球磨态膨胀石墨及其金属(氧化物)复合材料的微观结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能球磨极易在材料中引入大量的应变、缺陷以及纳米级微结构,目前已成为调控材料微观结构及性能乃至获得各种纳米结构的有效方法之一。碳纳米结构因其独特的结构、优异的性能及巨大的应用前景一直是材料学界的研究热点之一。研究表明:高能球磨天然石墨是制备碳纳米结构的有效技术手段。至今,人们通过对天然石墨进行高能球磨已成功制备出碳纳米弧、碳纳米卷(CNSs)、类洋葱、碳纳米管等多种碳纳米结构。
     膨胀石墨(Expanded Graphite,简称EG)是天然石墨经插层、水洗及高温膨化制得的一种新型碳材料。EG基本保持着天然石墨原有的层状结构特征,但是其中的石墨片厚度更薄,而且表现出特殊的柔性和弹性。迄今为止,有关EG的高能球磨处理及其结构演化的研究尚处于初级阶段,而通过高能球磨EG制备碳纳米结构的工作更是鲜见报道。鉴于此,本学位论文以EG为对象,研究其在高能球磨期间的结构演化并探索碳纳米结构的形成过程与形成机理以及球磨态EG在复合材料领域中的应用。主要研究工作和结果如下:
     以EG为原料,采用振动球磨的方法制备出石墨纳米片及其衍生结构-柱状CNSs。柱状CNSs是由双层石墨烯卷曲形成的。研究了球磨过程中石墨纳米片和柱状CNSs的形成过程与形成机理,并进一步分析了片层结构特点(如厚度、面内缺陷等)对柱状CNSs形成的影响。结果表明:片层厚度与球磨过程中产生的面内缺陷对柱状CNSs的形成起了决定性作用;相比片状结构和管状结构的碳纳米结构,柱状CNSs具有较差的柔韧性。
     以球磨态EG和电解铜粉为原料,采用粉末冶金的方法制备出新型球磨态EG-Cu自润滑复合材料。研究了球磨态EG含量与复合材料的硬度、弯曲强度及摩擦学性能的关系,并分析了其减摩耐磨机制。结果表明:球磨态EG因纳米级尺度的片层厚度而具有高效的润滑性能;随着球磨态EG含量的增加,复合材料的硬度和弯曲强度均降低,摩擦学性能先提高后略有降低。因此加入适量石墨烯纳米片,能够有效提高铜-碳自润滑复合材料的摩擦学性能,并兼顾最大限度地抑制复合材料弯曲强度因球磨态EG的引入而导致的恶化,提高复合材料的综合性能。
     将EG与Sn粉混合球磨并退火处理,制备出新型球磨态EG-SnOx(x=0,1,2)复合材料。研究了不同制备工艺(球磨时间和退火温度)对复合材料成分种类与微观结构的影响,并进一步研究了退火温度对复合材料电化学性能的影响。结果表明:球磨时间能有效控制球磨态EG的孔隙率、微晶厚度与含氧量;退火温度能有效改善球磨态EG结构的有序度,控制碳热反应的进程。通过控制球磨时间和退火温度可以制备出含不同成分种类、微观结构的球磨态EG-SnOx复合材料。电化学性能方面,相比球磨18h未退火和800℃退火4h制备的球磨态EG-SnOx复合材料,球磨18h600℃退火4h制备的球磨态EG-SnOx复合材料具有更好的电化学性能。
It is extremely easy to introduce a lot of strain, defects and nanoscale microstructuresin materials during high-energy ball milling process. Therefore, high-energy ball millinghas become an effective method to control nanostructures and properties of materials andproduce various nano-materials. Carbon nanostructure is always the research focus ofmaterial fields due to its unique structure, outstanding performance and huge applicationprospect. Investigations show that high-energy ball milling is an effective method toproduce carbon nanomaterials. Up to now, many carbon nanostructures have beenproduced by ball milling of natural graphite, such as carbon nano-arc, carbon nanoscroll,carbon onion and carbon nanotube etc.
     Expanded graphite (EG) is a novel carbon material which is produced by naturalsquama graphite through oxidation, intercalation, washing, dryness and expansion. EGkeeps the layered structure of natural graphite mainly, but its carbon nanosheets possess athinner thickness and show excellent flexibility and elasticity. Up to now, bothhigh-energy ball milling and microstructure evolution of EG have just been receivedattention. The carbon nanostructures produced by ball milling EG has been barely reported.Therefore, this dissertation takes EG as the object of study. The microstructure evolutionof EG and the formation mechanism of carbon nanostructures during ball-milling processwere studied. In addition, the applications of ball milled EG-metal (oxide) composites intribology and energy fields were also investigated. The main research works and resultsare listed below.
     Graphite nanoshteets and their derived structure-columnar carbon nanosrolls (CNSs)are produced by vibratory milling of EG. The columnar CNSs are formed by bilayergraphenes. The formation mechanisms of graphite nanoshteets and columnar CNSs arestudied. The effect of the characters of nanosheets (thickness and intralayer defects) on theformation of columnar CNSs is also investigated. Results show that the ultrathin lamellarthickness and the intralayer defects play a decisive role of the formation of columnarCNSs. On the other hand, compared with the lamellar and tubular carbon nanostructures, columar CNSs has a lower flexility.
     Ball milled EG-Cu self-lubricating composites are fabricated by powder metallurgyusing ball milled EG and electrolytic copper powders as raw materials. The effect of theEG nanosheets on the hardness, bending strength, and tribological properties of ball milledEG-Cu composites are investigated. The abrasion mechanism of the ball milled EG-Cucomposites is also investigated. Results show that the ultrathin thickness of carbonnanosheets determines it has excellent tribological properties. With the content of EGnanosheets increasing, the hardness and bending strength of ball milled EG-Cu compositesgradually decrease, and the tribological properties are first improved and then deterioratedslightly. Adding a proper amount of carbon nanosheets can improve the tribologicalproperties of ball milled EG-Cu composites efficiently, and reduce the drop of the bendingstrength of ball milled EG-Cu composites.
     Ball milled EG-SnOx(x=0,1,2) composites are produced by ball milling andannealing of EG and Sn powder mixture. The effect of ball milling time and annealingtemperature on the component kinds and microstructures of ball milled EG-SnOxcomposites is investiagated. The effect of annealing temperature on the electrochemicalperformance of ball milled EG-SnOxcomposites is also investigated. Results show thatmilling time has the ability to control the porous rate, the microcrystal thickness and thecontent of oxide of ball milled EG. Annealing temperature has the ability to improve thedisordered structure of ball milled EG, and to control the process of carbothermic(reduction) reaction. Ball milled EG-SnOxcomposites with various component kinds andmicrostructures can be produced by controlling ball milling time and annealingtemperature. Compared with the ball milled EG-SnOxcomposites produced by18h ballmilling unanealed and annealed at800℃for4h, the ball milled EG-SnOxcompositeproduced by18h ball milling and annealed at600℃for4h has a better electrochemicalperformance.
引文
[1]路忠胜.天然石墨及其在铝电解中的应用[J].轻金属.1994,30-32.
    [2] Schafhaeutl C. On the combinations of carbon with silicon and iron, and other metals, formingthe different Species of Cast Iron, steel, and malleable iron[J]. Phil.Mag.1840,16(104):570-590.
    [3]刘开平,周敬恩.膨胀石墨化学氧化法制备技术研究进展[J].长安大学学报.2003,25(4):85-91.
    [4]沈万慈,祝力,侯涛等.石墨层间化合物材料的研究动向与展望.炭素技术.1993,5:22-28.
    [5]田春叽,谢吉星,王海雷,等.膨胀石墨在聚乙烯中阻燃协效作用的研究[J].中国塑料.2003,17(12):49-52.
    [6] Shen W C, Wen S Z, Cao N Z, et al. Expanded graphite-a new kind of biomedical material[J].Carbon.1999,37(2):356-358.
    [7]乔小晶,张同来,任慧,等.爆炸法制备膨胀石墨及其干扰性能[J].火炸药学报.2003,26(1):70-73.
    [8] Xu Z, Huang Y, Yang Y, et al. Dispersion of iron nano-particles on expanded graphite for theshielding of electromagnetic radiation[J], Journal of magnetism and magnetic materials.2010,322(20):3084-3087.
    [9] Chung D D L. Electromagnetic interference shielding effectiveness of carbon materials[J].Carbon.2001,39(2):279-285.
    [10]王荣飞,付猛,赵晓兵,等.膨胀石墨容积对甲醛气体吸附性能的影响[J].江苏工业学院学报.2009,21(2):11-24.
    [11]曹乃珍,沈万慈,刘英杰,等.膨胀石墨对SO2的吸附[J].炭素.1995,3:9-13.
    [12]武戈,张萍,刘占荣,等.膨胀石墨对二氧化碳的吸附研究[J].石家庄学院学报.2011,13(3):21-25.
    [13] Kato H, Takama M, Iwai Y, et al. Wear and mechanical properties of sintered copper-tincomposites containing graphite or molybdenum disulfide[J]. Wear.2003,255:573-578.
    [14] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper-graphite compositesmade with Cu-coated and uncoated graphite powders[J]. Wear.2002,253(7):699-710.
    [15] Ková ik J, Emmer, Bielek J, et al. Effect of composition on friction coefficient of Cu-graphitecomposites[J]. Wear.2008,265:417-421.
    [16]李春风,罗新民,候斌.膨胀石墨的表面改性及作为润滑油添加剂的摩擦学性能[J].润滑与密封.2007,32(7):111-121.
    [17] Umanskaya, O I, Fast, A A, Abadzheva, R N, et al. Lubricating greases based on expandedgraphite in various dispersion media[J]. Chemistry and Technology of fuels and oils.1987,23(4):175-177.
    [18]刘艳丽,黄先威.聚合物改性膨胀石墨的制备及摩擦学性能研究[J].湖南工程学院学报.2010,20(2):53-55.
    [19] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase changematerials and applications[J]. Renewable and Sustainable Energy Reviews.2009,13(2):318-345.
    [20] Koca A, Oztop H F, Koyun T, et al. Energy and exergy analysis of a latent heat storagesystemwith phase change material for a solar collector[J]. Renewable Energy.2008,33(4):567-574.
    [21] Mazman M, Cabeza L F, Mehling H, et al. Utilization of phase change materials in solardomestic hot water systems[J]. Renewable Energy.2009,34(6):1639-1643.
    [22] Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materialsusing exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells.2009,93(1):136-142.
    [23] Alkan C, Sarl A, Karaipekli A, et al. Preparation, characterization, and thermal properties ofmicroencapsulated phase change material for thermal energy storage[J]. Solar Energy Materialsand Solar Cells.2009,93(1):143-147.
    [24] Chen C, Wang L, Huang Y. Morphology and thermal properties of electrospun fattyacids/polyethylene terephthalate composite fibers as novel form-stable phase change materials[J].Solar Energy Materials and Solar Cells.2008,92(11):1382-1387.
    [25] Karaipekli A, Sarl A. Capric-myristic acid/expanded perlite composite as form-stable phasechange material for latent heat thermal energy storage[J]. Renewable Energy.2008,33(12):2599-2605.
    [26] Shukla A, Buddhi D, Sawhney R L. Thermal cycling test of few selected inorganic and organicphase change materials[J]. Renewable Energy.2008,33(12):2606-2614.
    [27]赵建国,郭全贵,刘朗,等.膨胀石墨基相变储能材料的研究.现代化工.2009,29(1):243-245.
    [28] Prabhakar N, Arora K, Singh S P, et al. Polypyrrole-polyvinyl sulphonate film based disposablenucleic acid biosensor[J]. Analytica Chimica Acta,2007,589(1):6-13.
    [29] Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energystorage material[J]. Energy Conversion and Management.2006,47(3):303-310.
    [30] Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phase change materialsand graphite for thermal storage[J]. Solar Energy Materials and Solar Cells.2008,92(6):603-613.
    [31]黄妙良,申玥,杨媛媛,等.硅烷偶联剂改性TiO2/膨胀石墨复合材料的制备及其光催化性能研究[J].矿物学报.2012,32(2):221-226.
    [32] Chuan X, Chen D, Zhou X. Intercalation of CuCl2into expanded graphite[J]. Carbon.1997,35:311-313.
    [33]陈国华,吴翠玲,吴大军,等.聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究[J].2003,5:742-745.
    [34] Park C, Sohn H A. mechano-and electrochemically controlled SnSb/C nanocomposite forrechargeable Li-ion batteries[J]. Electrochimica Acta.2009,54(26):6367-6373.
    [35] Park D, Lim Y. Kim M. Performance of expanded graphite as anode materials for high powerLi-ion secondary batteries[J]. Carbon letters.2010,11(4):343-346.
    [36] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families foruse in rechargeable lithium ion batteries[J]. Nano Letters.2008,8(8):2277-2282.
    [37] Gao B, Sinha S, Fleming L, et al. Alloy formation in nanostructured silicon[J]. Adv. Mater.2001,13(11):816-819.
    [38] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using siliconnanowires[J]. Nat. Nanotech.2008,3:31-35.
    [39] Derrien G, Hassoun J, Panero S, et al. Nanostructured Sn-C composite as an advanced anodematerial in high-performance lithium-ion batteries[J]. Adv. Mater.2007,19(17):2336-2340.
    [40] Nam K T, Kim D W, Yoo P J, ea tl. Virus-enabled synthesis and assembly of nanowires forlithium ion battery electrodes[J]. Science.2006,312:885-888.
    [41] Li Y, Tan B, Wu Y. Mesoporous Co3O4nanowire arrays for lithium ion batteries with highcapacity and rate capability[J]. Nano Lett.2008,8(1):265-270.
    [42] Chen J, Xu L, Li W, et al. α-Fe2O3Nanotubes in gas sensor and lithium-ion batteryapplications[J]. Adv. Mater.2005,17(5):582-586.
    [43] Cui Z, Jiang L, Song W, et al. High-yield gas-liquid interfacial synthesis of highly dispersedFe3O4nanocrystals and their application in lithium-ion batteries[J]. Chem. Mater.2009,21(6):1162-1166.
    [44] Zhi L, Hu Y, EI Hamaoui B, et al. Precursor-controlled formation of novel carbon/metal andcarbon/metal oxide nanocomposites[J]. Adv. Mater.2008,20(9):1727-1731.
    [45] Wang Y, Su F, Lee J Y, et al. Crystalline carbon hollow spheres, crystalline carbon-SnO2hollowspheres, and crystalline SnO2hollow spheres: Synthesis and performance in reversible Li-ionstorage[J]. Chem. Mater.2006,18(5):1347-1353.
    [46] Wang G, Wang B, Wang X, et al. Sn/graphene nanocomposite with3D architecture for enhancedreversible lithium storage in lithium ion batteries.[J] J. Mater. Chem.2009,19(44):8378-8384.
    [47] Zhang L, Jiang L, Yan H, et al. Mono dispersed SnO2nanoparticles on both sides of single layergraphene sheets as anode materials in Li-ion batteries[J]. J. Mater. Chem.2010,20(26):5462-5467.
    [48]沈海杰,杜胜,李玉华,等. MnO2/膨胀石墨纳米复合材料及其超级电容性能[J].材料导报B.2011,25(7):78-81.
    [49]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [50]黄仁和,王力.纳米石墨薄片及聚合物/石墨纳米复合材料制备与功能特征研究[J].功能材料.2005,36(1):6-14.
    [51]余全茂,王仁清,石墨烯制备及其在超级电容器中的应用研究[J].材料导报A.2012,26(8):7-13.
    [52] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubesto form graphene nanoribbons[J]. Nature.2009,458:872-876.
    [53] Crespi V H, Chopra N G, Cohen M L, et al. Anisotropic electron-beam damage and the collapseof carbon nanotubes[J]. Phys. Rev. B.1996,54(8):5927-5931.
    [54] Antisari M V, Montone A, Jovic N, et al. Low energy pure shear milling: A method for thepreparation of graphite nano-sheet[J]. Scripta Materialia.2006,55(11):1047-1050.
    [55] Yue X, Yu K, Ji L, et al. Effect of heating temperature of expandable graphite on amorphizationbehavior of powder expanded graphite-Fe mixtures by ball-milling[J], Powder Technology.2011,211:95-99.
    [56] Ong T S, Yang H. Effect of atmosphere on the mechanical milling of natural graphite[J]. Carbon.2000,38(15):2077-2085.
    [57] Touzik A, Hentsche M, Wenzei R, et al. Effect of mechanical grinding in argon and hydrogenatmosphere on microstructure of graphite[J]. Journal of Alloys and Compounds.2006,426(1-2):272-276.
    [58] Jartych E, Calka A, Smolira A, et al. Hydrogen-induced phase transformations in nanostructuredgraphite made by controlled ball milling[J]. Vacuum.2005,78(2-4):347-351.
    [59] Kuga Y, Shirahige M, Ohira Y, et al. Production of finely ground natural graphite particles withhigh electrical conductivity by controlling the grinding atmosphere[J]. Carbon.2002,40(5):695-701.
    [60] Welham N J, Berbenni V, Chapman P G. Effect of extended ball milling on graphite[J]. Journal ofAlloys and Compounds.2003,349(1-2):255-263.
    [61] Janot R, Guérard D. Ball-milling: the behavior of graphite as a function of the dispersal media[J].Carbon.2002,40(15):2887-2896.
    [62] Marshall C P, Wilson M A.Ball milling and annealing graphite in the presence of cobalt[J].Carbon.2004,42(11):2179-2186.
    [63] Isobe S, Ichikawa T, Gottwald J I, et al. Catalytic effect of3d transition metals on hydrogenstorage properties in mechanically milled graphite[J]. Journal of Physics and Chemistry of Solids.2004,65(2-3):535-539.
    [64] Tahmaseb R, Shamanian M, Abbasi M H, et al. Effect of iron on mechanical activation andstructural evolution of hematite-graphite mixture[J]. Journal of Alloys and Compounds.2009,472(1-2):334-342.
    [65] Wang L, Yue X, Zhang F, et al. Effect of additional nickel on crystallization degree evolution ofexpanded graphite during ball-milling and annealing[J]. Journal of Alloys and Compounds.2010,497(1-2):344-348.
    [66] Chen X H, Yang H S, Wu G T, et al. Generation of curved or closed-shell carbon nanostructuresby ball-milling of graphite[J]. Journal of Crystal Growth.2000,218(1):57-61.
    [67] Li J L, Peng Q S, Bai G Z, et al. Carbon scrolls produced by high energy ball milling ofgraphite[J]. Carbon.2005,43(13):2817-2833.
    [68] Dong J, Shen W C, Zhang B, et al. New origin of spirals and new growth process of carbonwhiskers[J] Carbon.2001,39:2325-2333.
    [69] Chen Y,Conway M J,Fitz Geral J D,et al. The nucleation and growth of carbon nanotubes ina mechano-thermal process[J],Carbon2004,42:1543-1548.
    [70] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms[J]. Science.2004,306:666-669.
    [71] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layergraphene[J]. Nano letters.2008,8(3):902-907.
    [72] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermionsin grapheme[J]. Nature.2005,438:197-200.
    [73] Zhang Y, Tan J W, Stormer H L, et al. Experimental observation of the quantum Hall effect andBerry’s phase in grapheme[J]. Nature.2005,438:201-204.
    [74] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene[J].Science.2007,315:1379.
    [75] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength ofmonolayer graphene[J]. Science.2008,321:385-388.
    [76] Chen Y, Lu J, Gao Z. Structural and electronic study of nanoscrolls rolled up by a single graphenesheet[J]. Journal of Physical Chemistry C.2007,111(4):1625-1630.
    [77] Braga S F, Coluci V R, Legoas S B, et al. Structure and dynamics of carbon nanoscrolls[J]. Nanolette.2004,4(5):881-884.
    [78] Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: A promising material forhydrogen Storage[J]. Nano letters.2007,7(7):1893-1897.
    [79] Coluci V R, Braga S F, Baughman R H, et al. Prediction of the hydrogen storage capacity ofcarbon nanoscrolls[J]. Physical Review B.2007,75(12):125404.
    [80] Braga S F, Coluci V R, Baughman R H, et al. Hydrogen storage in carbon nanoscrolls: Anatomistic molecular dynamics study[J]. Chemical Physics Letters.2007,441:78-82.
    [81] Zhang Z, Li T. Ultrafast nano-oscillators based on interlayer-bridged carbon nanoscrolls[J].Nanoscale Research Letters.2011,6:470.
    [82] Shi X, Pugno N M, Cheng Y, et al. Gigahertz breathing oscillators based on carbon nanoscrolls[J].Applied Physics Letters.2009,95:163113.
    [83] Shi X, Cheng Y, Pugno N M, et al. A translational nanoactuator based on carbon nanoscrolls onsubstrates[J]. Applied Physics Letters.2010,96(5):053115.
    [84] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls. Science[J]. Science.2003,299:1361.
    [85] Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrolls produced fromacceptor-type graphite intercalation compounds[J]. Carbon.2007,45(14):2797-2800.
    [86] Kim Y, Min D. Preparation of scrolled graphene oxides with multi-walled carbon nanotubetemplates[J]. Carbon.2010,48(15):4283-4288.
    [87] Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls frommonolayer graphene[J]. Nano letters.2009,9(7):2565-2570.
    [88] Chuvilin A L, Kuznetsov V L, Obraztsov A N. Chiral carbon nanoscrolls with a polygonalcross-section[J]. Carbon.2009,47(13):3099-3105.
    [89] Pan H, Feng Y, Lin J. Ab initio study of electronic and optical properties of multiwall carbonnanotube structures made up of a single rolled-up graphite sheet[J]. Physical Review B.2005,72(8):085415.
    [90] Schaper A K, Wang M S, Xu Z, et al. Comparative studies on the electrical and mechanicalbehavior of catalytically grown multiwalled carbon nanotubes and scrolled graphene[J]. Nanoletters.2011,11(8):3295-3300.
    [91] Yasar I, Canakci A, Arslan F. The effect of brush spring pressure on the wear behaviour ofcopper-graphite brushes with electrical current[J]. Tribology International.2007,40:1381-1386.
    [92] He D H, Manory R A. Novel electrical contact material with improved selflubrication for railwaycurrent collectors[J]. Wear.2001,249:626-636.
    [93] Ma X C, He G Q, He D H, et al. Sliding wear behaviour of copper-graphite composite materialfor use in maglev transportation system[J]. Wear.2008,265:1087-1092.
    [94] Dewidar M M, Lim J. Manufacturing processes and properties of copper-graphite compositesproduced by high frequency induction heating sintering[J]. Journal of Composite Materials.2007,41:2183-2194
    [95] Rajkumar K, Aravindan S. Microwave sintering of copper-graphite composites[J]. Journal ofMaterials Processing Technology.2009,209:5601-5605.
    [96] Rajkumar K, Kundu K, Aravindan S, et al. Accelerated wear testing for evaluating the lifecharacteristics of copper-graphite tribological composite[J]. Materials and Design.2011,32:3029-3035.
    [97] Zhao H, Liu L, Wu Y, et al. Investigation on wear and corrosion behavior of Cu-graphitecomposites prepared by electroforming[J]. Materials Science and Technology.2007,67:1210-1217.
    [98] Kestursatya M, Kim J K, Rohatgi P K. Wear performance of copper-graphite composite and aleaded copper alloys[J]. Materials Science and Engineering A.2003,339:150-158.
    [99] Yang H, Luo R, Han S, et al. Effect of the ration of graphite/pitch coke on the mechanical andtribological properties of copper-carbon composites[J]. Wear.2010,268:1337-1341.
    [100] Kim H W, Shim S H. Temperature-controlled fabrication of SnO2nanoparticles via thermalheating of Sn powders[J]. Applied Physics A.2007,88:769-773.
    [101] Zhuang Z, Huang F, Lin Z, et al. Aggregation-induced fast crystal growth of SnO2nanocrystals[J]. Journal of the American Chemical Society.2012,134:16228-16234.
    [102] Liu J, Chen X, Wang W, et al. Secondary facet-selective nucleation and growth: highly orientedstraight SnO2nanowire arrays on primary microrods[J]. Crystal Growth and Design.2009,9(4):1757-1761.
    [103] Liu J, Chen X, Wang W, et al. Secondary facet-selective nucleation and growth: highly orientedstraight SnO2nanowire arrays on primary microrods[J]. Crystal Growth and Design.2009,9(4):1757-1761.
    [104] Chen J, Ng M, Wu H, et al. Synthesis of phase-pure SnO2nanosheets with different organizedstructures and their lithium storage properties[J]. CrysEngComm.2012,14:5133-5136.
    [105] Wang J, Du N, Zhang H, et al. Large-scale synthesis of SnO2nanotube arrays ashigh-performance anode materials of Li-ion batteries[J]. The Journal of Physical Chemistry.2011,115(22):11302-11305.
    [106] Ju S A, Kim K, Kim J, et al. Graphene-wrapped hybrid spheres of electrical conductivity[J]. ACSApplied Materials&Interfaces.2011,3(8):2904-2911
    [107] Liu J, Li W, Manthiram A. Dense core–shell structured SnO2/C composites as high performanceanodes for lithium ion batteries[J]. Chemical Communications.2010,46:1437-1439.
    [108] Lee Y, Jo M R, Song K, et al. Hollow sn-SnO2nanocrystal/graphite composites and their lithiumstorage properties[J]. ACS Applied Materials&Interfaces.2012,4(7):3459-3464.
    [109] Chen Y, Huang Q Z, Wang J, et al. Synthesis of monodispersed SnO2@C composite hollowspheres for lithium ion battery anode applications[J]. Journal of Materials Chemistry.2011,21:17448-17453.
    [110] Zhang D F, Sun L D, Yin J L, et al. Low-temperature fabrication of highly crystalline SnO2nanorods[J]. Advanced Materials.2003,15(12);1022-1025.
    [111] Shah S, Benson M C, Bishop L M, et al. Chemically assembled heterojunctions of SnO2nanorods with TiO2nanoparticles via “click” chemistry[J]. Journal of Materials Chemistry.2012,22:11561-11567.
    [112] Wan Q, Huang J, Xie Z, et al. Branched SnO2nanowires on metallic nanowire backbones forethanol sensors application[J]. Applied Physics Letters.2008,92:102101.
    [113] Liu J, Li Y, Huang X, et al. Direct growth of SnO2nanorod array electrodes for lithium-ionbatteries[J]. Journal of Materials Chemistry.2009,19:1859-1864.
    [114] Huang J, Zhong L, Wang C, et al. In situ observation of the electrochemical lithiation of a singleSnO2nanowire electrode[J]. Science.2010,330:1515-1520.
    [115] Zhang R, Lee J Y, Liu Z L. Pechini process-derived tin oxide and tin oxide-graphite compositesfor lithium-ion batteries[J]. Journal of Power Sources.2002,112(2):596-605.
    [116] Park M, Wang G, Kang Y, et al. Preparation and electrochemical properties of SnO2nanowiresfor application in lithium-ion batteries[J]. Angewandte Chemie International Edition.2007,46:750-753.
    [117] Wen Z, Zheng F, Yu H, et al. Hydrothermal synthesis of flowerlike SnO2nanorod bundles andtheir application for lithium ion battery[J]. Materials Characterization.2013,76:1-5.
    [118] Wang K, He X, Ren J, et al. Ball milling of graphite/tin composite anode materials in a liquidmedium[J]. Joural of New Materials for Elictrochemical Systems.2007,10:167-170.
    [119] Wang G X, Ahn J, Lindsay M J, et al. Graphite-Tin composites as anode materials forlithium-ion batteries[J]. Journal of Power Sources.2001,97-98:211-215.
    [120] Elia G A, Panero S, Savoini A, et al. Mechanically milled, nanostructurated Sn-C compositeanode for lithium ion battery[J]. Electrochimica Acta.2013,90:690-694.
    [121] Mechanical standard of the People’s Republic of China JB/T8133.7-1999: Test method forphysical-chemical properties of electrical carbon product Transverse strength. China MachinePress,2000-01-01.
    [122] Krishnamoorthy K, Kim G, Kim S J, Graphene nanosheets: Ultrasound assisted synthesis andcharacterization[J], Ultrasonics Sonochemistry,2003,20:644-649.
    [123] Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave sparkassistance in liquid nitrogen[J]. Advanced materials,2011,23:2460-2463.
    [124] Gogotsi Y, Dimovski S, Libera J A. Conical crystals of graphite[J]. Carbon.2002,40:2263-2267.
    [125] Poot M, Zant H S J. Nanomechanical properties of few-layer graphene membranes[J]. AppliedPhysics Letters.2008,92:063111.
    [126] Shi X, Pugno N M, Gao H. Tunable core size of carbon nanoscrolls[J]. Journal of Computationaland Theoretical Nanoscience.2010,7:1-5.
    [127] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates bychemical vapor deposition[J]. Nano Letters.2009,9:30-35.
    [128] Yue X, Wang H, Wang S, et al. In-plane defects produced by ball-milling of expanded graphite[J].Journal of Alloys and Compounds.2010,505:286-290.
    [129]杨序纲,吴琪霖.拉曼光谱的分析与应用[M].北京:国防工业出版社,2008:211-214.
    [130] Barros E B, Souza Filho A G, H. Son, et al. G’ band Raman lineshape analysis in graphiticfoams[J]. Vibrational Spectroscopy.2007,45:122-127.
    [131] Barros E B, Demir N S, Souza Filho A G, et al. Raman spectroscopy of graphite foam[J].Physical Review B.2005,71:165422.
    [132] Ni Z H, Wang H M, Kasim J, et al. Graphene thickness determination using reflection andcontrast spectroscopy[J]. Nano Letters.2007,7:2758-2763.
    [133] Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supportedn-graphene layer films[J]. Nano Letters.2006,6:2667-2673.
    [134] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J].Physical Review Letters.2006,97:187401-187404.
    [135] Jaszczak J A, Robinson G W, Dimovski S et al. Naturally occurring graphite cones[J]. Carbon.2003,41:2085-2092.
    [136] Chuvilin A, Meyer J C, Algara-Siller G, et al. Constrictions to single carbon chains[J]. NewJournal of Physics.2009,11:083019-083028.
    [137] Jin C, Lan H, Peng L, et al. Deriving carbon atomic chains from graphene[J]. Physics ReviewLetters.2009,102:205501.
    [138] Song B, Schneider G F, Xu Q, et al. Atomic-scale electron-beam sculpting of near-defect-freegraphene nanostructures[J]. Nano Letters.2011,11:2247-2250.
    [139] Chuvilin A, Kaiser U, Bichoutskaia E, et al. Direct transformation of graphene to fullerene[J].Nature Chemistry.2010,2,450-453.
    [140] Huang J Y, Qi L, Li J. In situ imaging of layer-by-layer sublimation of suspended graphene[J].Nano Research.2010,3:43-50.
    [141] Dimiev A, Kosynkin D V, Sinitskii A, et al. Layer-by-layer removal of graphene for devicepatterning[J]. Science.2011,331:1168-1172.
    [142] Rurali R, Coluci V R, Galv o D S. Prediction of giant electroactuation for papyruslike carbonnanoscroll structures: First-principles calculations[J]. Physical Review B.2006,74:085414.
    [143] Huang J Y, Yasuda H, Mori H. Highly curved carbon nanostructures produced by ball-milling[J].Chemical Physics Letters.1999,303(1-2):130-134.
    [144]李平.碳和电阻相伴发展[J].电气工业.2002,(12):29-30.
    [145] Zhan Y, Zhang G. The role of graphite particles in the high-temperature wear of copper hybridcomposites against steel[J]. Materials and Design.2006,27:79-84.
    [146]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006:144-146.
    [147] Basavarajappa S, Chandramohan G, Mahadevan A, et al. Influence of sliding speed on the drysliding wear behavior and the subsurface deformation on hybrid metal matrix composite[J]. Wear.2007,262:1007-1012.
    [148] Zhan Y, Zhang G. Friction and wear behavior of copper matrix composites reinforced with SiCand graphite particles[J]. Tribology Letters.2004,17:91-98.
    [149] Lu D, Gu M, Shi Z. Materials transfer and formation of mechanically mixed layer in dry slidingwear of metal matrix composites against steel[J]. Tribology Letters.1999,6:57-61.
    [150] Riahi A R, Alpas A T. The role of tribo-layers on the sliding wear behavior of graphitic aluminummatrix composites[J]. Wear.2001,251:2396-2407.
    [151]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:459-460.
    [152]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:407-408.
    [153] Guo Y G,Hu J S, Wan L J, Nanostructured materials for electrochemical energy conversion andstorage devices[J].Advanced Mater.2008,20(15):2878-2887.
    [154] Yue X Q, Li L, Zhang R J, et al. Effect of expansion temperature of expandable graphite onmicrostructure evolution of expanded graphite during high-energy ball-milling[J], Materialscharacterization.2009,60:1541-1544.
    [155]李永良.日立S-4800冷场发射扫描电镜的BSE功能[J].中国现代教育装备,2007,(10):10-15.
    [156] Noh M, Kwon Y, Lee H, et al. Amorphous carbon-coated tin anode material for lithiumsecondary battery[J]. Chemistry of Materials,2005,17(8):1926-1929.
    [157] Connan H G, Reedy B J, Marshall C P, et al. New nanocarbons: rod milling and annealing ofgraphite in the presence of yttrium[J]. Energy Fuels.2004,18(6):1607-1614.
    [158] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphite sheets[J].Nature.2007,446:60-63.
    [159] Hassoun J, Derrien G, Panero S, et al. A nanostructured Sn-C composite lithium battery electrodewith unique stability and high electrochemical performance[J],Advanced Materials.2008,20:3169-3175.
    [160] Leite E R, Giraldi T R, Pontes F M, et al. Crystal growth in colloidal tin oxide nanocrystalsinduced by coalescence at room temperature[J], Applied Physics Letters,2003,83:1566-1568
    [161] Cheng B, Russell J M, Shi W, et al. Large-scale, solution-phase growth of single-crystalling SnO2nanorods[J]. Journal of the American Chemical Society,2004,126:5972-5973.
    [162] Wang J X, Liu D F, Yan X Q, et al. Growth of SnO2nanowires with uniform branchedstructures[J]. Solid State Communications.2004,130:89-94.
    [163] Slater B, Catlow C R A, Gay D H, et al. Study of surface segregation of antimony on SnO2surfaces by computer simulation techniques[J]. Journal of Physical Chemistry B.1999,103:10644-10650
    [164] Choi Y J, Hwang I S, Park J G, et al. Novel fabrication of an SnO2nanowire gas sensor with highsensitivity[J]. Nanotechnology.2008,19:095508-095512.
    [165] Wan Q, Dattoli E, Lu W. Doping-dependent electrical characteristics of SnO2nanowires[J], Small.2008,4(4):451-454.
    [166] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductornanowires[J]. Science.1998,279:208-211.
    [167] Heurlin M, Magnusson M H, Lindgren D, et al. Continuous gas-phase synthesis of nanowireswith tunable properties[J], Nature.2012,495:90-94.
    [168] Xi G C, Ye J H. Ultrathin SnO2nanorods: template-and surfactant-free solution phase synthesis,growth mechanism, optical, gas-sensing, and surface adsorption properties[J], InorganicChemistry,2010,49:2302-2309.
    [169] Liu L Z, Li X X, Wu X L, et al. Growth of tin oxide nanorods induced by nanocube-orientedcoalescence Mechanism[J]. Applied Physics Letters.2011,98:133102.
    [170] Yao J H, Elder K R, Guo H, et al. Theory and simulation of Ostwald ripening[J]. PhysicalReview B.1993,47:14110-14125.
    [171] Kim M G, Cho J. Reversible and high-capaeity nanostruetured eleetrode materia1s forLi-ionbattery[J]. Advanced Functional Materials.2009,19:1497-1514.
    [172] Hiab M, Uno T, Tasaka A. Irreversible capacity of eleetrodeposited Sn thin Film anodes[J].Journal of Power Sources.2005,146:473-477.
    [173] Beattie S D, Hatehard T, Bonakdarpour A, et al. Anomalous, high-voltage irreversible capacity intin electrodes for lithium battery[J]. Journal of the Electrochemical Society.2003,150:A701-A705.
    [174] Lou X W, Li C M, Archer L A. Designed synthesis of coaxial SnO2@carbon hollownanospheres for highly reversible lithium storage[J], Advanced Materials.2009,21:2536-2539.