在油菜育种中转基因育种中的应用研究[D].硕士学位论文,山西农业大学.2004.
    [128]Chapel M,Glimelius K.Temporary inhibition of cell wall synthesis improves the transient expression of the GUS gene in Brassica napus mesophyll protoplasts [J].Plant Cell Rep,1990(9):105-108.
    [129]Glimeliua K.High grow the rate and regeneration capacity of hypocotyls protoplasts in some Brmsicaceac [J].Physio Plant,1984(61):38-44.
    [130]张海燕,田颖川,周弈华等.将商陆病毒蛋白(PAP)cDNA导入油菜获得抗病毒转基因植株[J].中国激光,1999,26(11):1053-1056.
    [131]侯丙凯,张中林,周奕华等.油菜叶绿体定点转化载体的构建及其杀虫性[J].高技术通讯,2000,(7):5-11.
    [132]皇甫海燕,官春云.甘蓝型油菜抗菌核病近等基因系和感病亲本蛋白差异的初步研究[J].中国农业科学,2010,43(10):2000-2007.
    [133]赵可夫,王韶唐主编.作物抗性生理[M].北京:农业出版社,1990.
    [134]Dwayne D,Hegedus, Rugang Li.Lone Buchwaldt,Isobel Parkin,Steve Whitwill.Cathy Coutu,Diana Bekkaoui,S.Roger,Rimmer.Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are diverentially regulated in response to Sclerotinia sclerotiorum infection,wounding and defense hormone treatment[J].Planta,2008:228:241-253.
    [135]Stotz H U, Bishop J G, Bergmann C W, Koch M, Albersheim P, Darvill A G, and Labavitch J M, Identification of target amino acids that effect interactions of fungal polygalacturonases and their plant inhibitors[J].Physiological and Molecular Plant Pathology,2000,56:117-130.
    [136]Bostjan Kobe Andrey V Kajava.The leucine-rich repeat as a protein recognition motif [J].Curent Opinion in Structural Biology,2001,11:725-732.
    [137]Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F.Polygalacturonase inhibiting proteins:players in plant innate immunity? [J].Trends in Plant Science,2006,11(2):65-70.
    [138]De Lorenzo G, D'Ovidio R, Cervone F.The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi [J].Annual Review of Phyopathology.2001,29:313-335.
    [139]Catherine L,and Saradee W P,Giant catfish Pangasianodon gigas growth hormone-encoding cDNA cloning and sequence by one-sided polymerase chain reaction Gene[J].Scientia Agricultura Sinica,1994,149:271-276.
    [140]K G Han,S S Lee,C Kang.Soluble expression of cloned phage KII RNA polymerase gene in Eseheriehia coli at a low temperature[J].Protein Expr.Purif.1999,16:103-108.
    [141]F B Nygaard, K W Harlow.Heterologons expression of soluble,active proteins in Escheriehia coli[J].2001,21:500-509.
    [142]孙文秀.大豆疫霉根腐病菌多聚半乳糖醛酸酶活性对其致病力的影响[J].现代农业科学,2008,15(2):42-43.
    [143]周立,刘勇,李建吾等.小麦多聚半乳糖醛酸酶抑制蛋白对几种病原真菌抑制作用的研究[J].植物病理学报,1988.28(2):107-112.
    [144]王晓利.苹果多聚半乳糖醛酸酶抑制蛋白的分离纯化与抑菌作用研究[D].陕西杨凌,西北农林科技大学,2008.
    [145]Taylor R J,Secor G A.An improved diffusion assay for quantifying the polygalacturonase content of Erwinia culturefiltrates[J].Phytopathology,1988,78,1101-1103.
    [146]高武军,王景雪,卢龙华,孙毅.根癌农杆菌介导的油菜基因转化研究进展[J].生物学通报,2002,37(6):10-12.
    [147]邓艺,曾炳山,赵思东等.乙酰丁香酮在农杆菌介导的遗传转化中的作用机制及应用[J].安徽农业科学,2010,38(5):2229-2232.
    [148]何小兰,昊敬音,朱卫民等.6-BA和AgNO3对甘蓝型油菜带柄子叶外植体不定芽再生的影响[J].江苏农业学报.2001,17(4):211-214.
    [149]卢龙斗,张胜,段红英,高武军.影响油菜下胚轴外植体芽高频率再生的因素[J].广西植物,2003,23(3):240-242.