四种维度碳纳米微粒的润滑性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从维度和微观结构来看,碳元素的同素异构体最为全面、丰富,零维的富勒烯C60呈完美的球形,一维的碳纳米管呈管状,二维的石墨烯呈极薄的片状以及三维的层状石墨。它们都具有特定的自润滑特性,有成为“分子滚珠(轴)”润滑添加剂的潜力,在流体及固体润滑领域得到了广泛的关注。本文对四种碳纳米添加剂在润滑油中的分散行为、润滑性能及其作用机理进行了系统的研究。
     采用离心沉降和吸光值测定等方法考察了5种表面活性剂对纳米石墨在润滑油中的分散稳定性,确定了在润滑油中最适合分散碳纳米添加剂的表面活性剂及其使用浓度。结果表明,油酸是碳纳米添加剂在润滑油中提高分散稳定性最有效的表面活性剂,油酸的适宜浓度为2﹪。这主要是缘于油酸作为表面活性剂具有低的HLB(Hydrophile-Lipophile Balance)值、良好的亲油性以及油酸对碳纳米添加剂在润滑油中的分散属于L型吸附等温线类型。
     超声波分散是提高碳纳米添加剂在润滑油中的分散效率和稳定性非常有效的工艺方法。不同碳纳米添加剂的结构致密程度不同,合适的超声波分散时间也不同,纳米石墨、石墨烯合适的分散时间为30min,而碳纳米管的则需达到120min。
     采用油酸和超声波分散相结合的方式可有效提高纳米石墨、碳纳米管和石墨烯在润滑油中的分散稳定性,但也由于不同碳纳米添加剂在比表面积、堆密度上的差别也产生了明显的差别。由于碳纳米管结构致密分散困难,超声波分散时间长,但实现良好分散后仍可表现出好的稳定性;而石墨烯形态十分松散,比表面积非常大,在润滑油中分散最为容易并可保持高的稳定性;而纳米石墨在分散容易程度和稳定性方面而介于碳纳米管和石墨烯之间。富勒烯则以其特殊的球形结构能够容易地溶于环状结构的甲苯等有机溶剂中,有效解决了在润滑油中的分散问题。
     采用四球机全面考察了3种不同粒径石墨、碳纳米管、石墨烯和富勒烯在润滑油中的润滑性能,并采用SEM分析了磨斑形貌。结果表明,石墨在润滑油中具有优异的抗磨、减摩性能和一定的极压性能,纳米石墨的性能要明显好于微米石墨,特别是35nm和100nm石墨在中低负荷、50ppm35nm石墨和200ppm100nm石墨在高负荷下的抗磨性能十分突出,以及高负荷下纳米石墨的减摩性能也十分优异;石墨烯也具有优异的抗磨性能和减摩性能,特别是200ppm浓度的石墨烯在高负荷下也表现得十分优异;50ppm和100ppm的碳纳米管在中低负荷下表现出了优异的抗磨性能,浓度增大中低负荷下的抗磨性能有变差的趋势,高负荷下抗磨性能都不好,但磨损后碳纳米管的修复作用表现出了良好的减摩性能;100ppm浓度以上的富勒烯在高负荷下表现出了优异的抗磨性能,其它负荷下的抗磨性能和减摩性能都表现得非常一般。采用四球实验方法考察了富勒烯、碳纳米管、石墨烯和纳米石墨的不同复配组合的润滑性能,并采用SEM分析了磨斑形貌及其作用机理。结果表明,富勒烯与碳纳米管、石墨烯的复合使用取得了理想的效果,有效提高了各种负荷下的润滑性能,全面提高了油品的润滑性能;而碳纳米管与纳米石墨的复合使用,只是保持了单剂时的性能,没有取得更突出的润滑性能。究其原因,碳纳米添加剂的复合使用不像含有硫、磷等活性元素的添加剂的复合使用能在摩擦过程中发生化学反应而产生新的化学物质,不同添加剂在润滑性能只是上产生了加和作用,并没有产生明显的协同效应。依据不同碳纳米添加剂的润滑性能结果,构建了碳纳米添加剂的润滑作用机理模型,并根据各种碳纳米添加剂最佳润滑性能的使用浓度提出了纳米颗粒分散度的理论概念。结果表明,合适浓度的纳米石墨、石墨烯在低负荷下能够有效修复摩擦副表面获得良好的抗磨性能,而高负荷下能够形成致密的润滑膜层阻止了剧烈磨损的出现,全方位提高了油品的润滑性能;碳纳米管在低负荷下可能产生了滚动轴承的作用,有效提高了油品的润滑性能,由于超大的长径比制约了高负荷下牢固润滑膜层的形成,无法避免剧烈磨损的出现,但仍表现出了优异的减摩性能;完全溶于油品的富勒烯在中、低负荷下增大了润滑油的内摩擦力,油品的减摩性能有变差的趋势,而依靠其极强的耐压能力,在高负荷下有效阻止了剧烈磨损的出现,表现出了优异的抗磨性能。纳米石墨在航空润滑脂中具有良好的抗磨性能和减摩性能,纳米石墨与纳米MoS2的复配使用提高了航空润滑脂的高负荷润滑性能,有效拓展了航空润滑脂的使用负荷范围,提高了航空润滑脂的通用性。总的来说,碳纳米添加剂在润滑油、脂具有良好的润滑性能,在润滑领域拥有广阔的应用前景。该研究成果进一步认清了四种碳纳米添加剂的润滑特性及其作用机理,为丰富摩擦领域理论与实践研究做出了有益的探索。
The isomers of carbon element are the most comprehensive and affluent indimension and microstructure, including fullerene, carbon nanotubes, graphene andgraphite. In this dissertation, dispersion and lubricating performances of carbonnano-additives were investigated in the lubricating oil, and their mechanism wasproposed.
     Oleic acid is the most effective surfactant to improve the dispersion stabilities ofcarbon nano-additives in the lubricating oil, and its optimal concentration is2%. Theulrasonicated dispersion is helpful to improve obviously the dispersion efficiency andstability of carbon nano-additives. The optimal uhrasonicated time of nano-graphiteand graphene is30min, but the CNTs’ is120min. The methods combined oleic acidwith ulrasonicated dispersion can improve the dispersion stabilities of nano-graphite,CNT and Graphene in the lubricating oil.
     A four-ball machine was used to investigate the lubricating properties ofnano-graphite with three diameters, CNT, graphene and fullerene, the wear scars wereanalyzed by SEM. The results indicate graphite has excellent properties of anti-wearand friction-reducing, and the property of extreme pressure. Graphene also has goodproperties of anti-wear and frication-reducing, especially the anti-wear property ofGraphene with200ppm concentration at high load. The CNTs with50ppm and100ppm concentration have good anti-wear properties at low&middle load,friction-reducing property at high load. Fullerence with above100ppm concentrationhas good anti-wear property at high loads. The combinations of fullerence and CNT&Graphene have satisfying results and obviously improve the lubricating properties inthe lubricating oil.
     Accord to the results of the lubricating properties of different carbonnano-additives, their lubricating mechanisms were modelling. The concept ofdispersion degree was suggested according the used concentration with the bestlubricating properties.
     Nano-graphite has good anti-wear and friction-reducing properties in aviationgreases, and the combinations of nano-graphite and MoS2improve obviously thelubricating properties at high loads, broaden the used load range and universalproperties of aviation greases.
     All in all, carbon nano-additives have good lubricating properties in the lubricating oils and greases, and have a wide application foreground in the lubricationfield.
引文
[1] H.-S. Philip Wong,Deji Akinwande. Carbon Nanotube and Graphene Device Physics(M).Cambridge University Press,2011:1-17.
    [2] Siva Yellampalli. Carbon Nanotubes–Polymer Nano composites(M). InTech,2011:1-35.
    [3] Kostya S. Novoselov. Graphene: Materials in the Flatland (Nobel Lecture)(J). AngewChem Int Ed,2011,50:2–19.
    [4] L.Joly-Pottuz. Diamond-derived carbon onions as lubricant additives[J]. TribologyInternational,2008(41):69–78.
    [5] Jaekeun Lee. Application of fullerene-added nano-oil for lubrication enhancement in frictionsurfaces [J]. Tribology International,2009(42):440–447.
    [6] Moy. Carbon nanotubes in fuels: United States,6419717[P].2002-07-12.
    [7] Moy. Lubricants containing carbon nanotubes: United States,6828282[P].2004-12-07.
    [8] C. N. R. Rao. Graphene: The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed.2009,(48):7752–7777.
    [9] Jishan Wu. Graphenes as Potential Material for Electronics[J]. Chemical Reviews.2007,(107):718747.
    [10]徐君.片状纳米石墨在润滑油中的应用[J].世界有色金属,2010,(7):73-75.
    [11]陈云.微细鳞片石墨分散性[J].中南大学学报,2004,35(6):955-959.
    [12]罗桂莲.以天然石墨为原料制备纳米石墨片在有机溶剂中的分散液[J].炭素,2008,4(136):34-47.
    [13]马国光.“驰凯牌”节能减摩王添加剂的研制及其价值[J].润滑油,1994,9(4):42-44.
    [14]李茂森.7454高温石墨润滑脂的研究[J].合成润滑材料,2002,29(4):11-14.
    [15]雷红,雒建斌,胡晓莉等.富勒烯(C60)的摩擦学研究进展[J].润滑与密封,2002,27(1):31-33.
    [16] D. G. Tochil’nikov. Effect of fullerene black additives on boundary sliding friction of steelcounterbodies lubricated with mineral oil[J]. Journal of Friction and Wear,2012,33(2):94–100.
    [17] Jaekeun Lee. Enhancement of lubrication properties of nano-oil by controlling the amount offullerene nanoparticle additives[J]. Triboloy Letter,2007,(28):203–208.
    [18] Atsushi Hirata, Masaki Igarashi, Takahiro Kaito. Study on solid lubricant properties ofcarbon onions produced by heat treatment of diamond clusters or particles[J]. TribologyInternational,2004,(37):899–905.
    [19] Yanli Yao, Xiaomin Wang, Junjie Guo. Tribological property of onion-like fullerenes aslubricant additive[J]. Materials Letters,2008,(62),2524–2527.
    [20]姚延立,马国利.洋葱状富勒烯的硬脂酸修饰[J].山东大学学报,2010,40(3):91-94.
    [21]姚延立,伊厚会. Fe/洋葱状富勒烯作为润滑油添加剂的摩擦性能[J].化工学报,2011,62(1):281-286.
    [22]阎逢元,金芝珊,张绪寿. C60/C70作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,1993,13(1):59-62.
    [23]雷洪,官文超,廖道训.富勒烯-苯乙烯-顺丁烯二酸酐三元共聚物的摩擦学行为[J].应用化学,2000,17(2):180-182.
    [24]李积彬,李瀚,孙伟安. C60的摩擦学特性研究[J].摩擦学学报,2000,20(4):307-309.
    [25]李瑞,胡元中,王慧.单壁碳纳米管与石墨基底间摩擦的模拟研究[J].润滑与密封,2007,32(11):15-17.
    [26]宋宝玉,曲建俊,张锋,殷玉龙,齐毓霖.含碳纳米管二相流体润滑剂对钢一钢接触疲劳性能的影响[J].摩擦学学报,2003,6(23):541-545.
    [27]李学锋,官文超,陈坤,吴珍珍.聚苯乙烯.碳纳米管(PSt-CNTs)乳液作水溶性润滑添加剂的研究[J].高分子通报,2004,(5):69-74.
    [28] Stefano Bianco. Carbon nanotubes-from research to applications [D]. InTech,2011.
    [29] Rajendrakumar G Patil, Vishnukanth Chatpalli and Ramesh C S. CARBON NANOTUBES-FROM RESEARCH TO APPLICATIONS[M].2011:335-358.
    [30] Lina Liu,Zhengping Fang,Aijuan Gu. Lubrication Effect of the Paraffin Oil Filled withFunctionalized Multiwalled Carbon Nanotubes for Bismaleimide Resin[J]. Tribology Letter,2011,(42):59–65.
    [31] Yitian Peng, Yuanzhong Hua, and Hui Wang. Tribological behaviors ofsurfactant-functionalized carbon nanotubes as lubricant additive in water[J]. Tribology Letter,2007,25(3):247-253.
    [32]李学锋.碳纳米管的高分子修饰及其性能[D].武汉:华中科技大学,2005.
    [33]陈传盛,刘天贵,陈小华.油酸修饰碳纳米管及其摩擦性能的研究[J].润滑与密封,2007,32(12):23-26.
    [34]郭晓燕,彭倚天,胡元中.碳纳米管添加剂摩擦学性能研究及机制探讨[J].润滑与密封,2007,32(11):95-97.
    [35]许永,王静,胡金平.多壁碳纳米管的纯化及表面修饰[J].中国科技论文在线,2010,5(6):423-426.
    [36]姜鹏、姚可夫.碳纳米管作为润滑油添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(5):394-397.
    [37] Daniel R. Dreyer. From Conception to Realization: An Historial Account of Graphene andSome Perspectives for Its Future[J]. Angew. Chem. Int. Ed.2010,(49):9336–9345.
    [38] Yanwu Zhu. Graphene and Graphene Oxide: Synthesis, Properties, and Applications[J].Advanced Materials.2010,(20):1–19.
    [39] Matthew J. Allen. Honeycomb Carbon: A Review of Graphene[J]. Chemical Reviews.2010,(110):132–145.
    [40] Kian Ping Loh. The chemistry of grapheme[J]. Journal of Materials Chemistry,2010,(20):2277–2289.
    [41] A. K. GEIM. The rise of grapheme[J]. nature materials,2007,(6):183-191.
    [42] Mark H. Rümmeli. Graphene: Piecing it Together[J]. Advanced Materials.2011,(20):1–20.
    [43] Kostya S. Novoselov. Graphene: Materials in the Flatland (Nobel Lecture)[J]. Angew.Chem. Int. Ed.2011,(50):2–19.
    [44] Andre K. Geim. Random Walk to Graphene (Nobel Lecture)[J]. Angew. Chem. Int. Ed.2011,(50):2-22.
    [45] Junfei Ou, Jinqing Wang, Sheng Liu. Tribology Study of Reduced Graphene Oxide Sheetson Silicon Substrate Synthesized via Covalent Assembly[J]. Langmuir,2010,26(20):15830–15836
    [46] Junfei Ou, Ying Wang, Jinqing Wang. Self-Assembly of Octadecyltrichlorosilane onGraphene Oxide and the Tribological Performances of the Resultant Film[J]. The Journal ofPhysical Chemistry,2011,115(20):10080–10086
    [47]廖旭.石墨烯的摩擦性质研究[D].成都:电子科技大学,2011.
    [48]潘炳力、邢雅丽、刘敬超等.石墨烯改性聚苯硫醚涂层的摩擦学行为[J].摩擦学学报,2011,31(2):150-155.
    [49]张伟、朱宏伟、狄泽超.液相法制备石墨烯及其摩擦学性能研究[J].纳米科技,2011,8(1):5-9.
    [50] Jinshan Lin, Liwei Wang, Guohua Chen. Modification of Graphene Platelets and theirTribological Properties as a Lubricant Additive[J]. Tribology Letter,2011(41):209–215.
    [51]周强,徐瑞清.石墨材料的润滑性能及其开发应用[J].新型碳材料,1997,12(3):11-16.
    [52]宋宝玉.含石墨的节能添加剂对接触度劳寿命的影响[J].哈尔滨工业大学学报,1990,(5):67-71.
    [53]温志高.胶体石墨乳润滑剂的应用[J].锻造与冲压,2006,(2):72-73.
    [54]黄之杰.纳米级氟化石墨作为润滑剂添加剂的摩擦学性能研究[J].润滑与密封,2006,31(3):114-116.
    [55]黄仁和.纳米石墨薄片制备及修饰的研究[J].山东科技大学学报,2005,24(3):14-17.
    [56]黄友艳.纳米石墨的制备应用和表面修饰研究进展[J].化工时刊,2006,20(8):48-53.
    [57]王珊珊.纳米石墨片在液相介质中的分散及机理研究[M].哈尔滨:哈尔滨工程大学,2008.
    [58]燕山大学.膨胀石墨/二硫化钼复合固体润滑材料:中国,03145055[P].2004-01-28.
    [59]李春风.膨胀石墨的表面改性及作为润滑油添加剂的摩擦学性能[J].润滑与密封,2007,32(7):112-113,121.
    [60]黄海栋.片状纳米石墨的制备及其作为润滑油[J].摩擦学学报,2005,25(4):213-316.
    [61]刘洪良.石墨/有机钼润滑油剂的制备方法:中国,181094[P].2006-08-02.
    [62]冯子文.石墨材料在无油润滑领域的应用研究[J].炭索,2000,(4):16-17.
    [63]干路平.石墨超细片状磨碎的机理及方法[J].化工生产与技术,1999,(2):28-30.
    [64]陈锐,李平,陆玉峻等.固体润滑材料—石墨的应用[J].碳素,2004,(4):23-32.
    [65]李湘洲.石墨材料的开发应用与发展趋势[J].新型炭材料,1993,(1):21-25.
    [66]秦海莉.石墨分散剂最佳加量的研究[J].内蒙古科技与经济,1999,(2):55.
    [67]赵敏海.石墨固体自润滑材料研究现状[J].焊接,2007,(12):4-27.
    [68]姚延立.石墨微球的制备及化学修饰[J].功能材料,2007,38(A10):3935-3937.
    [69]颜志光.新型润滑材料与润滑技术实用手册[M].北京:国防工业出版社,1999:708-712.
    [70]楚书凤.天然鳞片石墨与油溶性添加剂相互作用的研究[J].摩擦学学报,1997,17(4):340-347.
    [71]王周福.天然鳞片石墨在水中的分散性研究[J].化工矿物与加工,2002(11):1-3.
    [72]段维忠.亚微米石墨在润滑油中的分散行为研究[J].中国材料科技与设备,2006(6):46-48.
    [73]马文石.一种可分散性石墨烯的制备[J].高等学校化学学报,2010,31(10):1982-1986.
    [74]王珊珊,李恒.纳米石墨片在有机溶剂中的分散工艺研究[J].涂料工业,2008,38(4):36-41.
    [75]张慧娟,伍明华.纳米石墨在非水介质中的分散[J].化学工程,2009,37(8):43-45.
    [76]罗桂莲,陈召怡.以天然石墨为原料制备纳米石墨片在有机溶剂中的分散液[J].碳素,2008,(4):34-36.
    [77]张慧娟,伍明华.纳米石墨在极性介质中的分散行为[J].化工科技,2008,16(1):38-40.
    [78]陈云,冯其明.微细鳞片石墨分散性[J].中南大学学报,2004,35(6):957-959.
    [79]征茂平.氟化石墨的制备及表征[J].机械工程材料,1999,23(6):26-28.
    [80]杨丽君.碳纤维及石墨填充聚四氟乙烯复合材料的摩擦学性能研究[J].材料科学与工程学报,2004,22(5):705-708.
    [81]王鹤寿.超细氟化石墨的润滑性能研究[J].润滑与密封,1999(1):16-17.
    [82]王鹤寿,陶德华.超细氟化石墨在植物油中的摩擦学性能考察[J].润滑与密封,1999,24(1):35-37.
    [83]李良.球磨态膨胀石墨的结构表征和摩擦学性能研究[D].北京:燕山大学;2008.
    [84]曹宏,薛俊.纳米铜/石墨复合添加剂摩擦学性能的研究[J].材料保护,2007,40(6):11-13.
    [85]侯越峰,于路平.含片状纳米石墨粒子润滑油的制备及其摩擦学行为[J].华东理工大学学报,2005,31(6):734-746.
    [86]刘益锋.碳纳米管、石墨的高分子修饰及其润滑性能研究[D].武汉:华中科技大学:2005.
    [87]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004:228.
    [88]王应军,谢凤,刘广龙.纳米润滑添加剂表面修饰方法综述[J].合成润滑材料,2011,38(1):14-16.
    [89]赵修臣,刘颖,王富耻.添加油酸修饰的纳米Fe3O4粒子润滑油的摩擦学性能研究[J].润滑与密封,2005,30(2):103-121.
    [90]赵彦保,周静芳,张治军,党鸿辛.油酸/PS/Ti02复合纳米微球对液体石蜡抗磨性能的影响研究[J].摩擦学学报,2001,21(1):73-75.
    [91]陈爽,刘维民,欧忠文,徐滨士.油酸表面修饰Pb0纳米微粒作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2001,21(5):344-347.
    [92]王国良.油酸表面修饰的Ce203纳米微粒的制备和钝钒研究[J].炼油设计,2001,31(5):34-36.
    [93]殷波,张振忠,高建卫,周建秋,张少明.油酸对金属纳米镍、铜及铜镍复合粉体的分散性能影响[J].铸造技术,2006,27(2):105-107.
    [94]张好强,贾晓鸣,高药.油酸添加剂对硬质合金刀具钻浸出的抑制作用[J].河北理工学院学报,2005,27(1):29-31.
    [95]朱红,王滨,申靓梅,康晓红,郭洪范,朱磊.油酸修饰CuS纳米颗粒的原位合成及其摩擦学性能[J].物理化学学报,2006,22(5):552-556.
    [96]陈爽,李楠,刘维民.油酸修饰Pb0纳米微粒的合成及结构表征[J].化学研究,2002,13(3):5-7.
    [97]周晓龙,余国贤,易书理.含氟稀土纳米润滑油添加剂及其制备方法[P]:中国,1827753.2006-09-06.
    [98]陈传盛,陈小华,刘天贵,等.碳纳米管的化学修饰以及作为润滑油添加剂的摩擦学性能研究[J].化学学报,2004,62(14):1367-1372.
    [99]朱红,王滨,申靓梅,等.油酸修饰CuS纳米颗粒的原位合成及其摩擦学性能[J].物理化学学报,2006,22(5):552-556.
    [100]刘仁德,梁敬辉,陶德华.表面修饰纳米铜粒子的制备及其摩擦学性能[J].润滑与密封,2007,32(3):161-162.
    [101]苏小莉,曹智,李庆华.纳米氧化锌的机械力化学表面改性[J].化学研究,2008,19(2):74-77.
    [102]乔玉林.纳米微粒的润滑和自修复技术[M].国防工业出版社,2005:180-181.
    [103]张爱玲,金辉,李志杰,等.纳米铜粒子的表面聚合物修饰[J].沈阳工业大学学报,2007,29(3):271-274.
    [104]杨晶,李华峰,陈国需,等.层状硅酸钙作为润滑添加剂的减摩抗磨性能研究[J].润滑与密封,2009,34(6):17-19.
    [105]高利华,李聚源,付丽芳,等.稀土氟化物纳米润滑油添加剂的合成及应用[J].西安石油大学学报(自然科学版),2006,21(3):83-86.
    [106]乌学东,王大璞,张信刚,等.表面修饰纳米粒子的摩擦学性能[J].上海交通大学学报,1999,33(2):224-227.
    [107] Tubbs. Synergistic lubricant additives of antimony thioantimonate and molybdenumdisulfide or graphite: United States,4557839[P].1985-12-10.
    [108] Jacobs. Graphite-containing lubricant composition: United States,5049289[P].1991-09-17.
    [109] Hefling. Anti-seizing lubricant composition, and method of making the same: UnitedStates,5498351[P].1996-03-12.
    [110] Schreiber. High temperature lubricating grease containing urea compounds: United States,5670461[P].1997-09-23.
    [110]Chen Rui.Solid lubricating material-Graphite[J]. Carbon,2000(4):23-25;
    [111]Anuj Mistry,Ron Bradbury. Investigation into the efect of molybdenum disulphide andgraphite on the load carrying capacity of grease[J].NLGI Spokesman,2002,66(3):25-29;
    [112]李茂森,王金风.7454高温石墨润滑脂的研究[J].合成润滑材料,2002,29(4):P11-14;
    [113]张慧娟,伍明华.纳米石墨在非水介质中的分散[J].化学工程,2009,37(8):43-45;
    [114]陈强,王宗廷,刘煜等.纳米石墨在液态介质中分散行为的研究进展[J].化工时刊,2010,4(1):62-65;
    [115]侯越峰,干路平,黄海栋.纳米石墨润滑油制备及其流变性研究[J].非金属矿,2005,28(2):11-13;
    [116] Ma Guojun,Huang Xiaopeng,Wan Fangxin. Researches on the Friction and WearProperties of Polytetrafluoroethylene(PTFE)Composite Material Filled with Micrometer andNanometer Carbon Blacks[J]. Chemical Engineering&Machinery,2010,37(2):145-147;
    [117]王珊珊,李恒,魏彤.纳米石墨片在有机溶剂中的分散工艺研究[J].涂料工业,2008,38(4):36-38;
    [118]蒋庆哲.表面活性剂科学与应用[M].北京:中国石化出版社,2009:4-10;
    [119]蒋庆哲.表面活性剂科学与应用[M].北京:中国石化出版社,2009:84-85;
    [120] Gholamreza Vakili-Nezhaad. Effect of Single-Walled Carbon Nanotube on the Viscosity ofLubricants[J]. Energy Procedia,2012(14):512–517.
    [121] Lina Liu. Lubrication Effect of the Paraffin Oil Filled with Functionalized MultiwalledCarbon Nanotubes for Bismaleimide Resin[J]. Tribology Letter,2011(42):59–65.
    [123] J. Lou. Effects of interfaces on nano-friction of vertically aligned multi-walled carbonnanotube arrays[J]. Materials Science and Engineering A,2008(483–484):664–667.
    [124] Ming D. Ma. Friction of water slipping in carbon nanotubes[J]. American Physical Society.2011,83(3):1-7.
    [125] Hiroshi Kinoshita. High friction of a vertically aligned carbon-nanotube film inmicrotribology[J]. Applied Physics Letters,2004(85):2780-2781.
    [126] Zhengtao Yang. Magnetorheology of Single-walled Carbon Nanotube Dispersions inMineral Oil[J]. Journal of Intelligent Material Systems and Structures,2008(19):1143-1140.
    [127] Ehsan-o-llah Ettefaghi. Preparation and thermal properties of oil-based nanofluid frommulti-walled carbon nanotubes and engine oil as nano-lubricant[J]. InternationalCommunications in Heat and Mass Transfer,2013(46):142–147.
    [128] Shi Yijun. Tribological Behav ior of Carbon Nanotube and Polytetrafluoroethylene FilledPolyimide Composites Under Different Lubricated Conditions[J]. Journal of AppliedPolymer Science,2011,(121):1574–1578.
    [129]王海斗,刘家浚,徐滨士,庄大明.溶胶-凝胶石墨涂层的表面特征与摩擦学性能[J].清华大学学报,2005,45(5):593-596.
    [130]王海斗,徐滨士,刘家浚,庄大明.石墨含量对石墨固体润滑涂层摩擦学性能的影响[J].润滑与密封,2005,30(3):13-15.
    [131] Lockwood. Gear oil composition containing nanomaterial: United States,7449432[P].2008-11-11.
    [132] Sawyer. Inert wear resistant PTFE-based solid lubricant nanocomposite: United States,7790658[P].2010-09-07.
    [133] Cohen. Tribological applications of polyelectrolyte multilayers: United States,7251893[P].2007-08-07.
    [134] Hyunsoo Lee. Comparison of frictional forces on graphene and graphite[J].Nanotechnology,2009,20(325701):1-6.
    [135] T. Filleter. Friction and Dissipation in Epitaxial Graphene Films[J]. Physical ReviewLetters,2009,102(086102):1-6.
    [136] Li-Yu Lin. Friction and wear characteristics of multi-layer graphene films investigated byatomic force microscopy[J]. Surface&Coatings Technology.2011(205):4864–4869.
    [137] D. Marchetto. Friction and Wear on Single-Layer Epitaxial Graphene in Multi-AsperityContacts[J]. Tribology Letter,2012(48):77–82.
    [138] Varrla Eswaraiah. Graphene-Based Engine Oil Nano fluids for Tribological Applications[J].ACS Appl. Mater&Interfaces,2011(3):4221–4227.
    [139] Jinshan Lin. Modification of Graphene Platelets and their Tribological Properties as aLubricant Additive[J]. Tribology Letter,2011(41):209–215.
    [140] Young Jun Shin. Surface-Energy Engineering of Graphene[J]. Langmuir,2010,26(6):3798–3802.
    [141] Wei Zhang. Tribological properties of oleic acid-modified graphene as lubricant oiladditives[J]. Journal of Physics D: Applied Physics.2011(44):1-4.
    [142] Owen C. Compton. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials[J]. Small,2010,6(6):711–723.
    [143] H.J. Hwang. Tribological performance of brake friction materials containing carbonnanotubes[J]. Wear,2010(268):519–525.
    [144] P.L. Dickrell. Tunable friction behavior of oriented carbon nanotube films[J]. TribologyLetters,2006,24(1):85-91.
    [145] Samy Yousef. Wear Characterization of Carbon Nanotubes Reinforced Polymer Gears[J].IEEE Transactions on Nanotechnology,2013,12(4):616-620.
    [146] Siva Yellampalli. Carbon Nanotubes-polymer Nanocomposites [M]. Croatia: InTech,2011:15-16.
    [147] Durney, T.E. Friction analysis of thermally sprayed coatings finished by ball burnishingand grinding[J]. German Academic Society for Production Engineering,2013(7):601–610.
    [148] Kwangho Lee. Performance evaluation of nano-lubricants of fullerene nanoparticles inrefrigeration mineral oil[J]. Current Applied Physics,2009(9):128–131.
    [149] Ehsan-o-llah Ettefaghi. Thermal and rheological properties of oil-based nano fluids fromdifferent carbon nanostructures [J]. International Communications in Heat and MassTransfer,2013(48):178–182.
    [150]王晓敏. Fe/洋葱状富勒烯的化学修饰及润滑性研究[J].材料工程,2009,增刊1:206-214.
    [151]赵欣颖.洋葱状富勒烯作为高温润油添加剂的研究[D].北京:北京化工大学,2007.
    [152] Feng Xie, Jian-Qiang Hu. Anti-wear synergism between organomolybdenum compoundsand a ZDDP[J]. Lubrication science,2006(1):1-5.
    [153]谢凤,葛世荣,季峰,等.金属氧化物在润滑脂中的极压抗磨性能研究[J].润滑与密封,2009,34(2):15~16.
    [154] Hans Schrebeiber. High temperature lubricating containing compounds: United States,682835B2[P].1997
    [155] Tai S.chao. Graphite dispersion: United States,7572165B2[P].1984
    [156]曲萌,赵芳霞,张振忠,等.超细蛇纹石粉体改善润滑脂摩擦学性能研究[J].润滑与密封,2010,35(11):74~76.
    [157] Sawyer. Low friction and low wear polymer/polymer composites. United States,7314646[P].2008-01-01.
    [158] Zhang. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbonnanotube: United States,7348298[P].2008-03-25.
    [159] Liu. Method for making a carbon nanotube-based field emission cathode device includinglayer of conductive grease: United States,7572165[P].2009-08-11.
    [160] Bicerano. Thermoset nanocomposite particles, processing for their production, and theiruse in oil and natural gas drilling applications: United States,7803740[P].2010-09-27.
    [161] Aikyou. TSpherical carbon particles and their aggregates: United States,7816007[P].2010-10-19.
    [162] Robert M. Denton. Rock bit with grease composition utilizing polarized graphite: UnitedStates,34216B2[P].2006
    [163] Norman L.Jacobs. Graphite-containing lubricant composition: United States,6828282B2[P].1991
    [164] Shaojun Guo. Graphene nanosheet: synthesis, molecular engineering, thin film, hybridsand energy and analytical applications[J]. The Royal Society of Chemistry,2011(40):2644–2672.
    [165] Anuj Mistry. Investigation into the effect of molybdenum disulphide and graphite on theload carrying capacity of grease[J]. NLGI Spokesman,2002,66(3):25-29.