大豆铁蛋白基因的分离和转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁蛋白是广泛存在于生物体中的一种长期贮藏铁的蛋白,调节铁的吸收和释放,是植物贮藏铁的主要形式。大豆是含铁量高的植物,其内大约90%的铁以铁蛋白的形式存在。研究发现大豆铁蛋白中铁的吸收利用率和FeSO4基本相当。本研究使用农杆菌介导的转化方法将大豆铁蛋白Ferritin基因转入玉米,期望在玉米胚乳特异表达基因15 kDβ-Zein启动子的驱动下,特异表达,以提高籽粒中微量元素铁的含量,为强化玉米营养品质,解决以玉米为主食人群的缺铁问题提供帮助。主要结果如下:
     1.从玉米自交系鲁2548分离获得胚乳特异表达基因15 kDβ-Zein的启动子序列,并构建了表达载体pBI121-Zein-GUS。
     2.从大豆品种95-5883克隆并获得大豆铁蛋白Ferritin基因的cDNA序列,全长753 bp,包含251个氨基酸残基,构建植物表达载体pBI121-35s-Ferritin,pCUbi1390-Ferritin,pBI121-Zein-Ferritin,pCUbi1390-Ferritin-Epsps。
     3.诱导玉米自交系R18-599和齐319的胚性愈伤组织,为遗传转化提供受体材料。利用三亲交配法将重组载体pCUbi1390-Ferritin,pBI121-Zein-Ferritin导入农杆菌LBA4404,通过农杆菌介导法将表达载体转入玉米自交系R18-599和齐319的胚性愈伤组织,得到转基因植株。提取转基因植株的DNA,经PCR鉴定,初步证明Ferritin基因整合到转基因玉米基因组中。
Ferritin is a long-term iron binding and storage protein widely in the organism. It regulates iron absorption and release.It is a major form of iron storage in plant.Soybeans in particular have a high iron,and about 90% of Total iron in seeds stored inside ferritin.It has been demonstrated that iron from soybean ferritin is equal in bioavailability to FeSO4. In this study, soybean ferritin gene was transferred into maize by Agrobacterium-mediated transformation, in order to realize the specific expression of soybean ferritin gene in maize endosperm driven by the promoter of endosperm-specific expression gene 15 kDβ-Zein.With this study, we expect to obtain maize with higher iron content. And this would lay the foundation for the enhancement nutritional quality of maize and iron deficiency of human corn-based food. The main results were summarized as follows:
     1. The promoter of endosperm-specific expression gene 15 kDβ-Zein was cloned from maize inbred lines Lu 2548 genomic. Sequence analysis and promoter function prediction indicated that the cloned sequence would function as a promoter and make the endosperm-specific expression. In order to confirm its function, we construct the plant expressing vector pBI121-Zein-GUS.
     2. According to the reported sequence of soybean ferritin, ferritin gene cDNA sequence was cloned from soybean varieties Zhongpin 95-5883. The ferritin gene cDNA sequence is 753 bp including all encoding sequence,and 251 amino acid residues.In order to study soybean ferritin gene expression in maize, we constructed the plant expression vector pBI121-35s-Ferritin, pCUbi1390-Ferritin, pBI121-Zein- Ferritin, pCUbi1390-Ferritin-Epsps.
     3. In order to provide receptor material for the Agrobacterium-mediated transformation of maize, we cultivated embryogenic callus from maize inbred lines R18-599 and Qi319. Through the approach of Triparental mating, the plant expression vector pCUbi1390-Ferritin, pBI121-Zein-Ferritin were introduced into an Agrobacterium strain LBA 4404, then were transformed embryogenic callus of maize by Agrobacterium-mediated transformation. And transgenic plants had been obtained. The genome DNA was extracted from transformed maize leaves. And it was briefly proved that Ferritin gene cDNA had been integrated into the transgenic maize genome by PCR analysis.
引文
[1] Theil EC. Iron, Ferrition, and Nutrition.Annu.Rev.Nutr.2004,24:327-343.
    [2]张春义,王磊.生物强化在中国——培育新品种提供好营养.中国农业科学技术出版社,2009,53-54.
    [3] World Health Organization/United Nations International Children’s Emergency Fund/United Nations University (WHO/UNICEF/UNU).Iron Deficiency Anaemia: Assessment, Prevention, and Control. Geneva: World Health Organization, 2001.
    [4]谢传晓,王康宁,张德贵,等.玉米铁为营养生物有效性与生物强化的研究进展.玉米科学, 2007, 15(1): 81-84.
    [5] Hurrell R. How to ensure adequate iron absorption from iron-fortified food. Nutr. Rev. 60, 2002.
    [6] L?nnerdal B.The importance and bioavailability of phytoferritin-bound iron in cereals and legume foods. Int J Vitam Nutr Res.,2007,77(3):152-157.
    [7] Wirth J, Poletti S, Aeschlimann B, et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnology Journal, 2009, 7: 631-644.
    [8] Theil EC. Regulation of ferritin and transferritin receptor mRNAs. Biol Chem, 1990, 265: 4771- 4774.
    [9]吴慧兰,王宁,凌宏清.植物铁吸收、转运和调控的分子机制研究进展.植物学通报, 2007, 24(6): 779-788.
    [10] R?emheld NJ, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol,1986, 80: 175-180.
    [11] Mori S. Iron acquisition by plants. Current opinion in Plant Biology, 1999, (2): 250-253.
    [12]戚金亮,王忆,印丽萍,等.与植物铁素营养相关的蛋白和基因.植物生理学通讯, 2003, 39(3): 294-299.
    [13] Hyde BB, Hodge AJ, Kahn A, et al. Studies of phyto ferritin identification and localization. Ultrastr Res, 1963, 9(1): 248-258.
    [14] Ragland M, Theil EC. Ferritin (mRNA, protein) and iron concentrations during soybean nodule development.Plant Mol Biol, 1993, 21: 555-560.
    [15] Briat JF. Roles of ferritin in plants .J Plant Nutr, 1996, 19 (8,9): 1331-1342.
    [16] Ragland M, Briat JF, Gagnon J, et al. Evidence for a conversation of ferritin sequences among plants and animals and for a transit peptide in soybean. The Journal of Biological Chemistry, 1990, 265: 18339-18344.
    [17] Lescure AM, Proudhon D, Pesey H, et al. Ferritin gene transcription is regulated by iron insoybean cell cultures. Proceedings of the National Academy of Sciences of the USA, 1991, 88: 8222-8226.
    [18] Lobreaux S, Yewdall SJ, Briat JF, et al. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. The Biochemical Journal, 1992, 288: 931-939.
    [19] Spence MJ, Henzl MT, Lammers PJ. The structure of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Molecular Biology, 1991, 17: 499-504.
    [20] Wicks RE, Entsch B. Functional genes found for three different plant ferritin subunits in the legume, Vigna unguiculata. Biochemicaland Biophysical Research Communications, 1993, 192: 813-819.
    [21] Theil, EC. Ferritin: structure, gene, regulation, and cellular function in animals, plants and micro- organisms. Annu. Rev. Biochem., 1987, 56: 289-315.
    [22] Andrews SC, Arosio P, Bottke W, et al.. Structure, function and evolution of ferritins. J Inorg Biochem. 1992, 47(3-4): 161-174.
    [23] Goto F, Yoshihara T, Saiki H. Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Research, 1998, 7: 173-180.
    [24] van der Mark F, de Lange T, Bienfait HF. The role of ferritin in developing primary bean leaves under various light conditions. Planta, 1981, 153: 338-342.
    [25] Briat JF, LabouréAM, Laulhère JP, et al. Molecular and cellular biology of plant ferritins, in Abadía J(ed.) Iron Nutrition in soils and plants. The Netherlands, Kluwer Academic Publishers, 1995, 265-276.
    [26] van der Mark F, van den Briel ML, van Oers JWAM, et al. Ferritin in bean leaves with constant and changing iron status. Planta, 1982, 156: 341-344.
    [27] Sczekan SR, Joshi JG. Metal-binding properties of phytoferritin and synthetic iron cores. Biochem. Biophys. Acta., 1989, 990: 8-14.
    [28] Ambe S, Ambe F, Nozuki T. Mossbauer study of iron in soybean seeds. J Agric Food Chem., 1987,35:292-296.
    [29] Marentes E, Grusak MA. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.).Seed Science Res., 1998,8:367-375.
    [30] van Wuytswinkel O, Vansuyt G, Grignon N, et al. Iron homeostasis alteration in transgenic tobacoo overexpressing ferritin. Plant, 1999, 17(1): 93-97.
    [31] Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnol, 1999, 17(3): 282-286.
    [32] Vasconcelos M, Datta K, Oliva N, et al. Enhanced iron and zinc accumulation in transgenicrice with the ferritin gene. Plant Sci, 2003, 164: 371-378.
    [33] Qu LQ, Yoshihara T, Ooyama A, et al. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta, 2005, 222: 225-33.
    [34]董阔,徐杰,朱作峰,等.大豆铁结合蛋白基因在旱稻中的表达及铁含量分析.中国农业科学, 2006, 39(11): 2362-2367.
    [35] Wirth J, Poletti S, Aeschlimann B, et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnology Journal, 2009, 7: 631-644.
    [36] Drakakaki G, Christou P, Stoger E. Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res, 2000, 9: 45-452.
    [37] Goto F, Yoshihexa T, Saiki H. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferrilin.Theor Appl Genet, 2000, 100: 658-664.
    [38] Drakakaki G, Marcel S,Glahn RP, et al. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Molecular Biology, 2005, 59: 869-880.
    [39]刘巧泉,姚泉洪,王红梅,等.转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量.遗传学报, 2004, 31(5): 518-524.
    [40] Lucca P, Hurrell R, Potrykus L. Fighting iron deficiency anemia with iron-rich rice. Am J Coil Nut, 2002, 21(3): 184-190.
    [41]徐晓晖.农杆菌介导的蚕豆铁蛋白基因水稻转化及其功能研究.浙江大学硕士论文, 2001.
    [42]刘燕.红小豆铁蛋白基因的克隆及在水稻中的转化.中国农业大学硕士论文, 2005.
    [43]刘晓娜,付畅,黄永芬.种子特异性启动子研究进展.植物学通报, 2007, 24(2): 218-225.
    [44]聂丽娜,夏兰琴,徐兆师,等.植物启动子的克隆机功能研究进展.植物遗传资源学报, 2008, 9(3): 385-391.
    [45] Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res, 1987, 15: 6643-6653.
    [46]张春晓,王文棋,蒋湘宁,等.植物基因启动子研究进展.遗传学报, 2004, 31(12): 1455-1464.
    [47] Fridlender M, Harrison K, Jones JDG, et al. Repression of the Ac transposase gene promoter by Ac transposase. Plant J, 1996, 9: 911-917.
    [48]王颖,麦维军,梁承邺,等.高等植物启动子的研究进展.西北植物学报, 2003, 23(11): 2040-2048.
    [49]李杰,张福城,王文泉,等.高等植物启动子的研究进展.生物技术通讯, 2006, 17(4): 658-661.
    [50] Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation -responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. MOI Gen Genet., 1993, 236: 331-340.
    [51] Fleming AJ, Manzara T, Gruissem W, et al. Fluorescent imaging of GUS activity and RT-PCR analysis of gene expression in the shoot apical meristem. Plant J, 1996, 10(4): 745-754.
    [52] Hudson ME, Quail PH. Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol, 2003, 133(4): 1605-1616.
    [53] Ayliffe MA, Roberts JK, Mitchell HJ, et al. A plant gene up-regulated at rust infection sites. Plant Physiol, 2002, 129(1): 169-180.
    [54]王关林,方宏筠.植物基因工程原理与技术.北京科学出版社, 1998, 477.
    [55]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志, 2003, 23(1): 1-4.
    [56] Reidt W, Wohlfarth T, Ellerstrom M, et a1. Gene regulation during late embryngenesis: The RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J, 2000, 21(5): 401-408.
    [57] Chandrasekharan MB, Bishop KJ, Hall TC. Modulespecific regulation of the beta-phaseolin promoter during embryogenesis. Plant J, 2003, 33:853-866.
    [58] Wu CY, Haruhiko W, Yasuyuki O, et a1.Quantitafive nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal ciselement requirements for endosperm-specifc gene expression. The Plant J, 2000, 23(3): 415-421.
    [59] Wu CY, Suzuki A, Wshida H, et a1. The GCN4 motif in a rice gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. The Plant Journal, 1998, 14(6): 673-683.
    [60] Takaiwa F, Oono K, Wing D, et al. Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant Mol.Biol., 1991, 17(4): 875-885.
    [61] Thompson GA, Larkins BA. Structural elements regulating Zein gene expression. Bioessays, 1989, 10(4): 108-113.
    [62] Yanagisawa S, Schmidt RJ. Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 1999, 17(2): 209-214.
    [63] Washida H, Wu CY, Suzuki A, et al. Identification of cis-regulatory elements required forendosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol.Biol., 1999, 40(1): 1-12.
    [64] Quayle T, Feix G. Functional analysis of the -300 region of maize Zein genes. Mol. Gen. Genet, 1992, 231(3): 369-374.
    [65] Xue GP, Patel M, Johnson JS, et al. Selectable marker-free transgenic barley producing a high level of cellulose (1,4-β-glucanase) in developing grains. Plant Cell Rep., 2003, 21(11): 1088-1094.
    [66] Ye XD, Al-Babili S, Kl?ti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287: 303-305.
    [67]张秀君,刘俊起,赵倩,等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.农业生物技术学报, 1999, 7(4): 363-367.
    [68] Datta K, Baisakh N, Oliva L, et al. Bioengineered‘golden’indica rice cultivars with-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol. J., 2003, 1: 81-90.
    [69] Bicar EH, Woodman-Clikeman W, Sangtong V, et al. Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res., 2008,17(1): 59-71.
    [70] Zhang JR, Martin JM, Beecher B, et al. Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields.Plant Biotechnology Journal, 2009, 7(8): 733-743.
    [71]王珏.农杆菌介导玉米自交系受体材料筛选及遗传转化体系的建立.四川农业大学硕士论文, 2006.
    [72]李卫,郭光沁,郑国锠,等.根癌农杆菌介导遗传转化研究的若干新进展.科学通报, 2000, 45(8): 798-807.
    [73] Heath JD, Boulton MI, Rainer DM, et al. Discrete regions of the sensor protein VirA determine the strain-specific ability of Agrobacterium to agroinfect maize. Mol Plant-Microbe Interact, 1997, 10: 221-227.
    [74] Hansen G, Das A, Chilton MD. Constitutive expression of the virulencegenes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl. Acad. Sci., U.S.A., 1994, 91: 7603 -7607.
    [75] Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize(Zea mays L) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 1996, 14: 745-750.
    [76]黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织DNA的差异.植物生理学报, 1999, 25(4): 332-338.
    [77] Fromm ME, Morrish F, Armstrong C, et al. Inheritance and expression of chamacric genes inthe progeny of transgenic maize plants. Biothechnology, 1990, 8: 833-819.
    [78] Gordon-kamm WJ, Spencer TM, Mangano ML, et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant cell, 1990, 2:603-618.
    [79] Gould J, Devey M, Hasegawa O, et al. Transformation of Zea mays L.using Agrobacterium tumefaciens and the shoot apex. Plant Pltysiol,1991,95:426-434.
    [80]农友业,何勇强,覃燕,等.影响农杆菌介导玉米愈伤组织遗传转化因素的研究.广西植物, 2005, 25(2): 142-144.
    [81]袁鹰,李启云,郝文媛,等.农杆菌介导玉米遗传转化影响因子的研究.分子植物育种, 2006, 4(2): 228-232.
    [82]张荣,王国英,张晓红,等.根癌农杆菌介导的玉米遗传转化体系的建立.农业生物技术学报, 2001, 9(1): 45-48.
    [83]杨爱国.玉米胚性愈伤遗传转化体系优化及基因工程雄性不育系初步研究.四川农业大学博士论文, 2006.
    [84]孙晓红,陈明杰,潘迎捷.启动子克隆概述.食用菌学报,2002, 9(3):57-62.
    [85] Matzke AJM,St?ger EM, Schernthaner JP,et al. Deletion analysis of a Zein gene promoter in transgenic tobacco plants. Plant Molecular Biology,1990,14:323-332.
    [86] Quayle TJA, Hetz W, Feix G. Characterization of a maize endosperm culture expressing Zein genes and its use in transient transformation assays. Plant Cell Reports,1991,9:544-548.
    [87]梁华,马崇烈,赵倩,等.玉米醇溶蛋白基因启动子PCR扩增及其驱动GUS基因在转基因烟草种子中的表达.生物工程学报,1996,12(3):295-300.
    [88] Russell DA ,Fromm ME. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Research 6,1997,157-168.
    [89] Pedersen K, Argos P, Naravana S V, et al. Sequence analysis and characterization of a maize gene encoding a high-sulfur Zein protein of Mr 15,000. J Biol Chem,1986, 261(14):6279-6284.
    [90] Drong RF, Slightom JL. Analyses of genes that encode the 15kDa-Zein protein of maize: identification of potential gene regulatory elements.Gene,1993,123(2):245-248.
    [91] Hom ME, woodard SL, Howard JA. Plant molecular farming: system and products. Plant Cell Rep., 2004,22(10): 711-720.
    [92] Kowles RV, Phillips RL. Endosperm development in maize. Intl Rev. Cytology. 1988,112:97-136.
    [93]王玉霞,李唯,王田旺,等.植物果实特异性启动子E8基因的克隆.华北农学报, 2008, 23(3): 16-19.
    [94]李一琨,王金发.高等植物启动子研究进展.植物学通报,1998,15:1-6.
    [95] World Health Organization. National strategies for overcoming micronutrient malnutrition.Geneva,1992.
    [96] Walter T,De Andraca I,Chadud P,et al. Iron deficiency anaemia:adverse effects on infant psychomotor development. Pediatrics,1989,84(1):7-17.
    [97] Murakawa H, Bland CE, Willis WT,et al. Iron deficiency and neutrophil function: different rates of correction of the depressions in oxidative burst and myeloperoxidase activity after iron treatment. Blood,1987,69:1464-1468.
    [98] Basta SS, Soekirman, Karyadi D, et al. Iron deficiency anemia and the productivity of adult males in Indonesia. Am J Clin Nutr,1979,32:916-925.
    [99] Murray-Kolb LE, Welch R, Theil EC, et a1.Women with low iron stores absorb iron from soybeans1-4 .Am J Clin Nutr,2003,77:180-184.
    [100] L?nnerdal B, Bryant A, Liu XF, et a1.Iron absorption from soybean ferritin in nonanemic women. Am J Clin Nutr, 2006,83(1):103-107.
    [101] Wolnik KA, Fricke FL, Capar SG, et al. Elements in major raw agricultural crops in the united states.3. Cadmium, lead, and eleven other elements in carrots, field corn, onions, rice, spinach, and tomatoes . Agric. Food. Chem.,1985,33:807-811.
    [102] Deak M, Horvath GV, Davletova S. Plant ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol,1999, 17(2):192-95.
    [103]徐晓晖,郭泽建,程志强,等.铁蛋白基因的水稻转化及其功能初步分析.浙江大学学报, 2003,29(1):49-54.
    [104] Grimsley N, Hohn T, Davies JW,et al. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature,1987, 325:177-179.
    [105]张艳贞,王罡,胡汉桥,等.农杆菌介导将Bt杀虫蛋白基因导入优良玉米自交系的研究.遗传,2002,24(1):35-39.
    [106]权瑞党,尚梅,张举仁.农杆菌介导的玉米自交系愈伤组织转化条件的优化.植物生理与分子生物学学报,2003,29(3):245-250.
    [107]权瑞党,尚梅,王兆玉,等.农杆菌介导的雪花莲凝集素基因转入玉米骨干自交系.西北植物学报,2004,24(5):761-767.
    [108]王国英,谢友菊,米景九,等.用基因枪将Bt毒蛋白转入玉米及转基因植株的再生.中国科学(B辑), 1995,25(1): 71-76.