二氧化硅纳米粒子表面的分子印记识别和TNT的荧光探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术(Molecular imprinting technology)是一种制备对特定分子具有专一识别性能的聚合物的技术,分子印迹聚合物(molecularly imprinted Polymers,MIP)对模板分子的识别具有构效预定性、特异识别性和广泛实用性等优点。并且,基于分子印迹技术制备的分子印迹聚合物材料具有高亲和性和选择性、抗恶劣环境能力强、稳定性好、制备成本低、使用寿命长,应用范围广等优点而在分离提纯、免疫测定、生物模拟、仿生传感、催化、环境的痕量分析、药物释放等以及相关领域显示出广阔的应用前景。
     本文首先对分子印记技术的基本原理、分子印记聚合物的制备、分子印记技术应用状况以及分子印记技术新发展和荧光发射能量转移机理进行了较为全面的综述和评价,探讨了当前分子印记技术所面临的机遇和挑战。一种理想的分子印记材料应该具备模板分子能完全除去,印记材料能后功能化,具有完整、均一和稳定的印记位点,对目标分子具有高亲和力,快速结合动力学等特点。但是通过传统方法制得的印记聚合物上大多数分子识别位点都包埋在高交联密度的聚合物内部,从而导致了分子印记材料虽然具有较高的分子识别选择性,但具有结合容量低、位点可接近性差以及结合动力学慢的特点。因此,通过控制印记位点位于合成印记材料表面,对提高印记位点的有效性和位点可接近性具有十分重要的意义,作为一种可以选择的印记方法,纳米结构分子印记材料具有较高的比表面积,印记材料上大多结合位点位于或接近材料表面,所以发展合成纳米结构分子印记材料有望真正解决传统分子印记遇到的困难,以便进一步推动分子印记技术的发展。本论文重点针对TNT分子识别与探测,运用纳米技术、表面功能化设计和分子印记技术等手段,发展制备具有高密度印记位点、高选择性、高亲和力和快速结合动力学的TNT印记芯-壳型纳米二氧化硅复合物壳层,同时,探索纳米结构分子印记材料和荧光发射能量转移对痕量目标分子TNT的识别特性和敏感机制。
     二氧化硅成为关注的热点是因为其是工艺研究中重要的媒介材料。二氧化硅材料功能化的提升促进了人们重新认识其性质的兴趣。丰富了我们对其基本性质地理解,提升了当前存在应用特性。通过化学修饰方法使单分散的二氧化硅凝胶纳米粒子作为表面纳米印记结构的印记模板分子的支撑体,因为二氧化硅纳米粒子支撑体同有机材料的支撑体相比拥有明显的优点:(a)二氧化硅表面可以修饰从而导致形成不同的硅烷化试剂,在这种无机物的结构中带有许多的功能基团;(b在二氧化硅支撑体的表面被修饰上功能基团是相对容易的反应,这点是不同于有机材料的支撑体;(c)在有机溶剂里二氧化硅支撑体并不溶胀;(d)对有机溶剂的化学惰性。(e)二氧化硅拥有很高的热稳定性;(f)粒径和分散性可控。拥有一致粒径和形状的二氧化硅不仅在处理动态行为和粒子体系稳定性的物理化学领域得到的广泛的应用,而且在分离、催化、陶瓷、涂料和照相的感光乳液等工业上的应用。单分散二氧化硅粒子是在混合了醇、水和氨水的条件下通过硅烷化试剂的水解和缩合反应制备。实验结果显示在以氨水为催化剂、乙醇为溶剂正硅酸乙酯、水为反应物料通过水解和缩合反应可以制的粒径和单分散的二氧化硅纳米粒子,有许多关于这个反应体系的机理研究。然而,这里通过对影响因素的研究,如反应物TEOS、氨水和水的量以及反应温度的变化来获得合适粒径和单分散的印记模板分子的支撑体二氧化硅纳米粒子。随后,用两步化学修饰过程得到丙烯酰胺覆盖的二氧化硅粒子。首先,在氮气气氛中惰性溶剂里APTS通过共价耦联到二氧化硅纳米粒子的表面。然后,富含氨丙基的二氧化硅粒子表面通过与丙烯酰氯的酰化反应,得到表面富含丙烯酰胺功能单体的二氧化硅粒子。修饰的粒子性质和形貌分别用SEM、TEM和FT-IR进行表征。
     以TNT分子为目标分析物,一种在二氧化硅纳米颗粒表面修饰功能单体诱导策略对TNT分子高密印记。结果进一步证明了二氧化硅表面乙烯基单体层不仅能够在二氧化硅表面通过乙烯基单体和功能单体的引导印记聚合,而且通过TNT分子与功能单体层电荷转移形成复合物驱使TNT模板分子形成聚合物壳层。这两种基本过程导致形成核-壳厚度一致的TNT印记的纳米颗粒,所得的芯-壳型分子印记聚合物的壳厚可调且拥有高密度的有效识别位点。一种渐进式聚合反应被设计用来在二氧化硅表面制备可调控高质量TNT印记的聚合物。同传统的印记聚合物粒子相比,拥有高密度表面印记的聚合物壳层能够明显地提高结合量,加速结合动力学和识别的选择性。通过壳厚的变化与最大饱和结合量的关系,得到分子印记聚合物对最大TNT结合量的壳厚临界值。这些将提供进一步的洞察分子印记有效壳的厚度和印记材料的形式。这一结果不仅能够在分子印记技术方面的应用而且可以成为一种的新的在二氧化硅纳米粒子支撑体上制备聚合物涂层方法。
     以TNT分子为目标分析物,在液相和气相环境中发现一种用荧光发射能量转移策略对2,4,6-三硝基甲苯(TNT)超痕量探测。这种基于荧光发射能量转移的纳米粒子传感器是在二氧化硅纳米粒子表面通过用硅烷化耦联反应使氨基和荧光染料分子共价反应合成的。实验结果已经证实了富电子的氨基配合物(3-aminopropyltriethoxysilane,APTS)能够通过形成电荷转移复合物作用特定的结合缺电子芳香苯环硝基化合物TNT,在二氧化硅粒子表面所得到的APTS-TNT复合物能够强烈的吸收染料荧光分子的发射光。这两个在二氧化硅表面上发生的基本过程是通过荧光发射能量转移淬灭机理导致对TNT分子快速地、选择性响应。二氧化硅纳米粒子自组装荧光阵列是通过在刻蚀阵列阱的硅片上自组装形成,这种纳米粒子荧光阵列在超痕量的TNT溶液中能够很敏感的探测到大约皮克级的TNT,同样在汽相中能够探测到数个ppb的TNT蒸气。同时,通过高效的荧光淬灭可以选择性的区分TNT与其他几种硝基化合物。这里报道的结果将为其他目标分析物如金属离子、生物分子检测提供一种新颖的、基本的纳米传感器设计方法。
Molecular imprinting technique (MIT) is becoming increasingly recognized as a powerful technique of preparing synthetic polymers that contain tail-made recognition sides for certain molecules. The most significant advantages of molecularly imprinted materials are high affinity and high selectivity to analyte, mechanical/chemical stability, low cost and ease of preparation, usage of long lifetime, and hence have attracted extensive research interests due to the potential application in purification, separation, immunoassay, biomimics, chemical and biological sensors, catalysis, environment detection, drug release and other relevant fields for its predetermination, specificity and practicability of molecule recognition.
     The research described in this thesis gives a brief overview of the development of novel strategies facilitating advanced understanding of the fundamental principles governing selective recognition of molecularly imprinted polymers and fluorescence emission energy transfer (FEET) at molecular level, which is a prerequisite for the rational optimization of biomimetic and sensor materials, and discusses the problems and challenges that molecular imprinting technique meets with at present. Ideal molecularly imprinted materials should exhibit these characteristic as follow: complete removal template molecules, able to be post-synthetically functionalized, homogeneous imprinted sites of high stability, high affinity, rapid binding kinetics and transduction of binding into easy readout etc. However, traditional molecular imprinting techniques often produce the polymer materials exhibiting high selectivity but low binding capacity, poor site accessibility, and slow binding kinetics due to most imprinted recognition sites to be embedded in high rigid polymer matrix interior. Therefore, controlling template molecules to locate in the proximity of materials surface is critical to create more effective recognition sites and to improve sites accessibility. As an alternative to these approaches, nano-sized imprinting materials may provide a potential solution to these difficulties due to their extremely high surface-to-volume ratio which lead to the recognition sites to locate in the proximity of materials surface This thesis aims at an exclusive TNT recognition and detection. The nanoshell of TNT-imprinted SiO_2@MIP nanoparticles with high density imprinted sites, high selectivity, high affinity and rapid binding kinetics had been prepared by means of using nanotechnology, surface functionalized design and molecular imprinting technique etc. Moreover, molecular properties and sensitivity mechanism of nanostructured molecularly imprinted materials and fluorescence emission energy transfer (FEET) on silica surface to trace TNT molecular were also investigated.
     It is well known that silica has been of considerable interest because it forms the basis of technologically important materials. The ability to functionalize silica materials has prompted a renewed interest in enriching our understanding of its fundamental properties and enhancing its performance in currently existing applications. Monodisperse silica colloidal nanoparticles were suitably used as the imprinted-template substrates of surface nanostuctured molecule imprinting through the chemistry modification. because this support offers pronounced advantages over the organic supports, such as: (a) the immobilization on silica results in a great variety of silylating agents, allowing a myriad of pending functional groups in the inorganic framework; (b) functional groups immobilized on the surface react easier oninorganic support, whose behavior, differs from the organic support. (c) the inorganic supports do not swell in organic solvents; (d) it is resistant to organic solvent; (e) silica has a high thermal resistance and (f) the controllable size and dispersivity of the particle.
     Monodisperse silica colloidal particles that are uniform in size and shape have extensive application not only in the field of physical chemistry dealing with dynamic behavior and stability of particle systems, but also in industries involving catalysts, chromatography, ceramics, pigments, photographic emulsion, etc. Monodisperse silica particles can be prepared by hydrolysis and condensation of alkoxysilanes in a mixture of alcohol, water, and ammonia. The results have demonstrated the formation of monodisperse silica particles through the hydrolysis and condensation of tetraethylorthosilicate (TEOS) in ethanol with ammonia as catalyst, many studies have been made on the many mechanisms of this reaction system. However, herein, the size and dispersivity of silica particles were investigated through the effective factors of reaction, such as, reactant concentration (TEOS, ammonia aqueous and demonized water), reaction temperature. Therefore, the suitable size and dispersivity of silica particles that is imprinted as support were achieved by the effective parameters of change reaction condition. Subsequently, the monodispersive silica particles are chemically modified using a two-step procedure to obtain the acrylamide-monomer-capping silica particles. Firstly, Aminopropyl modification of silica nanoparticles was carried out through the covalently attached to silica surface using 3-aminopropyltriethoxylsilane at inert solvent under nitrogen atmosphere. Then, the resultant amino end groups of APTS monolayer were further acryloylated with acryloyl chloride (CH_2=CHCOCl). Finally, the AA-APTS-silica particles were obtained. The nature and morphology of particles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and FT-IR.
     Herein, TNT used as analyte, a surface functional-monomer-directing strategy for the highly-dense imprinting of 2, 4, 6-trinitrotoluene (TNT) molecules at the surface of silica nanoparticles was investigated. It has been demonstrated that the vinyl functional-monomer layer of silica surface can not only direct the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers, but also drive TNT templates into the formed polymer shells through the charge-transfer complexing interactions between TNT and the functional-monomer layer. The two basic processes lead to the formation of uniform core-shell TNT-imprinted nanoparticles with a controllable shell thickness and a high density of effective recognition sites. A stepwise progressive polymerization was designed toward the controllable preparation of high-quality shell of TNT-imprinted polymers in the silica surface. Compared to traditional imprinted particles, the imprinted nanoshell with high density of surface imprinted sites can significantly improve the binding capacity, binding kinetics and recognizing selectivity. A critical value of shell thickness for the maximum rebinding capacity was determined by testing the evolution of rebinding capacity with shell thickness, which provides new insights into the effectiveness of molecular imprinting and the form of imprinted materials. These results reported here can not only find many applications in molecularly-imprinting techniques but also form the basis of a new strategy for preparing various polymer-coating layers on silica support.
     Herein, TNT used as analyte, the finding of an investigation of fluorescence emission energy transfers (FEET) strategy for the ultratrace dectetion of 2, 4, 6-trinitrotoluene (TNT) in solution and vapor environments was reported. The FEET-based nanoparticle sensors were synthesized by covalently linking fluorescent dyes and amine ligands onto the surface of silica nanoparticles through the use of alkoxysilane coupling reactions. It has been demonstrated that electron-rich amine ligands (3-aminopropyl triethoxysilane, APTS) can specifically bind TNT molecule with electron-deficient aromatic ring by the charge-transfer complexing interaction, and the resultant APTS-TNT complex strongly absorbs the fluorescence emission of the chosen dye molecules. The two basic processes occurring at surface of silica nanoparticles lead to the selectivity and rapidly response to TNT by fluorescence quenching. The nanoparticle-assembled photoluminescence arrays through the etched microwells on silicon chip can sensitively detect down to several pg of TNT solution or several ppb of TNT from other types of nitrocompounds by the higher efficiency offluorescence quenching. These results reported herein will also form a novel basis ofnanosensor design for the detection of other analytes such as metal ions and biological molecules.
引文
[1] Pauling L J. A theory of the structure and process of formation of antibodies [J]. J. Am. Chem. Soc, 1940, 62: 2643-2657.
    
    [2] Dickey FH. The preparation of specific adsorbents [J]. Proc. Natl. Acad. Sci., 1949, 35: 227-229.
    
    [3] Wulff G, Sarchan A, Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racemates [J]. Tetrahedron lett, 1973,14: 4329-4332.
    
    [4] Wulff G, Sarchan A. Macromolecular colloquium [J]. Angew. Chem. Int. Ed., 1972, 11: 341-342.
    
    [5] Andersson LI, Sellergren B, Mosbach K. Imprinting of amino acid derivatives in macroporous polymers [J]. Tetrahedron Lett., 1984, 25: 5211-5214.
    
    [6] Vlatakis G, Andersson LI, Mosbach K. Drug assay using antibody mimics made by molecular imprinting [J]. Nature, 1993, 361: 645-647.
    
    [7] Sergey AP, Susan A, Anthony PFT, Molecular imprinting: at the edge of the third millennium [J]. Trends Biotechnol, 2001,19: 9-12.
    
    [8] Kempe K. Antibody-Mimicking polymers as chiral stationary phases in HPLC [J]. Anal. Chem., 1996,68: 1948-1953.
    
    [9] Kempe K, Mosbach K. Molecular imprinting used for chiral separations [J]. J. Chromatogr. A, 1995,694:3-13.
    
    [10] Sellergren B. Imprinted chiral stationary phases in high-performance liquid chromatography [J]. J. Chromatogr. A, 2001, 906: 227-252.
    
    [11] Haupt K. Molecularly imprinted polymers in analytical chemistry [J]. Analyst, 2001, 126:747-756.
    
    [12] Wang JP, Cormack AG, Sherrington DC, et al. Monodisperse, Molecularly Imprinted Polymer Microspheres Prepared by Precipitation Polymerization for Affinity Separation Applications [J]. Angew. Chem. Int. Ed., 2003,42: 5336-5338.
    
    [13] Fischer L, Muller R, Ekberg B, et al. Direct enantioseparation of P-adrenergic blockers using a chiral station phase prepared by molecular imprinting [J]. J. Am. Chem. Soc, 1991, 113: 9358-9366.
    [14] Kriz D, Ramstrom O, Mosbach K. Molecular imprinting-New possibilities for sensor technology [J]. Anal. Chem., 1997, 69: A345-A349.
    
    [15] Piletsky SA, Parhometz YP, Lavryk NV, et al. Sensors for low-weight organic molecules based on molecular imprinting technique [J]. Sens. Actuators B, 1994,19:629-631.
    
    [16] Haupt K, Mosbach K. molecularly imprinted polymers and their use in biomimetic sensors [J]. Chem. Rev., 2000,100: 2495-2504.
    
    [17] Malitesta C, Losito I, Zambonin PG. Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors [J]. Anal. Chem., 1999, 7: 1366-1370.
    
    [18] Dickert FL, Lieberzeit P, Tortschanof M. antibodies - a new generation of chemical sensors [J]. Sens. Actuators B, 2000, 65 (1): 186-189.
    
    [19] Merkoi A, Aleqret S. New materials for electrochemical sensing IV. Molecular imprinted polymers [J]. TrAC-Trends Anal. Chem., 2002, 21: 717-725.
    
    [20] Lanza F, Sellergren B. The application of molecular imprinting technology to solid phase extraction [J]. Chromatographia, 2001,53: 599-611.
    
    [21] Masque N, Marce RM, Borrull F. Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction [J]. Trends Anal Chem, 2001,20:477-486.
    
    [22] Stevenson D. Molecular imprinted polymers for solid-phase extraction [J]. TrAC-Trends Anal. Chem., 1999,18: 154-158.
    
    [23] Andersson LI. Molecular imprinting for drug bioanalysis - A review on the application of imprinted polymers to solid-phase extraction and binding assay [J]. J. Chromatogr. B, 2000, 739: 163-173.
    
    [24] Sellergren B, Karmalkar RN, Shea KJ. Enantioselective ester hydrolysis catalyzed by imprinted polymers [J]. J. Org. Chem., 2000, 65(13): 4009-4027.
    
    [25] Lin CI, Joseph AK, Chang CK, et al. Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine [J]. Anal. Chim. Acta, 2003, 481(2):175-180.
    
    [26] Wulff G. Enzyme-like Catalysis by Molecularly Imprinted Polymers [J]. Chem. Rev., 2002, 102:1-28.
    
    [27] Ulbricht M. Membrane separations using molecularly imprinted polymers [J]. J. Chromatogr. B, 2004, 804: 113-125.
    
    [28] Zimmerman SC, Lemcoff NG. Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible ? [J]. Chem. Commun., 2004, 5-14.
    [29] Cormack PAG, Elorza AZ. Molecularly imprinted polymers: synthesis and characterization [J]. J. Chromatogr. B, 2004, 804:173-182.
    
    [30] Batra D, Shea KJ. Combinatorial methods in molecular imprinting [J]. Curr. Opin. Chem. Biology, 2003, 7: 434-442.
    
    [31] Ansell RJ, Kriz D, Mosbach K. Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors [J]. Curr Opin Biotechnol., 1996, 7: 89-94.
    
    [32] Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted polymers for drug delivery [J]. J. Chromatogr. B, 2004, 804: 231-245.
    
    [33] Spegel P, Schweitz L, Nilsson S. Molecularly imprinted polymers in capillary electrochromatography: recent developments and future trends [J]. Electrophoresis, 2003, 24: 3892-3899.
    
    [34] Owens PK, Karlsson L. Molecular imprinting for bio- and pharmaceutical analysis [J]. Trends Anal. Chem., 1999, 18: 146-154.
    
    [35] Krull IS, Sebag A, Stevenson R. Specific application of capillary electrochromatography to biopolymers, including proteins, nucleic acid, peptide mapping, antibodies, and so forth [J]. J. Chromatogr. A, 2000, 887: 137-163.
    
    [36] Alexander C, Andersson HS, Andersson LI, et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003 [J]. J. Mol. Recognit., 2006,19:106-180.
    
    [37] Wulff G. Selective binding to polymers via covalent bonds the construction of chiral cavities as specific receptor sites [J]. Pure Appl. Chem., 1982, 54(11): 2093-2102.
    
    [38] Sellergren B, Lepisteo M, Mosbach K. Highly enantio- and substrate-selective Polymers obtained by molecular imprinting based on non-covalent interactions [J]. React. Polym., 1989, 10: 306-312.
    
    [39] Katz A, Davis ME. Investigations into the mechanisms of molecular recognition with imprinted polymers [J]. Macromolecules, 1999, 32: 4113-4121.
    
    [40] Chronakis IS, Milosevic B, Frenot A, Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting [J]. Macromolecules, 2006, 39: 357-361.
    
    [41] Ye L, Mosbach K, Molecularly imprinted microspheres as antibody binding mimics [J]. React. Funct. Polym., 2001,48: 149-157.
    
    [42] Wulff G, Schanhoff S. Enzyme-analog-built polymers .27. racemic-resolution of free sugars with macroporous polymers prepared by molecular imprinting - selectivity dependence on the arrangement of functional-groups versus spatial requirements [J]. J. Org. Chem., 1991, 56: 395-400.
    
    [43] Nilsson KGI, Sakaguchi K., Gemeiner P. et al. Novel DNA-binding proteins highly specific to UV-damaged DNA-sequences from embryos of drosophila-melanogaster [J]. J. Chromatogr. A., 1995, 707: 199-203.
    
    [44] Wulff G, Best W, Akelah A. Enzyme-analogue built polymers, 17. Investigations of the racemic resolution of amino acids [J]. React. Polym., 1984, 2: 167-174.
    
    [45] Andersson LI, O'Shannessy DJ, Mosbach K. Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides [J]. J. Chromatogr. A, 1990, 513: 167-179.
    
    [46] Shea KJ, Dougherty TK. Molecular recognition on synthetic amorphous surfaces. The influence of functional group positioning on the effectiveness of molecular recognition [J]. J. Am. Chem. Soc, 1986,108: 1091-1093.
    
    [47] Shea KJ, Sasaki DY. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization [J]. J. Am. Chem. Soc, 1989, 111: 3442-3444.
    
    [48] Wulff G, Heide B, Helfmeier G. Enzyme-analog built polymers. 20. Molecular recognition through the exact placement of functional groups on rigid matrixes via a template approach [J]. J. Am. Chem. Soc, 1986,108:1089-1091.
    
    [49] Tahmassebi DC, Sasaki T. Synthesis of a New Trialdehyde Template for Molecular Imprinting [J]. J. Org. Chem., 1994, 59: 679-681.
    
    [50] Glad M, Norrlow O, Sellergren B, et al. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica [J]. J. Chromatogr. A, 1985, 347: 11-23.
    
    [51] Norrlow O, Masson MO, Mosbach K. Improved chromatography: prearranged distances between boronate groups by the molecular imprinting approach [J]. J. Chromatogr. A, 1987, 396: 374-377.
    
    
    [52] Whitcombe MJ, Rodriguez ME, Villar P. et al. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol [J]. J. Am. Chem. Soc, 1995, 117: 7105-7111.
    
    [53] Sellergren B, Lepisto M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition [J]. J. Am. Chem. Soc, 1988, 110: 5853-5860.
    
    [54] Norrlow O, Glad M, Mosbach K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates [J]. J. Chromatogr. A, 1984, 299: 29-41.
    
    [55] Dunkin IR, Lenfeld J, Sherrington DC. Molecular imprinting of flat polycondensed aromatic molecules in macroporous polymers [J]. Polymer, 1993, 34: 77-80.
    
    [56] Andersson LI, Mandenius CF, Mosbach K. Studies on guest selective molecular recognition on an octadecyl silylated silicon surface using ellipsometry [J]. Tetrahedron Lett., 1988, 29: 5437-5440.
    
    [57] Glad M, Reinholdsson P, Mosbach K. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations [J]. React. Polym., 1995,25:47-54.
    
    [58] Sellergren B, Shea KJ. Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases [J]. J. Chromatogr. A, 1995,690:29-39.
    
    [59] Nicholls IA, Ramstrom O, Mosbach K. Insights into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics [J]. J. Chromatogr. A, 1995, 691: 349-353.
    
    [60] Sellergren B. Imprinted dispersion polymers: A new class of easily accessible affinity stationary phases [J]. J. Chromatogr. A, 1994,673:133-141.
    
    [61] Bystrom SE, Borje A, Akermark B. Selective reduction of steroid 3- and 17-ketones using lithium aluminum hydride activated template polymers [J]. J. Am. Chem. Soc, 1993, 115: 2081-2083.
    
    [62] Idziak I, Benrebouh A. A molecularly imprinted polymer for 17a-ethynylestradiol evaluated by immunoassay [J]. Analyst, 2000, 125: 1415-1417.
    
    [63] Andersson LI. Application of Molecular Imprinting to the Development of Aqueous Buffer and Organic Solvent Based Radio ligand Binding Assays for (S)-Propranolol [J]. Anal. Chem., 1996,68:111-117.
    
    [64] Mullett WM, Lai EPC. Determination of Theophylline in Serum by Molecularly Imprinted Solid-Phase Extraction with Pulsed Elution [J]. Anal. Chem., 1998,70: 3636-3641.
    
    [65 Lanza F, Sellergren B. Method for Synthesis and Screening of Large Groups of Molecularly Imprinted Polymers [J]. Anal. Chem., 1999,71:2092-2096.
    
    [66] Takeuchi T, Fukuma D, Matsui J. Combinatorial Molecular Imprinting: An Approach to Synthetic Polymer Receptors [J]. Anal. Chem., 1999,71:285-290.
    
    [67] Matsui J, Miyoshi Y, Takeuchi T. A molecularly imprinted synthetic polymer receptor selective for atrazine [J]. Anal. Chem., 1995, 67: 4404-4408.
    
    [68] Shea KJ, Spivak DA, Sellergren B. Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers [J]. J. Am. Chem. Soc, 1993, 115: 3368-3369.
    
    [69] Umpleby RJ, Bode M, Shimizu KD. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers [J]. Analyst, 2000,125: 1261-1265.
    
    [70] Piletsky SA, Piletskaya EV, Yano K, et al. A biomimetic receptor system for sialic acid based on molecular imprinting [J]. Anal. Lett., 1996,157-170.
    
    [71] Sellergren B, Andersson L. Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy [J]. J. Org. Chem., 1990, 55: 3381-3383.
    
    [72] Whitcombe MJ, Vulfson EN. Imprinted polymers [J]. Adv. Mater., 2001,13: 467-478.
    
    [73] Klein JU, Whitcombe MJ, Mulholland F, et al. Template-mediated synthesis of a polymeric receptor specific to amino acid sequences [J]. Angew. Chem., Int. Ed., 1999, 38: 2057-2060.
    
    [74] Ahernea A, Alexander C, Payne MJ, et al. Bacterial mediated lithography of polymer surfaces [J]. J. Am. Chem. Soc, 1996,118: 8771-8772.
    
    [75] Chianella, Lofterzo M, Piletsky SA. Rational Design of a Polymer for Microcystin-LR Using a Computational Approach [J]. Anal. Chem., 2002,74:1288-1293.
    
    [76]Piletsha E, Piletsky SA, Kal Karim. Biotin-specific synthetic receptors prepared using molecular imprinting [J]. Anal. Chim. Acta, 2004, 504:179-183.
    
    [77] Turiel E, Martin-Esteban A, Fernandez P, et al. Molecular recognition in a propazine-imprinted polymerand its application to the determination of triazines in environmental samples[J]. Anal Chem., 2001, 73: 5133-5141.
    
    [78] Muldoon MP, Stanker LH. Molecularly imprinted solid phase extraction of a trazine from beef liver extracts [J]. Anal Chem., 1997,69: 803-808.
    
    [79] Sellergen B, Shea KJ. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers [J]. J. Chromatogr. A, 1993, 635: 31-49.
    
    [80] Ferrer I, Lanza F, Tolokan A, et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers[J]. Anal Chem., 2000, 72: 3934-3941.
    
    [81] O'Shannessy DJ, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives at low temperature (0℃) using photolytic homolysis of azobisnitriles [J]. Anal Biochem, 1989, 177: 144-149.
    
    [82] Milojkovic S S, Kostoski D, Comor JJ, et al. Radiation induced synthesis of molecularly imprinted polymers [J]. Ploymer, 1997, 38:2853-2855.
    
    [83] Panasyuk TL, Mirsky VM, Piletsky SA. Electropolymerized molecularly imprinted polymers as receptor laryers in a capacitive chemical sensors [J]. Anal. Chem., 1999, 71: 4609-4613.
    
    [84] Flores A, Cunliffe D, Whitcombe MJ, et al. Imprinted polymers prepared by aqueous suspension polymerization [J]. J. Appl. Polym. Sci., 2000,77:1841-1850.
    
    [85] Strikovsky AG, Kasper D, Wulff G. Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate[J]. J. Am. Chem. Soc, 2000,122: 6295-6296.
    
    [86] Lai JP, Lu XY, Lu CY, et al. Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a high-performance liquid chromatography stationary phase [J]. Anal. Chim. Acta, 2001,442: 105-111.
    
    [87] Zhang LY, Cheng GX, Fu C. Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization [J]. Reac. Func. Polym., 2003, 56: 167-173.
    
    [88] Mayes A G, Mosbach K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase [J]. Anal. Chem., 1996, 68: 3769-3774.
    
    [89] Ansell RJ, Mosbach K. Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent [J]. J. Chromatogr. A, 1997, 787: 55-66.
    
    [90] Smith RM. Before the injection-modern methods of sample preparation for separation techniques[J]. J. Chromatogr. A, 2003, 1000: 3-27.
    
    [91] Ansell RJ, Mosbach K. Magnetic molecularly imprinted polymer beads for drug radioligand binding assay [J]. Analyst, 1998,123: 1611-1616.
    
    [92] Hosoya K, Yoshizako K, Tanaka N, et al. Uniform-size macroporous polymer-based stationary-phase for HPLC prepared through molecular imprinting technique [J]. Chem. Lett., 1994,1437-1438.
    
    [93] Haginaka J, Takehira H, Hosoya K, et al. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen [J]. Chem. Lett., 1997,26: 555-556.
    
    [94] Haginaka J, Sanbe H. Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis [J]. Anal. Chem., 2000, 72: 5206-5210.
    
    [95] Haginaka J, Sakai Y. Uniform-sized molecularly imprinted polymer material for (S)-propranolol [J]. J. Pharm. Biomed. Anal., 2000,22: 899-907.
    
    [96] Haginaka J, Sanbe H. Uniformly sized molecularly imprinted polymer for (S)-naproxen—Retention and molecular recognition properties in aqueous mobile phase [J]. J. Chromatogr. A, 2001, 913: 141-146.
    
    [97] Haginaka J, Takekira H, Hosoya K, et al. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer [J]. J. Chromatogr. A, 1999, 849:331-339.
    
    [98] Masci G, Aulenta F, Crescenzi V. Uniform-sized clenbuterol molecularly imprinted polymers prepared with methacrylic acid or acrylamide as an interacting monomer [J]. J. Appl. Polym. Sci., 2002, 83: 2660-2668.
    
    [99] Zhang LY, Cheng GX, Fu C. Molecular selectivity of tyrosine-imprinted polymers prepared by seed swelling and suspension polymerization [J]. Polym. Int., 2002, 51: 687-692.
    
    [10] Ye L, Cormack PAG, Mosbach K. Molecularly imprinted monodisperse microspheres for competitive radioassay [J]. Anal. Commun., 1999, 36: 35-38.
    
    [101]Ye L, Weiss R, Mosbach K. Synthesis and characterization of molecularly imprinted microspheres [J]. Macromolecules, 2000, 33: 8239-8245.
    
    [102] Ye L, Cormack PAG, Mosbach K. Molecular imprinting on microgel spheres [J]. Anal. Chim. Acta, 2001,435: 187-196.
    
    [103] Suzuki M, Sakakibara Y, Kobayashi S, et al. Preparation of porous polymers by ' in situ precipitation' using low molecular weight gelators [J]. Polym. J. 2002, 34: 474-477.
    
    [104] Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique [J]. Anal. Chem., 1993, 65: 2223-2224.
    
    [105] Matsui J, Takeuchi T. A molecularly imprinted polymer rod as nicotine selective affinity media prepared with 2-(trifluoromethyl)acrylic acid [J]. Anal. Commun., 1997, 34:199-200.
    
    [106] Matsui J, Nicholls I A, Takeuchi T. Molecular recognition in cinchona alkaloid molecular imprinted polymer rods [J]. Anal. Chim. Acta, 1998, 365: 89-93.
    
    [107] Nilsson K, Lindell J, Norrlow O, et al. Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis [J]. J. Chromatogr. A, 1994, 680: 57-61.
    
    [108] Bruggemann O, Freitag R, Whitcombe MJ, et al. Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography [J]. J. Chromatogr. A, 1997, 781:43-53.
    
    [109] Schweitz L, Andersson LI, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting [J]. Anal. Chem., 1997, 69: 1179-1183.
    
    [110] Hirayama K, Sakai Y, Kameoka K. Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique [J]. J. Appl. Polym. Sci., 2001, 81: 3378-3387.
    
    [111] Plunkett SD, Arnold FH. Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography [J]. J. Chromatogr. A, 1995,708:19-29.
    
    [112] Sulitzky C, Ruckert B, Hall AJ, et al. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators [J]. Macromolecules, 2002, 35: 79-91.
    
    [113] Ruckert B, Hall A J, Sellergren B. Molecularly imprinted composite materials via iniferter-modified supports [J]. J. Mater. Chem., 2002, 12: 2275-2280.
    
    [114] Sellergren B, Ruckert B, Hall AJ. Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports [J]. Adv. Mater., 2002, 14:1204-1208.
    
    [115] Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates—A new approach in molecular imprinting [J]. Angew. Chem. Intl. Ed., 2000,39:2115-2118.
    
    [116] Titirici MM, Hall AJ, Sellergren B. Hierarchically imprinted stationary phases: mesoporous polymer beads containing surface-confined binding sites for adenine [J]. Chem.Mater., 2002, 14: 21-23.
    
    [117] Titirici MM, Hall AJ, Sellergren B. Hierarchical imprinting using crude solid phase peptide synthesis products as templates [J]. Chem. Mater., 2003,15: 822-824.
    
    [118] Prasad BB, Banerjee S. Preparation, characterization and performance of a silica gel bonded molecularly imprinted polymer for selective recognition and enrichment of β-lactam antibiotics [J]. React. Funct. polym., 2003, 55:159-169.
    
    [119] Shimada T, Nakanishi K, Morihara K. Footprint catalysis .4. structural effects of templates on catalytic behavior of imprinted footprint cavities [J]. Bull. Chem. Soc. Jap., 1992,65: 954-956.
    
    [120] Morihara K, Doi S, Takiguichi M, et al. Catalysis l.Reinvestigation of the imprinting procedures for molecular footprint catalytic cavities-the effects of imprinting procedure temperature on the catalytic characteristics [J]. Bull. Chem. Soc. Jap., 1993,66: 2977-2982.
    
    [121] Matsuishi T, Shimada T, Morinara K. Footprint catalysis IX. Molecular footprint catalytic cavities imprinted with Chiral hydantoins:enantioselective hydantoinase mimics [J]. Bull. Chem. Soc. Jap., 1994,67:748-756.
    
    [122] Morihara K, Takiguchi M, Shimada T. Footprint catalysis XI. Molecular footprint cavities imprinted with chiral amines and their chiral molecular recognition [J]. Bull. Chem. Soc. Jap., 1994, 67:1078-1084.
    
    [123] Suzuki A, Tada M, Sasaki T, et al. Design of catalytic sites at oxide surfaces by metal-complex attaching and molecular imprinting techniques [J]. J. Mol. Cat. A-Chem., 2002, 182:125-136.
    
    [124] Katada N, Akazawa S, Nishiaki N, et al. Formation of selective adsorption cavity by chemical vapor deposition of molecular sieving silica overlayer on alumina using molecular template in the presence of acetic acid [J]. Bull. Chem. Soc. Jap., 2005,78:1001-1007.
    
    [125] Koide Y, Senba H, Shosenji H, et al. Selective adsorption of metal ions to surface-template resins prepared by emulsion polymenzation using lO-(P-Vinylphenyl) decanoic Acid [J]. Bull. Chem. Soc. Jap., 1996, 69: 125-130.
    
    [126] Murata M, Hijiya S, Madea M, et al. Template-dependent selectivity in metal adsorption on phosphoric diesfer-carrying resins prepared by surface template polymerization techniaue [J]. Bull. Chem. Soc. Jap., 1996, 69: 637-642.
    
    [127] Yoshida M, Uezu K, Goto M, et al. Required properties for functional monomers to produce a metal template effect by a surface molecular imprinting technique [J]. Macromolecules, 1999, 32:1237-1243.
    
    [128] Uezu K, Nakamura H, Kanno J, Sugo T, Goto M, Nakashio F. Metal ion-imprinted polymer prepared by the combination of surface template polymerization with postirradiation by y-rays [J]. Macromolecules, 1997,30: 3888-3891.
    
    [129] Uezu K, Nakamura H, Goto M, et al. Novel metal ion-imprinted resins prepared by surface template polymerization with W/O emulsion [J]. J. Chem. Eng. Jpn. 1994,27: 436-438.
    
    [130] Yoshida M, Uezu K, Nakashio F, et al. Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization [J]. J. Polym. Sci. A, Polym. Chem., 1998, 36: 2727-2734.
    
    [131] Yoshida M, Uezu K, Goto M, et al. An enantioselective polymer prepared by the surface molecular-imprinting technique [J]. Chem. Lett., 1998,27: 925-926.
    
    [132] Yoshida M, Hatate Y, Uezu K, et al. Chiral-recognition polymer prepared by surface molecular imprinting technique[J]. Colloid Surface. A, 2000, 169: 259-269.
    
    [133] Toorisaka E, Uezu K, Goto M, et al. A molecularly imprinted polymer that shows enzymatic activity[J]. Biochem. Eng. J., 2003, 14: 85-91.
    
    [134] Yoshida M, Uezu K, Goto M, et al. Surface imprinted polymers recognizing amino acid chirality [J]. J. Appl. Polym. Sci., 2000, 78: 695-703.
    
    [135] Tsunemori H, Araki K, Uezu K, et al. Surface imprinting polymers for the recognition of nucleotides [J]. Bioseparation, 2002,10: 315-321.
    
    [136] Fujiwara I, Maeda M, Takagi M. Preparation of an organic acid-imprinted resin by a surface imprinting method [J]. Anal. Sci., 2002, 18: 943-945.
    
    [137] Yoshida M, Uezu K, Goto M, et al. Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions [J]. J. Appl. Polym. Sci., 1999,73:1223-1230.
    
    [138] Uezu K, Nakamura H, Goto M, et al. Metal-imprinted microsphere prepared by surface template polymerization with W/O/W emulsions [J]. J. Chem. Eng. Jpn., 1999, 32: 262-267.
    
    [139] Yoshida M, Hatate Y, Uezu K, et al. Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography [J]. J. Polym. Sci. Pol. Chem., 2000, 38: 689-696.
    
    [140] Yilmaz E, Ramstrom O, Moller P, et al. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates [J]. J. Mater. Chem., 2002, 12: 1577-1581.
    
    [141] Perez N, Whitcombe M J, Vulfson E N. Surface imprinting of cholesterol on submicrometer core-shell emulsion particles [J]. Macromolecules, 2001, 34: 830-836.
    [142] Carter SR, Lu SY, Rimmer S. Core-shell molecular imprinted polymer colloids [J]. Supramol. Chem., 2003,15:213-220.
    
    [143] Carter SR, Rimmer S. Molecular recognition of caffeine by shell molecular imprinted core-shell polymer particles in aqueous media [J]. Adv. Mater., 2002,14: 667-670.
    
    [144] Carter SR, Rimmer S. Surface molecularly imprinted polymer core-shell particles [J]. Adv. Funct. Mater., 2004,14: 553-561.
    
    [145] Perez N, Whitcombe MJ, Vulfson EN. Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization [J]. J. Appl. Polym. Sci., 2000,77: 1851-1859
    
    [146] Duffy DJ, Das K, Hsu SL,et al. Binding efficiency and transport properties of molecularly imprinted polymer thin films [J]. J. Am. Chem. Soc, 2002,124: 8290-8296.
    
    [147] Jakoby B, Ismail GM, Byfield MP, et al. A novel molecularly imprinted thin film applied to a Love wave gas sensor [J]. Sens. Actuators A, 1999,76:93-97.
    
    [148] Hedborg E, Winquist F, Lundstrom I, et al. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices [J]. Sens. Actuators A, 1993, 37: 796-799.
    
    [149] Sallacan N, Zayats M, Bourenko T, et al. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers [J]. Anal. Chem., 2002, 74: 702-712.
    
    [150] Joshi VP, Karode SK, Kulkarni MG, et al. Novel separation strategies based on molecularly imprinted adsorbents [J]. Chem. Eng. Sci., 1998, 53(13): 2271-2284.
    
    [151] Piletsky SA, Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water [J]. Macromolecules, 2000, 33: 3092-3098.
    
    [152] Wulff G, Vesper W, Grobe-Einsler R. Enzyme analogue built polymer: on the synthesis of polymer containing chiral cavities and their use for the resolution of race mates [J]. Makromol. Chem., 1977,178: 2799-2807.
    
    [153] Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer [J]. Anal. Chem., 1994, 66(9): 1578-1582.
    
    [154] Meng ZH, Qiu L. Determination of degradation products of nerve agents human serum by solid phase extraction using molecularly imprinted polymer [J]. Anal. Chim. Acta, 2001, 435: 121-127.
    
    [155] Yoshikawa M, Shimada A, Izumi JI. Novel polymeric membranes having chiral recognition sites converted from tripeptide derivatives [J]. Analyst, 2001, 126: 775-780
    
    [156] Mathew-Krotz J, Shea KJ. Imprinted polymer membranes for the selective transport of targeted neutral molecules [J]. J. Am. Chem. Soc, 1996,118: 8154-8155.
    
    [157] Kobayashi T, Wang H Y, Fujii N. Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments [J]. Anal. Chim. Acta, 1998, 365: 81-88.
    
    [158] Schweitz L, Andersson LI, Nilsson S. Rapid electrochromatographic enantiomer separations on short molecularly imprinted polymer monoliths [J]. Anal. Chim. Acta, 2001, 435:43-47.
    
    [159] Castro B, Whitcombe MJ, Vulfson EN, et al. Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels [J]. Anal. Chem. Acta, 2001,435: 83-90.
    
    [160] Vigneau O, Pinel C, Lemaire M. Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides(III) separation [J]. Anal. Chem. Acta, 2001, 435: 75-82.
    
    [161] Lai EPC, Fafara A, VanderNoot VA, et al. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine [J]. Can. J. Chem., 1998, 76: 265-273.
    
    [162] Sreenivasan K. Application of molecularly imprinted polymer as a drug retaining matrix [J]. Angew. Makromol. Chem., 1997,246: 65-69.
    
    [163] Beach JV, Shea KJ. Designed catalysts. A synthetic network polymer that catalyzes the dehydrofluorination of 4-fluoro-4-(p-nitrophenyl)butan-2-one [J]. J. Am. Chem. Soc, 1994, 116: 379-380.
    
    [164] Rich JO, Dordick JS. Controlling Subtilisin Activity and Selectivity in Organic Media by Imprinting with Nucleophilic Substrates [J]. J. Am. Chem. Soc, 1997,119: 3245-3252.
    
    [165] Uezu K, Yoshida M, Goto M, et al. Molecular recognition using surface template polymerization[J]. Chemtech., 1999,29:12-18.
    
    [166] Hedborg E, Winquist F, Mosbach K. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices[J]. Sens. Actuators A, 1993, 36: 796-799.
    
    [167] Malitesta C, Losito I, Zambonin PG Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors[J]. Anal. Chem., 1999,71:1366-1370.
    
    [168] Haupt K. Molecularly imprinted sorbent assays and the use of non-related probes[J]. React. Funct. Polym., 1999,41: 125-131.
    
    [169] Sergeyeva TA, Piletsky SA, Brovko AA, et al. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes [J]. Analyst, 1999, 124: 331-334.
    [170] Tong AJ, Dong H, Li LD. Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)-protoporphyrin as a functional monomer[J]. Anal. Chim. Acta, 2002,466: 31-37.
    
    [171] Matsui J, Fujiwara K, Ugata S, et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent [J]. J. Chromatogr. A, 2000,889:25-31.
    
    [172] Jenkins AL, Uy OM, Murray GM. Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water [J]. Anal. Chem., 1999, 71:373-378.
    
    [173] Umpleby II RJ, Rushton GT, Shimizu K D, et al. Recognition directed site-selective chemical modification of molecularly imprinted polymers [J]. Macromolecules, 2001, 34: 8446-8452.
    
    [174] Chen Y, Kele M, Sajonz P, et al. Influence of Thermal Annealing on the Thermodynamic and Mass-Transfer Kinetic Properties of D- and L-Phenylalanine Anilide on Imprinted Polymeric Stationary Phases [J]. Anal. Chem., 1999,71:928-938.
    
    [175] Kirsch N, Alexander C, Lubke M, et al. Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognition sites [J]. Polymer, 2000,41: 5583-5590.
    
    [176] Smigol V, Svec F, Frechet JMJ. Two-Dimensional High-Performance Liquid Chromatography Using Monodisperse Polymer Beads Containing Segregated Chemistries Prepared by Pore Size Specific Functionalization. Single-Column Combinations of Size Exclusion or Ion Exchange with Reversed-Phase Chromatography [J]. Anal. Chem., 1994, 66:4308-4315.
    
    [177] Hiratani H, Alvarez-Lorenzo C, Chuang J, et al. Effect of reversible cross-linker, N,N '-bis(acryloyl)cystamine, on calcium ion adsorption by imprinted gels [J]. Langmuir, 2001, 17: 4431-4436.
    
    [178] Chen XX, Dam MA, Ono K, et al. A thermally re-mendable cross-linked polymeric material [J]. Science, 2002,295:1698-1702.
    
    [179] Rowan SJ, Cantrill SJ, Cousin GRL, et al. Dynamic covalent chemistry [J]. Angew. Chem., Int. Ed., 2002,41: 898-952.
    
    [180] Nishinaga T, Tanatani A, Oh K, et al. The size-selective synthesis of folded oligomers by dynamic templation [J]. J. Am. Chem. Soc, 2002,124: 5934-5935.
    
    [181] Otsuka H, Aotani K, Higaki Y, et al. Polymer scrambling: Macromolecular radical crossover reaction between the main chains of alkoxyamine-based dynamic covalent polymers [J]. J. Am. Chem. Soc, 2003,125: 4064-4065.
    
    [182] Piletsky SA, Terpetschnig E, Andersson HS, et al. Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers [J]. Fresenius J. Anal. Chem., 1999, 364: 512-516.
    
    [183] Piletsky SA., Turner APF. Electrochemical sensors based on molecularly imprinted polymers [J]. Electroanalysis, 2002,14: 317-323.
    
    [184] Dickert FL, Hayden O, Halikias KP. Synthetic receptors as sensor coatings for molecules and living cells [J]. Analyst, 2001,126: 766-771.
    
    [185] Das K, Penelle J, Rotello VA. Specific recognition of bacteria by surface-templated polymer films [J]. Langmuir, 2003, 19 (15): 6226-6229.
    
    [186] Kugimiya A, Takeuchi T. Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid [J]. Biosens. Bioelectron., 2001,16:1059-1062.
    
    [187] Surugiu I, Ye L, Mosbach K, et al. An enzyme-linked molecularly imprinted sorbent assay [J]. Analyst, 1999,125: 13-16.
    
    [188] Piletsky SA, Piletska EV, Chen BN, et al. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination [J]. Anal. Chem., 2000, 72: 4381-4385.
    
    [189] Turkewitsch P, Wandelt B, Darling GD, et al. Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP [J]. Anal. Chem., 1998, 70: 2025-2030.
    
    [190]Takeuchi T, Mukawa T, Matsui J, et al. Molecularly imprinted polymers with metalloporphyrin-based Molecular Recognition Sites coassembled with methacrylic acid [J]. Anal. Chem., 2001, 73: 3869-3874.
    
    [191] Matsui J, Higashi M, Takeuchi T. Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center [J]. J. Am. Chem. Soc, 2000, 122: 5218-5219.
    
    [192] Perez-Moral N, Mayes AG. Novel MIP formats [J]. Bioseparation, 2002,10,287-299.
    
    [193] Biffis A, Graham NB, Wulff G. The synthesis, characterization and molecular recognition properties of imprinted microgels [J]. Macromol. Chem. Phys., 2001, 202: 163-171.
    
    [194] Friggeri A, Kobayashi H, Shinkai S, et al. From solutions to surfaces: A novel molecular imprinting method based on the conformational changes of boronic-acid-appended poly(L-lysine)[J]. Angew. Chem., Int. Ed., 2001, 40: 4729-4731.
    [195] Zimmerman SC, Wendland MS, Rakow NA, et al. Synthetic hosts by monomolecular imprinting inside dendrimers [J]. Nature, 2002, 418: 399-403.
    [196] Yang HH, Zhang SQ, Yang W, et al. Molecularly imprinted Sol-Gel nanotubes membrane for biochemical separations [J]. J. Am. Chem. Soc., 2004, 126: 4054-4055.
    [197] Yang HH, Zhang SQ, Tan F, et al. Surface molecularly imprinted nanowires for biorecognition [J]. J. Am. Chem. Soc., 2005, 127: 1378-1379.
    [198] Li Y, Yang HH, You QH, et al. Protein recognition via surface molecularly imprinted polymer nanowires [J]. Anal. Chem., 2006, 78:317-320.
    [199] Rose A, Zhu ZG, Madigan CF, et al. Sensitivity gains in chemosensing by lasing action in organic polymers [J]. Nature, 2005, 434: 876-879.
    [200] Goldman ER, Medintz IL, Whitley JL, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. J. Am. Chem. Soc., 2005, 127: 6744-6751.
    [201] Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Self-assembled nanoscale biosensors based on quantum dot FRET donors [J]. Nature materials, 2003, 2:630-637.
    [202] Bums A, Ow H, Wiesner U. Fluorescent core-shell silica nanoparticles: towards "Lab on aParticle" architectures for nanobiotechnology [J]. Chem. Soc. Rev. 2006, 35: 1028-1042.
    [1] Iler R.K. The chemistry of silica [M]. New York: Wiley, 1979.
    [2] Scott, R.P.W. Silica gel and bonded phases [M]. New York: Wiley, 1993.
    [3] Bergna. The colloid chemistry of silica [M], vol. 1. Washington, DC: American Chemical Society, 1994.
    [4] Sindorf, D.W.; Maciel, G.E. Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxymethylsilanes[J], J Am Chem Soc. 1983, 105: 3767-3776.
    [5] Maciel, G. E.; Bronnimann, C. E.; Zeigler, R.S.; Suer C. J.; Kinney, K. R.; Keiter, E. A. The colloid chemistry of silica [M]. Washington, DC: American Chemical Society, 1994.
    [6] Zaper, A. M.; Koenig, J.L. Polym Comp. 1985, 6: 156-159.
    [7] Arkles, B. Chemtech, 1977, 7: 766-769.
    [8] Loos, K.; Braunmuhl, V.V.; Stadler, R. Macromol Rapid Commun, 1997, 18: 927-929.
    [9] Clark, J.H.; Macquarrie, D.J. Chem Commun, 1998, 853-855.
    [10] Frisch, H.L.; West, J.M.; Goltner, C.G.; Attard, G.S. J Polym Sci, Part A, Polym Chem, 1996, 34: 1823-1826.
    [11] Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.; Long T.E.; Long V.K. Macromolecules, 1996, 29: 4712-4715.
    [12] Deschler, U.; Kleinschmidt, P.; Panster, P. Angew Chem, 1986, 98: 237-240.
    [13] Brinker, C. J.; Scherer, G. W. sol-gel Science: The physics and chemistry of sol-gel processing [M], New York, Academic Press, 1990.
    [14] Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968, 26: 62-69.
    [15] Jirgensons, B.; Stranmains, M. E. Colloid chemistry [M]. New York, McMillan, 1962.
    [16] Sada, E.; Kumazawa, H.; Koresawa, E. Reaction kinetics and size control in the formation of monosized spheres by controlled hydrolysis of tetraethyl Orthosilicate in ethanol[J]. The Chem. Eng. J. 1990, 44: 133-139.
    [17] 赵瑞玉;董鹏;梁文杰.单分散二氧化硅体系制备中正硅酸乙酯水解与成核及颗粒生成的关系[J].石油大学学报(自然科学版),1995,19:89-92.
    [18] Cestari, A.R., Airoldi, C. Langmuir, 1997, 13: 2681-2685.
    [19] Wight, P.A.; Davis, M.E. Chem. Rev. 2002, 102: 3589-3592.
    [20] Price, P.M.; Clark, J.H.; Macquarrie, D.J.J. Chem. Soc. Dalton Trans. 2000, 101-105.
    [21] Deschler, U.; Kleinschmit, P.; Panster, P. Angew. Chem. Int. Ed. Engl. 1986, 25: 236-238.
    [22] Unger, K.; Porous Silica: Its Proprieties and Use as a Support in Column Liquid Chromatography [M], New York, Elsevier, 1979.
    [23] Guidotti, B.R.; Herzog, E.; Bangetter, F.; Caseri, W.R.; Suter, U.W.J.Colloid Interface Sci. 1997, 191: 209-212.
    [24] 赵丽;余家国;程蓓;赵修建.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,64(4):562~566.
    [25] Satoh, T.; Akitaya, M.; Konno, M.; Saito, S. Particle size distribution produce by hydrolysis and condensation of tetraethylorosilicate. Journal of chemical engineering of Japan, 1997, 30: 759-762.
    [26] Motsoukas, T. Gulari, E. Dynamics of Growth of Silica Particles from Ammonia-catalyzed hydrolysis of tetraethyl orthosilicate. J. Colloid and Interface Sci. 1988, 124: 252-255.
    [27] Tan, C. G.; Bowen, B. D.; Epstein, N. Production of Monodisperse Colloidal Silica Spheres: Effect of Temperature. J. Colloid and Interface Sci.1987, 118: 290-293.
    [28] Kim, K. D.; Kim, H. T. Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Bacth/Batch Method. Journal of sol-gel science and technology, 2002, 25:183-189.
    [29] Li, H.; Perkas, N.; Li, Q.; Gofer, Y.; Koltypin, Y.; Gedanken, A. improved silanization modification of a silica surface and its application to the preparation of a silica-supported polyoxometalate catalyst[J]. Langmuir 2003, 19:10409-10413.
    [1] (a) Wang, J. P.; Cormack, A. G; Sherrington, D. C; Khoshdel, E. Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications[J] . Angew. Chem. Int. Ed. 2003, 42(43): 5336-5338. (b) Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates - A way towards artificial antibodies [J]. Angew. Chem. Int. Ed. 1995, 34 (17): 1812-1832.
    
    [2] (a) Liu, J. Q.; Wulff, G Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity [J]. J. Am. Chem. Soc. 2004, 126 (24): 7452-7453. (b) Liu, J. Q.; Wulff, G. Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities [J]. Angew. Chem. Int. Ed. 2004, 43 (10): 1287-1290.
    
    [3] (a) Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors [J]. Chem. Rev. 2000, 100(7): 2495-2504. (b) Mosbach, K.; Ramstrom, O. The emerging technique of molecular imprinting and its future impact on biotechnology [J]. Bio/Technology 1996,14:163-172.
    
    [4] (a) Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers [J].Chem. Rev. 2002, 102 (1): 1-28. (b) Sellergren, B. Molecularly Imprinted Polymers. Man-Made Mimics of Antibodies and their Application in Analytical Chemistry [M]. Elsevier, New York, 2001.
    
    [5] (a) Zimmerman, S. C; Wendland, M. S.; Rakow, N. A.; Zharov, I.; Suslick, K. S. Synthetic hosts by monomolecular imprinting inside dendrimers[J]. Nature 2002, 418 (6896): 399-403. (b) Mertz, E.; Zimmerman, S. C. Cross-linked dendrimer hosts containing reporter groups for amine guests [J]. J. Am. Chem. Soc. 2003, 125(12): 3424-3425.
    
    [6] (a) Katz, A.; Davis, M. E. Molecular imprinting of bulk, microporous silica [J]. Nature 2000, 403 (6767): 286-289. (b) Bass, J. D.; Katz, A. Thermolytic synthesis of imprinted amines in bulk silica [J]. Chem. Mater. 2003, 15 (14): 2757-2763.
    
    [7] Shi, H.; Tsai, W; Garrison, M. D.; Ferrari, S.; Ratner, B. D. Molecular imprinting of bulk, microporous silica [J]. Nature, 1999, 398(6767): 593-597.
    
    [8] (a) Hayden, O.; Mann, K. J.; Krassnig, S.; Dickert, F. L. Biomimetic ABO blood-group typing [J]. Angew. Chem. Int. Ed. 2006, 45(16): 2626-2629. (b) Hayden, O.; Dickert, F. L. Selective microorganism detection with cell surface imprinted polymers [J]. Adv. Mater. 2001, 13(19): 1480-1483. (c) Hayden, O.; Lieberzeit, P. A.; Blaas, D.; Dickert, F. L. Artificial antibodies for bioanalyte detection - sensing viruses and proteins[J]. Adv. Funct. Mater. 2006, 16(10): 1269-1278.
    
    [9] (a) Ki, C. D.; Oh, C; Oh, S.G.; Chang, J. Y. The use of a thermally reversible bond for molecular imprinting of silica spheres [J]. J. Am. Chem. Soc. 2002, 124(50): 14838-14839. (b) Markowitz, M. A.; Kust, P. R.; Deng, G; Schoen, P. E.; Dordick, J. S.; Clerk, D. S.; Gaber, B. P. Catalytic Silica Particles via Template-Directed Molecular Imprinting [J]. Langmuir 2000, 16 (4): 1759-1765. (c) Rao, M. S.; Dave, B. C. Selective intake and release of proteins by organically-modified silica Sol-Gels [J]. J. Am. Chem. Soc. 1998,120 (50): 13270-13271.
    
    [10] (a) Carter, S. R.; Rimmer, S. Surface molecularly imprinted polymer core-shell particles [J]. Adv. Funct. Mater. 2004, 14(6): 553-561. (b) Carter, S. R.; Rimmer, S. Molecular recognition of caffeine by shell molecular imprinted core-shell polymer particles in aqueous media [J]. Adv. Mater. 2002,14 (9): 667-670.
    
    [11] Yilmaz, E.; Haupt, K.; Mosbach, K. The use of immobilized templates - a new approach in molecular imprinting [J]. Angew. Chem. Int. Ed. 2000, 39 (12): 2115-2118.
    
    [12] Bossi, A.; Piletsky, S. A.; Piletska, E. V.; Righetti, P. G; Turner, A. P. F. Surface-grafted molecularly imprinted polymers for protein recognition [J]. Anal. Chem. 2001, 73 (21): 5281-5286.
    
    [13] (a) Yang, H. H.; Zhang, S. Q.; Tan, F.; Zhuang, Z. X.; Wang, X. R. Surface molecularly Imprinted nanowires for biorecognition [J]. J. Am. Chem. Soc. 2005, 127(5): 1378-1379. (b) Li, Y; Yang, H. H.; You, Q. H.; Zhuang, Z. X.; Wang, X. R. Protein recognition via surface molecularly imprinted polymer nanowires [J]. Anal. Chem. 2006, 78 (1): 317-320.
    
    [14] Schmidt, R. H.; Mosbach, K.; Haupt, K. A simple method for spin-coating molecularly imprinted polymer films of controlled thickness and porosity [J]. Adv. Mater. 2004, 16(8): 719-722.
    
    [15] (a) Sellergren, B.; Ruckert, B.; Hall, A. J. Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports [J]. Adv. Mater. 2002, 14 (17): 1204-1208. (b) Sulitzky, C; Ruckert, B.; Hall, A. J.; Lanza, F.; Unger, K.; Sellergren, B. Grafting of molecularly imprinted polymer films on Silica Supports Containing Surface-Bound free radical initiators [J]. Macromolecules 2002; 35 (1): 79-91. (c) Titirici, M. M.; Sellergren, B. Thin molecularly imprinted polymer films via reversible addition-fragmentation Chain Transfer Polymerization [J]. Chem. Mater. 2006, 18 (7): 1773-1779.
    
    [16] Xie, C; Zhang, Z.; Wang, D.; Guan, G.; Gao, D.; Liu, J. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays [J]. Anal. Chem. 2006, 78 (24): 8339-8346.
    
    [17] Chronakis, I. S.; Milosevic, B.; Frenot, A.; Ye, L. Generation of molecular recognition Sites in electrospun polymer nanofibers via molecular imprinting [J]. Macromolecules 2006, 39(1): 357-361.
    
    [18] Stober, W.; Finker, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interface Sci. 1968,26 (1): 62-69.
    
    [19] Philipse, A. P.; Vrij, A. Preparation and properties of nonaqueous model dispersions of chemically modified, charged silica spheres [J]. J. Colloid Interface Sci. 1989, 128(1): 121-136.
    
    [20] Zapilko, C; Widenmeyer, M.; Nagl, I.; Estler, F.; Anwander, R.; Raudaschl-Sieber, G; Groeger, O.; Engelhardt, G. Advanced surface functionalization of periodic mesoporous silica: kinetic control by trisilazane reagents [J]. J. Am. Chem. Soc. 2006, 128 (50): 16266-16276.
    
    [21] Tititici, M. M.; Hall, A. J.; Sellergren, B. Hierarchically imprinted stationary phases: mesoporous polymer beads containing surface-confined binding sites for adenine [J]. Chem. Mater. 2002, 14(1): 21-23.
    
    [22] Li, H.; Perkas, N.; Li, Q.; Gofer, Y.; Koltypin, Y; Gedanken, A. improved silanization modification of a silica surface and its application to the preparation of a silica-supported polyoxometalate catalyst[J]. Langmuir 2003, 19(24): 10409-10413.
    
    [23] Kang, S.; Green, J. P. Steric and electronic relationships among some hallucinogenic compounds [J]. Proc. Natl. Acad. Sci. 1970, 67 (1): 62-67.
    
    [24] (a) Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulovic, V. Sensitivity gains in chemosensing by lasing action in organic polymers Nature 2005, 434(7306): 876-879. (b) Yang, J. S.; Swager, T. M.; Porous Shape Persistent Fluorescent polymer films: An approach to TNT sensory materials [J]. J. Am. Chem. Soc. 1998, 120(21): 5321-5322.
    
    [25] Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Polymer nanotubes by wetting of ordered porous templates [J]. Science, 2002,296: 1997.
    [26] Hou, S.; Wang, J.; Martin, C. R. Template-synthesized protein nanotubes [J]. nano Lett. 2005, 5 (2): 231-234.
    [1] McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000,100: 2537-2574.
    
    [2] Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000,100: 2595-2626.
    
    [3] Yinon, J. Forensic and Environmental Detection of Explosives; John Wiley & Sons Ltd: Chichester, 1999.
    
    [4] Steinfeld, J. I.; Wormhoudt, J. Annu. Rev. Phys. Chem. 1998, 49: 203-232.
    
    [5] Rouhi, A. M. Chem. Eng. News 1997, 75: 14-22.
    
    [6] Fainberg, A. Science 1992,255: 1531-1537.
    
    [7] Barshick, S.A. J. Forensic Sci. 1998,43:284-293.
    
    [8] Smith, K. D.; McCord, B. R.; McCrehan, W. A.; Mount, K.; Rowe, W. F. J. Forensic Sci. 1999,44:789-794.
    
    [9] Czarnik, A. W. Nature 1998, 394, 417-418.
    
    [10] Hakansson, K.; Coorey, R. V.; Zubarev, R. A.; Talrose, V. L.; Hakansson, P. J. Mass Spectrom. 2000, 35: 337-346.
    
    [11] Sylvia, J. M.; Janni, J. A.; Klein, J. D.; Spencer, K. M. Anal. Chem. 2000,72:5834-5840.
    [12] Steinfeld, J. I.; Wormhoudt, J. Explosives detection: a challenge for physical chemistry [J]. Annu. Rev. Phys. Chem. 1998, 49:203-232.
    
    [13] Naal, Z.; Park, J. H.; Bernhard, S.; Shapleigh, J. P.; Batt, C. A.; Abruna, H. D. Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion [J]. Anal. Chem. 2002, 74: 140-148.
    
    [14] Content, S.; Trogler, W.C.; Sailor, M. J. Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence [J]. Chem. Eur. J. 2000, 6: 2205-2213.
    
    [15] Wilson, R.; Clavering, C; Hutchinson, A. Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetra nitrate [J]. Anal. Chem. 2003,75: 4244-4249.
    
    [16] Bromberg, A.; Mathies, R. A. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip [J]. Anal. Chem. 2003, 75: 1188-1195.
    
    [17] Altstein, M.; Bronshtein, A.; Glattstein, B.; Zeichner, A.; Tamiri, T.; Almog, J. Immunochemical approaches for purification and detection of TNT traces by antibodies entrapped in a Sol-Gel matrix [J]. Anal. Chem. 2001,73: 2461-2467.
    
    [18] Moore, D. S. Instrumentation for trace detection of high explosives [J]. Rev. Sci. Instrum. 2004,75:2499-2512
    
    [19] Eiceman, G. A.; Stone, J. A.; Ion mobility spectrometers in national defense [J]. Anal. Chem. 2004, 390A-397A.
    
    [20] Tao S.Y.; Li, G.T. Porphyrin-doped mesoporous silica films for rapid TNT detection [J]. Colloid Polym. Sci. 2007, 285: 721-728.
    
    [21] Medintz, I. L.; Goldman, E. R.; Lassman, M. E.; Hayhurst, A.; Kusterbeck, A.W.; Deschamps, J. R. Self-assembled TNT biosensor based on modular multifunctional surface-tethered components [J]. Anal. Chem. 2005, 77: 365-372.
    
    [22] Anderson, G. P.; Moreira, S. C; Charles, P. T.; Medintz, I. L.; Goldman, E. R.; Zeinali, M.; Taitt, C. R. TNT detection using multiplexed liquid array displacement immunoassays [J]. Anal. Chem. 2006, 78: 2279-2285.
    
    [23] Oxley, J.C.; Smith, J.L.; Shinde, K. Moran, J. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique [J]. Propellants, Explosives, Pyrotechnics. 2005, 30: 127-130.
    
    [24] Eiden-Assmann, S.; Lindlar, B.; Maret, G. Synthesis and characterization of colloidal fluorescent mesoporous silica particles [J]. Journal of Colloid and Interface Science, 2004, 271:120-123.
    
    [25] Rose, A.; Zhu Z. G.; Madigan, C. F.; Swager, T. M. ; Bulovic, V. Sensitivity gains in chemosensing by lasing action in organic Polymers[J]. Nature, 2005,433:876-879.
    
    [26] Sohn, H.; Calhoun, R. M.; Sailor, M. J.; Trogler, W. C. Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles [J]. Angew. Chem. Int. Ed. 2001, 40:2104-2105.
    
    [27] Liu, Y.; Mills, R. C; Boncella, J. M., Schanze, K. S. Fluorescent polyacetylene thin film sensor for nitroaromatics [J]. Langmuir, 2001, 17: 7452-7455.
    
    [28] McQuade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated Polymer-Based Chemical Sensors [J]. Chem. Rev. 2000, 100: 2537-2574.
    
    [29] Saxena, A.; Fujiki, M.; Rai, R.; Kwak, G. Fluoroalkylated polysilane film as a chemosensor for explosive nitroaromatic compounds [J]. Chem. Mater. 2005, 17: 2181-2185.
    [30] Yamaguchi, S.; Swager, T. M. Oxidative cyclization of bis (biaryl) acetylenes: synthesis and photophysics of dibenzo [g, p] chrysene-based fluorescent polymers [J]. J. Am. Chem. Soc. 2001, 123: 12087-12088.
    
    [31] Kannan, G.K.; Nimal, A.T.; Mittal, U.; Yadava, R.D.S.; Kapoor, J.C. Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2, 4-dinitro toluene (DNT) vapor detection [J]. Sensors and Actuators B, 2004,101: 328-334.
    
    [32] Tao, S. Y.; Shi, Z. Y.; Li, G. T.; Li, P. Hierarchically structured nanocomposite films as highly sensitive chemosensory materials for TNT detection [J].Chem. Phys.Chem. 2006, 7: 1902-1905.
    
    [33] Yang J.S.; Swager, T. M. Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials [J]. J. Am. Chem. Soc. 1998,120: 5321-5322
    
    [34] Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. Silole derivatives as efficient electron transporting materials [J]. J. Am. Chem. Soc. 1996, 118: 11974-11975.
    
    [35] Sohn, H.; Huddleston, R. R.; Powell, D. R.; West, R. An electroluminescent polysilole and some dichlorooligosiloles [J]. J. Am. Chem. Soc. 1999,121: 2935-2936
    
    [36] Thomas III, S. W.; Amara, J.P.; Bjork, R. E.; Swager, T. M. Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethy 1-2,3-dinitrobutane (DMNB)[J]. Chem. Commun., 2005,36:4572-4574.
    
    [37] Swager, T. M. The molecular wire approach to sensory signal amplification [J]. Acc. Chem. Res. 1998,31:201-207.
    
    [38] McGill, R. A.; Mlsna, T. E.; Chung, R.; Nguyen, V. K.; Stepnowski, J. The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds [J]. Sensors and Actuators B, 2000,65: 5-9.
    
    [39] Yang , X. G.; Du, X. X.; Shi, J. X.; Swanson, B. Molecular recognition and self-assembled polymer films for vapor phase detection of explosives [J]. Talanta, 2001, 54: 439-445.
    
    [40] Toal, S. J.; Magde, D.; Trogler, W. C. Luminescent oligo (tetraphenyl) silole nanoparticles as chemical sensors for aqueous TNT [J]. Chem. Commun. 2005, 43: 5465-5467.
    
    [41] Yang, J. S.; Swager, T. M. Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects [J]. J. Am. Chem. Soc. 1998,120:11864-11873.
    
    [42] Pushkarsky, M. B.; Dunayevskiy, I, G.; Prasanna, M.; Tsekoun, A. G.; Go, R.; Patel, C. K. N. High-sensitivity detection of TNT [J]. PNAS, 2006, 103: 19630-19634.
    [43] Toal, S. J.; Trogler, W. C. Polymer sensors for nitroaromatic explosives detection [J]. J. Mater. Chem., 2006, 16: 2871-2883.
    
    [44] Solin, H.; Sailor, M. J.; Magde, D.; Trogler, W.C. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles [J]. J. Am. Chem. Soc. 2003, 125: 3821-3830.
    
    [45] Albert, K. J.; Walt, D. R. High-speed fluorescence detection of explosives-like vapors [J]. Anal. Chem. 2000, 72: 1947-1955.
    
    [46] Andrew, T. L.; Swager, T. M. A fluorescence turn-on mechanism to detect high explosives RDX and PETN [J]. J. Am. Chem. Soc. 2007,129: 7254-7255.
    
    [47] Wang, L.; Tan, W. H. Multicolor FRET silica nanoparticles by single wavelength excitation [J]. Nano Letters, 2006, 6:84-86.
    
    [48] Burns, A.; Ow, H.; Wiesner, U. fluorescent core-shell silica nanoparticles: towards "Lab on aparticle" architectures for nanobiotechnology [J]. Chem. Soc. Rev. 2006,35:1028-1042.
    
    [49] Medintz, I. L.; Uyeda, H. T.; Goldman. E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labeling and sensing [J]. Nature, 2005, 4:435-446.
    
    [50] Medintz, I.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature materials, 2003, 2:630-638.
    
    [51] Goldman, E. R.; Medintz, I. L.; Whitley, J. L.; Hayhurst, A.; Clapp, A. R.; Uyeda, H. T; Deschamps, J. R.; Lassman, M. E.; Mattoussi, H. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. J. Am. Chem. Soc. 2005, 127: 6744-6751.