番石榴叶总黄酮提取及其降血糖机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病发病率在世界范围内逐年上升,引起了世界各国的高度重视。目前治疗方式主要是利用药物控制血糖升高及防治并发症。由于中药具有低毒、降糖机制多元化的特点,成为降糖药物研究的热点。番石榴Psidiumguajava L.叶在我国有广泛分布,民间常用于防治糖尿病。研究证明番石榴叶富含黄酮类物质,而其降血糖作用与所含黄酮类物质有关。为了完善对番石榴叶降血糖有效部位及降血糖机制的研究,本论文摸索了番石榴叶有效部位总黄酮的提取纯化工艺,并考察了所提取的番石榴叶总黄酮对STZ糖尿病小鼠和STZ糖尿病大鼠血糖水平的影响;在此基础上,以STZ糖尿病大鼠为对象,从番石榴叶总黄酮对大鼠小肠黏膜α-葡萄糖苷酶活力、抗氧化能力、葡萄糖代谢能力、胰岛素抵抗的影响等方面对番石榴叶总黄酮降血糖机制进行了探讨。旨在为扩大番石榴叶在临床的应用提供理论基础和技术支持。
     1.番石榴叶总黄酮提取纯化工艺的研究
     1.1经正交设计,以总黄酮含量为指标,确定了番石榴叶总黄酮最佳提取工艺条件,发现影响番石榴叶总黄酮提取效果的主次因素为:乙醇浓度>回流时间>提取次数>溶剂用量,而番石榴叶总黄酮最佳提取工艺为:10倍量70%乙醇加热回流提取2次,每次2小时。
     1.2番石榴叶总黄酮提取液浓缩后,经石油醚、乙酸乙酯初步纯化,用大孔吸附树脂进一步纯化。以动态饱和吸附量、动态洗脱率为考察指标,比较了D_(101)、AB-8两种大孔树脂分离纯化番石榴叶总黄酮能力的优劣。又以总黄酮回收率为指标,从溶剂系统、洗脱速度、洗脱剂用量方面对筛选出的最佳树脂的吸附工艺参数进行了研究。发现在考察的2种树脂中,AB-8型树脂最适于番石榴叶总黄酮的分离纯化,其优化工艺条件为:4倍树脂体积50%乙醇洗脱,速度2 ml/min。经梯度洗脱及薄层层析分析发现,收集30%~50%乙醇区间洗脱液可进一步纯化番石榴叶总黄酮(TFPL)。
     1.3按所确定的最佳提取纯化工艺提取纯化的TFPL经定性分析,证实为黄酮类物质;薄层层析可见4个黄酮类物质斑点,其Rf值分别为0.84;0.67;0.55;0.41。其中R_f值0.84的斑点可能为槲皮素。
     按以上所确定的提取及纯化工艺进行提取,TFPL的提取率为0.31%±0.07(n=23),所制备TFPL的平均纯度为89.46%±1.28;RSD=1.40%(n=23)。
     2.番石榴叶总黄酮对STZ糖尿病小鼠、大鼠血糖水平的影响
     2.1在STZ糖尿病小鼠模型上,观察TFPL对空腹血糖水平的影响,比较体重及心脏、肝脏、肾脏、和胰腺的脏器指数变化。共设糖尿病模型组、糖尿病+阳性降糖药物组、糖尿病+TFPL低(140mg/kg)、高剂量组(210mg/kg)、正常对照组等共5组,治疗14d后,模型组小鼠空腹血糖值达29.49±6.67mmol/L,TFPL低、高剂量组小鼠空腹血糖值分别降低至18.12±2.91、16.95±3.57 mmol/L;差异有显著性意义。说明TFPL可降低STZ糖尿病小鼠空腹血糖。但在各组STZ糖尿病小鼠的体重及脏器指数方面没有表现出显著性差异。
     2.2在STZ糖尿病大鼠模型上,考察TFPL对空腹血糖、淀粉负荷后血糖水平的影响,并检测了糖化血清蛋白、糖化血红蛋白的含量。共设糖尿病模型组、糖尿病+阳性降糖药物组、糖尿病+TFPL低(900mg/kg)、高剂量组(120mg/kg)、正常对照组等共5组,治疗8周后,模型组大鼠空腹血糖值达27.89±4.89mmol/L,TFPL低、高剂量组大鼠空腹血糖值分别显著性降低至21.76±2.27、17.27±2.43mmol/L。淀粉负荷1h、2h血糖分别从模型组大鼠的28.10±1.87、26.68±1.98 mmol/L显著性降低至TFPL低剂量组大鼠的24.20±1.60、19.55±1.18mmol/L,TFPL高剂量组大鼠的22.88±1.60、17.29±1.58mmol/L。TFPL低、高剂量组大鼠糖化血清蛋白、糖化血红蛋白的含量比模型组大鼠也均有显著性降低。说明TFPL可降低STZ糖尿病大鼠空腹、淀粉负荷后血糖,降低STZ糖尿病大鼠糖化血清蛋白、糖化血红蛋白的含量,对长期血糖控制有一定效果。
     3.番石榴叶总黄酮降血糖机制研究
     3.1提取正常SD大鼠小肠黏膜α-葡萄糖苷酶,以蔗糖、麦芽糖为底物,考察了TFPL对所提取小肠黏膜α-葡萄糖苷酶的体外抑制作用,发现TFPL可抑制正常SD大鼠小肠黏膜α-葡萄糖苷酶活力,对蔗糖酶及麦芽糖酶的抑制率分别达70%和60%以上,其IC_(50)分别为2.01、1.96g/L。
     测定了药物治疗8周后的各组大鼠小肠黏膜α-葡萄糖苷酶活性,发现模型组大鼠蔗糖酶及麦芽糖酶活性均较正常组大鼠有显著升高,而TFPL低、高剂量组大鼠中两种酶活性较模型组均有下降。
     以上实验说明TFPL可抑制正常及STZ糖尿病大鼠小肠黏膜α-葡萄糖苷酶活性,从而延缓碳水化合物的消化吸收,达到降低血糖的目的。
     3.2增强机体的抗氧化能力是防治糖尿病及其并发症的一个重要方向。本实验以过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)、超氧化物歧化酶(SOD)、一氧化氮和酶(NOS)活性及丙二醛(MDA)含量为指标,考察了TFPL对STZ糖尿病大鼠血清、肝组织、心肌组织抗氧化能力的影响。发现治疗8周后,模型组大鼠较正常组大鼠的CAT、GSH-PX、SOD活力均降低,而NOS活力及MDA含量增加,说明其抗氧化能力被损伤;与模型组比较,TFPL治疗组大鼠的CAT、GSH-PX、SOD的活力增高,NOS活力及MDA含量降低。说明TFPL可减少STZ糖尿病大鼠抗氧化能力的损伤。
     3.3糖尿病以葡萄糖代谢障碍为特点,增强糖代谢能力可改善高血糖及其引起的损害。本实验以肝、肌糖元含量及血清、肝丙酮酸激酶活性为指标,考察了TFPL对STZ糖尿病大鼠葡萄糖代谢能力的影响:模型组大鼠与正常组大鼠比较,肝、肌糖元含量下降,血清及肝组织PK活性下降,表现出葡萄糖代谢能力低下;而TFPL治疗组大鼠与模型组大鼠比较,其肝、肌糖元含量增加,血清及肝组织PK活性增加,说明TFPL可增强STZ糖尿病大鼠的葡萄糖代谢能力。
     3.4为了研究TFPL对STZ糖尿病大鼠胰岛素抵抗的影响,提取了各组大鼠肝、骨骼肌总RNA,合成相应cDNA,利用RT-PCR方法观察TFPL对大鼠肝胰岛素受体(ISR)、骨骼肌ISR、骨骼肌葡萄糖转运蛋白4(GLUT4)mRNA表达的影响,发现模型组大鼠与正常组大鼠比较,肝ISR、骨骼肌ISR、骨骼肌GLUT4 mRNA表达均下降,而TFPL治疗组大鼠较模型组大鼠肝ISR、骨骼肌ISR、骨骼肌GLUT4 mRNA表达都有上调,说明TFPL可改善STZ糖尿病大鼠的胰岛素抵抗。
     综上所述,本实验所确定的番石榴叶总黄酮提取纯化工艺稳定,所提纯的TFPL纯度高;经动物实验发现,所提纯TFPL可降低STZ糖尿病小鼠空腹血糖,降低STZ糖尿病大鼠空腹、淀粉负荷后血糖,长期血糖控制能力好。此外,实验发现TFPL可抑制正常大鼠和STZ糖尿病大鼠小肠黏膜α-葡萄糖苷酶活性、抑制STZ糖尿病大鼠血清、肝、心肌组织CAT、GSH-PX、SOD、PK活力的下调、抑制STZ糖尿病大鼠肝糖元、肌糖元含量的下降、抑制STZ糖尿病大鼠NOS活力及MDA含量的增加,抑制STZ糖尿病大鼠肝ISR、骨骼肌ISR、骨骼肌GLUT4 mRNA表达的下调。说明TFPL可能通过以上机制发挥降血糖作用。
The rate of Diabetes mellitus rises year by year worldwide,which aroused highly attention from every country in the world.The present treatment is to use medication to prevent the blood glucose level from increasing and avoid complication.The traditional Chinese medicine has become very popular, because there is very little poison contained in it and it has a diversity of blood glucose decreasing mechanism.Psidium guajava L.leaves are widely distributed in our country.They are generally used for the treatment of diabetes. It was proved by research that constituents containing flavones were found in Psidium guajava L.leaves,which was related to the function of decreasing blood glucose level.For the purpose of optimizing the research of blood glucose decreasing functional parts of Psidium guajava L.leaves and its functional mechanism,the present study dealed with the technology of extraction and purification of the total flavones,which are the effective part of Psidium guajava L.leaves,and investigated the influence of the total flavones of Psidium guajava L.leaves on the blood glucose level of streptozotocin(STZ)-induced diabetic mice and rats.It served as a base for the investigation of blood glucose decreasing functional mechanism of the total flavones of Psidium guajava L. leaves with STZ diabetic rats as the object,which carried out on the influence of the total flavones of Psidium guajava L.leaves to the activity ofα-glucosidase in the small intestinal mucosa of rats,the influence to the anti-oxidation capacity,the influence to the glucose metabolism capacity,the influence to the insulin resistence of rats aspects.It would provide a theoretical and technical base for spreading the clinical application of Psidium guajava L.leaves.
     1.Research in extraction and purification technology
     1.1 Through an orthogonal design,with the content of flavones as an index,the optimun technical prcess of extracting the total flavones from Psidium guajava L.leaves was determined.The factors influencing the extraction of the total flavones from Psidium guajava L.leaves are:the concentration of ethanol>heating times>extraction times>the dosage of ethanol.The optimum process of the extraction technology was:70%ethanol,ten-fold solvent,two times extraction,two hours each time.
     1.2 After the primitive purification of the total flavones of Psidium guajava L. leaves by petroleun ether and ethyl acetate,with the dynamic saturation adsorption and dynamic elution ratio served as indexes,the separating and purifying quality of the D_(101)and AB-8 macroreticular resins was compared. Then with the reclaim ratio of the total flavones as an index,the best technical absorption parameter was investigated on the eluent system,eluenting speed, eluent dosage aspects.It was found that to the two kinds of resins,AB-8 resin was more favorable in the separation and purification of the total flavones of Psidium guajava L.leaves,and the technical conditions were:eluted with 4BV of 50%ethanol,at the speed of 2ml/min.
     Through an analysis of gradient elution and thin layer chromatography,it was found the collecting 30%-50%ethanol elution section could further purify the total flavones of Psidium guajava L.leaves(TFPL).
     1.3 With some determining analysis,the extracted and purified TFPL according the optimum technical process was proved to be constituents of flavones.Four spotted constituents of flavones could be seen after thin layer chromatography, the R_f value of which was 0.84,0.67,0.55,0.41,respectively.The one with Rf 0.84 maybe quercetin.
     Extracting with determined extraction and purification technology,the TFPL extraction ration was 0.31%±0.07(n=23),the average TFPL purity quotient was 89.46%±1.28;RSD=1.40%(n=23)
     2.The influence of the total flavones of Psidium guajava L.leaves on blood glucose level of STZ diabetic mice and rats.
     2.1 the TFPL's influence on blood glucose in STZ diabetic mice model was observed,and it was compared that the weight and the change of organ index in heart,liver,kidney,and pancreas.Five group was seted:diabetes model group, diabetes+positive blood glucose decreasing drug group,diabetes+low (140mg/kg)and high(210mg/kg)TFPL dosage groups,and normal control group.After a 14-day treatment,the fasting blood glucose in model group reached 29.49±6.67mmol/L,and 18.12±2.91、16.95±3.57 mmol/L in low and high TFPL dosage group,which showed that TEPL could decrease the fasting blood glucose in STZ diabetes mice.But to the body weight and the organ index, there were not remarkable different be found.
     2.2 The influence of TFPL on the fasting blood glucose and the blood glucose level after loading starch was investigated,and the concentration of glycosylated serum protein and glycosylated hemoglobin was checked.Five diabetic model group was seted:diabetes+positive blood glucose decreasing drug group, diabetes+low(900mg/kg)and high(120mg/kg)TFPL dosage groups,and normal control group.After an 8-week treatment,the fasting blood glucose in model group reached 27.89±4.89mmol/L,and 21.76±2.27,17.27±2.43mmol/L in low and high TFPL dosage group.The level of blood glucose at 1h,2h after starch loading reduced from 28.10±1.87,26.68±1.98 mmol/L in model group to 24.20±1.60,19.55±1.18mmol/L in low TFPL dosage group and 22.88±1.60, 17.29±1.58mmol/L in high TFPL dosage group.The concentration of glycosylated serum protein、glycosylated hemoglobin in low and high TFPL dosage groups reduced remarkably,compared to model group.It showed that TFPL could reduce the fasting blood glucose and the blood glucose level after starch loading in STZ diabetic rats,and had certain effect on long term blood glucose controlling.
     3.Research in the blood glucose decreasing mechanism of the total flavones Of Psidium guajava L.leaves.
     3.1 Theα-glucosidase was extracted from the small intestinal mucosa of normal SD rats,after that,with the sucrose and maltose as substrate,investigated the inhibiting function of TFPL on which ex vivo.It was found that TFPL could inhibit the activity ofα-glucosidase in the small intestinal mucosa of normal SD rats.The sucrase or maltase inhibiting rates weree over 70%and 60%,with 2.01 and 1.96g/L of IC_(50)respectively.The activity ofα-glucosidase in the small intestinal mucosa of each group of STZ diabetic rats after 8 weeks medication was examined.The sucrase or maltase of diabetic rats from model group increased,compared to normal group,while decreased in low and high dosage group,which showed that TFPL could inhibit the activity ofα-glucosidase in the small intestinal mucosa of normal and STZ diabetic rats,which would restrain the digestion and absorption of carbohydrates,then decresed the blood glucose lever of rats.
     3.2.Improving the anti-oxidation ability was one treatment to diabetes mellitus and its complication.With the activity of catalase(CAT),Glutathione peroxidase(GSH-PX),Superoxide dismutase(SOD),NO synthase(NOS)and the concentration of Malondialdehyde(MDA)as the index,it was investigated that the influence of TFPL on anti-oxidation ability of the serum,liver,and cardiac muscle in STZ diabetic rats,it was found that the activity of CAT,GSH-PX, SOD decreased in model group,compared to normal group,while the activity of NOS and the concentration of MDA increased,which showed that the anti-oxidation capacity was destroyed.
     Compared to model group,TFPL could raise the activity of CAT、GSH-PX、SOD,and reduced the activity of NOS and the concentration of MDA. It proved that TFPL could prevent the anti-oxidation capacity of STZ diabetic rats from being destroyed.
     3.3 The metabolism of glucose was abnormal in diabetes mellitus,increasing the capacity of glucose metabolism could improve the high blood glucose level and the damage induced.In the examination of the influence of TFPL on glucose metabolic capacity of STZ diabetic rats,it was found that the concentration of glycogen of liver and muscle were decreased in model group,compared to normal group,and the PK activity of serum and liver organ were also decreased, while the concentration of glycogen of liver and muscle were increased and the PK activity of serum and liver increased in TFPL treatment group,compared to model group.It proved that TFPL could strengthen the glucose metabolic capacity of STZ diabetic rats.
     3.4 To investigate the influence of TFPL to the insulin resistance of STZ diabetic rats,the study extracted the general RNA in liver and skeletal muscle of rats in each group;synthesized the corresponding cDNA,observed the expression of liver and skeletal muscle ISR mRNA and skeletal muscle GLUT4 mRNA of diabetic rats with the method of RT-PCR.It was found that their expression were all decreased in model group,compared to normal group,while increased in TFPL group,compared to model group.It proved that TFPL can improve the insulin resistance of STZ diabetic rats.
     As stated above,the total flavones of Psidium guajava L.leaves extraction and purification technology determined in this experiment was stable,and the extracted TFPL had a high purity quotient,which could decrease the fasting blood glucose lever in STZ diabetic mice,the fasting blood glucose and blood glucose level after starch loading in STZ diabetic rats.Its blood glucose decreasing mechanism might relate to its function on inhibiting the activity ofα-glucosidase in the small intestinal mucosa of rats,inhibiting the CAT,GSH-PX, SOD,PK activity,decreasing the concentration of glycogen of liver and skeletal muscle,increasing the NOS activity and the concentration of MDA,and restraining the expression of liver and skeletal muscle ISR mRNA,skeletal muscle GLUT_4 mRNA of STZ diabetic rats.
引文
[1]国家中医药管理局《中华本草》编委会.中华本草(第五册)[M].上海:上海科学技术出版社,1998:642
    [2]Liang Q,Qian H,Yao W.Identification of flavonoids and their glycosides by high-performance liquid chromatography with electrospray ionization mass spectrometry and with diode array ultraviolet detection[J].Eur J Mass Spectrom(Chichester,Eng).2005,11(1):93-101
    [3]黄建林,张展霞.GC—MS分析番石榴叶乙醇提取物的化学成分[J].中山大学学报(自然科学版),2004,43(6):117-120
    [4]王威,周增辉,崔研,等.山楂叶黄酮物质提取方法研究及结构分析[J].中国食品添加剂,2000,(4):7-11
    [5]阮俊,黄永林。野菊花总黄酮提取方法研究[J].中成药,2004,26(2):153-154
    [6]邢秀芳,马桔云,于宏芬,等.纤维素酶在葛根总黄酮提取中的应用[J].中草药,2001,32(1):37-38
    [7]王娟,沈平攘,沈永嘉.微波辅助萃取葛根中有效成份的研究[J].中国药科大学学报,2002,33(5):379-382
    [8]刘元法,王兴国,金青哲.超声波技术提取蜂胶黄酮类功能性物质的研究[J].食品科学,2004,25(6):35-39
    [9]O.1J.Catchpole,J.B.Grey,K.A.Mitchell,et al.Supercritical antisolvent fractionation of propolis tincture[J]J.of Supercritical Fluids,2004,29:97-106
    [10]王威,阎喜英,叶龙风,等。正交试验法优选射干提取工艺的研究[J].中成药,2000,22(4):259-261
    [11]肖坤福,廖晓峰,催艳娟,等.多穗柯中黄酮类物质提取工艺的研究[J].食品科学,2004,25(5):112-115
    [12]张妍,李厚伟,张永春,等.山植中总黄酮几种提取分离方法的考察及含量测定[J].哈尔滨医科大学学报,2001,35(3):183-184
    [13]曾祥群.葛根总黄酮提取工艺[J].食品工业科技,2000,21(3):33-34
    [14]徐志红,肖泽仪,李磊,等.超滤深度提纯银杏黄酮[J].精细化工,2004,21(2):112-114
    [15]陈章荣,徐开俊,吴洪元,等,壳聚糖对黄芩煎煮液的絮凝作用[J].中国药科大学学报,1999,30(3):227-230
    [16]李伯庭,王湘,李小进.大孔吸附树脂在天然产物分离中的应用[J].中草药,1990,21(8):42-44
    [17]袁健,李辰,王学军,等.大孔吸附树脂对沙棘叶黄酮静态吸附/解吸附性能的考察[J].中药材,2007,30(10),1311-1313
    [18]徐国良,肖兵华,邹胡斌,等.大孔吸附树脂分离肿节风中总黄酮的研究[J].中草药,2006,37(7),1014-1017
    [19]杨俊 张晓静 田丽娟,等.金菊双花总黄酮提取与纯化工艺研究[J].中药材,2005,28(8),703-705
    [1]刘婷.用链脲霉素诱发大鼠糖尿病筛选有降血糖活性的传统药物以及对番石榴作用的研究[J].国外医学·中医中药分册,1997,19(1):41-42
    [2]糖尿病科研组.番石榴叶治疗糖尿病166例临床观察[J].广西医学院学报,1980,(1):10-18
    [3]Mukhtar HM,Ansari SH,Ali M,et al.Effect of water extract of Psidium guajava leaves on alloxan-induced diabetic rats.Pharmazie[J].2004,59(9):734-735
    [5]Oh WK,Lee CH,Lee MS,et al.Antidiabetic effects of extracts from Psidium guajava[J].J Ethnopharmacol.2005,96(3):411-415
    [6]Ojewole JA.Hypoglycemic and hypotensive effects of Psidium guajava Linn(Myrtaceae)leaf aqueous extract[J].Methods Find Exp Clin Pharmacol.2005,27(10):689-695
    [7]黎肇炎,曾宝月,简锦溢,等.番石榴叶提取黄酮甙对实验性四氧嘧啶性糖尿病大白鼠及正常大白鼠的降糖作用[J].广西医学院学报,1980,(1):19-21
    [8]孙敬方.动物实验方法学[M].北京:人民卫生出版社,2002:477-479
    [9]查彦红,谷卫.糖尿病动物模型的研究进展[J].浙江医学,2007,29(12):1342-1345
    [10]Baudry A,Lemux L,Rajiv L,et al.Genetic manipulation of insulinsignaling,action and secretion in mice[J].EMBO Reports,2002,3(4):323-328
    [11]Pegg AE,Bennett RA.Alkylation of DNA in the tissues following administration of streptozotocin[J].Cancer Res,1981,41(7)2786-2790
    [12]Szkudelski T.The mechanism of alloxan and streptozotocin action in the β cells of the rat pancreas[J].Physiolo Res,2001,50(6):537-546
    [13]Himch IB.Glycemic variability:it's not just about HbA1Canymore[J].Diabetes Technol Ther,2005,7(5):780-783
    [14]Del Prato S.In search of normoglycaemia in diabetes:controlling postprandial glucose[J].Int J Obes Relat Metab Disord,2002,26(Suppl):S9-S17
    [15]American Diabetes Association.Postprandial blood glucose[J]. Diabetes Care,2001,24(4):775-778
    [16]王燕燕.血糖波动性的临床意义及其干预研究[J].医学研究生学报,2007,20(7):766-769
    [17]The DECODE study group.Glucose tolerance and mortality:comparison of WHO and American Diabetes Association diagnostic criteria[J].Lancet,1999,354(9179):617-621
    [18]Temel-kova Kurktschiev TS,Koehler C,Henkel E,et al.Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting mucose or HbAlc level[J].Diabetes Care,2000,23(12):1830-1834
    [19]王双.2型糖尿病的循证治疗[J].中国循证医学杂志,2004,4(5):346-354
    [20]唐健元,马莉.糖化血红蛋白和糖化血清蛋白在糖尿病中药新药临床研究设计中的作用[J].中药新药与临床药理,2007,18(2):162-164。
    [1]张素军,瞿伟菁,周淑云.蒺藜皂苷对大鼠小肠α-葡萄糖苷酶的抑制作用[J].中国中药杂志,2006,31(11):910-913
    [2]柳全文,张婷,刘珂,等.多管藻总酚降血糖作用实验研究[J].中草药,2007,38(3):415-418
    [3]全吉淑,尹学哲,柳明洙,等.大豆异黄酮对α-葡萄糖苷酶抑制作用的研究[J].中草药,2005,36(9):1377-1379
    [4]Yeh GY,Eisenberg DM,Kap tchuk TJ,et al.Systematic review of herbs and dietary supplements for glycemic control in diabetes[J].Diabet Care,2003,26(4):1277-1294
    [5]Van de Laar FA,hucassen PL,Akkermans RP,et al.Alphaglucosidase inhibitors for type 2 diabetes mellitus[J].Cochrane Database Syst Rev,2005,18(2):CD003639
    [6]Seifarth C,Bergmann J,Hoist J,et al.Prolonged and enhanced secretion of glucagons-like peptide 1(7-36 amide)after oral sucrose due to alpha-glucosidase inhibition(acarbose)in type 2 diabetic patients[J].Diabet Med,1998,15(6):485-491
    [7]Onal S,Timur S,Okutucu B,et al.Inhibition of alpha-glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs[J].Prep Biochem Biotechnol,2005,35(1):29-36
    [8]Kim YM,Wang MH,Rhee H I.A novel alpha-glucosidase inhibitor from pine bark[J].Carbohydr Res,2004,339(3):715-717
    [9]Kim YM,Jeong YK,Wang MH,et al.Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia[J].Nutrition,2005,21(6):756-761
    [10]Hansawasdi C,Kawabata J.Alpha-glucosidase inhibitory effectof mulberry(Morus alba)leaves on Caco-2[J].Fitoterapia,2006,77(7/8):568-573
    [11]Wang L,Zhou TY,Tang X,et al.Purification and characterization of a novel α-amylase inhibitor from wild amaranth(Am aranthus paniculatus)weeds[J].Chin J Biochem Mol Biol,2004,20(4):434-439
    [12]王波,刘衡川,洪君蓉,等.番石榴叶水提取物对糖尿病小鼠小肠α-葡萄糖苷酶活性的影响[J].四川大学学报(医学版),2007,38(2):298-301
    [13]吴酬飞,许杨,李燕萍.α-葡萄糖苷酶抑制剂筛选模型的研究进展[J]. 国际药学研究杂志,2008,35(1):9-12
    [14]沈忠明,李英,姜宏,等.降糖中药对α-葡萄糖苷酶抑制作用的研究[J].中国生化药物杂志,2000,21(2):69-70
    [15]全吉淑,尹学哲,张帅.大豆胚芽提取物体外对小肠黏膜蔗糖酶、麦芽糖酶及葡萄糖转运活性的影响[J].食品科学,2004,25(1):161-163
    [16]Brownlee M.Biochemistry and molecular cell biology of diabetic complications[J].Nature,2001,414(6865):813-820
    [17]Droge W.Free radicals in the physiological control of cell function[J].Physiol Rev,2002,82(1):47-95
    [18]Laybutt DR,Kaneto H,Hasenkamp W,et al.Increased expression of antioxidant and antipoptoctic genes in islets that may contribute to β-cell survival during chronic hyperglycemia[J].Diabetes,2002,51(2):413-423
    [19]El Midaoui A,de Champlain J.Prevention of hypertention,insulin resistance,and oxidative stress by alpha-lipoic acid[J].Hepertention,2002,39(2):303-307.
    [20]Cuzzocrea S,Riley DP,Caputi AP,et al.Antioxidant therapy:a new pharmacological approach in shock,inflammation,and ischemia/reperfusion injury[J].Pharmacol Rev,2001,53:135-159
    [21]Tolman KG,Fonseca V,Tan MH,et al.Narrative review: hepatobiliary disease in type 2 diabetes mellitus[J].Ann InternMed,2004,141(12):946-956
    [22]郑辉,王中心,吴长珠,等.糖尿病患者中NO、LPO、SOD的变化及其临床意义[J].福建医科大学学报,1999,33(4):398-401
    [23]Adnot S,Raffestin B,Eddahibi S.NO in lung[J].Respir Physiol,1995,101(1):109-120
    [24]Cheung F,Siow YL.Inhibition by ginkgolides and bilobalide of the production of nitric oxide in macrophages(THP-1)but not in endothelial cells(HUVEC)[J].Biochem Pharmacol,2001,61(4):503-510.
    [25]Mecocci P,Cherubini A,Beal MF,et al.Altered mitochondrial membrane fluidity in AD brain[J].Neurosci Lett,1996,207:129-132.
    [26]周爱儒主编,生物化学(第6版)[M].北京:人民卫生出版社,2004:102-104
    [27]DENG SH,GAOL.The relationship between serum pyruvate kinase and glucose[J].Shanxi Journal of Medical Laboratory Sciences,2001,16(1):59.Chinese
    [28]杨梅,艾静,王宇,等.血糖安对2型糖尿病大鼠丙酮酸激酶的影响[J].哈尔滨医科大学学报,2004,38(1):16-18
    [29]张旭东,张雷.胰岛素抵抗与2型糖尿病[J].解剖科学进展,2008,14(1):92-95
    [30]Kido Y,Nakae J,Accili D.Clinical review 125:The insulin receptor and its cellular targets[J].J Clin Endocrinol Metab,2001,86(3):972-979
    [31]Jackerott M,Baudry A,Lamothe B,et al.Endocrine pancreas in insulin receptor-deficient mouse pups[J].Diabetes,2001,50(Suppl 1):S146-149.
    [32]邱凯,高宏凯,蔡晓军.葡萄糖转运蛋白4与骨骼肌、脂肪组织胰岛素抵抗的关系[J].中国实用医药,2008,3(3):129-130
    [33]Zisman A,Peroni O,Abel E,et al.Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance[J].Nat Med,2000,6(8):924-928.
    [34]张维铭主编.现代分子生物学实验手册[M].第1版.北京:科学出版社,2003.80-103
    [1]刘仁涌,王桂清。抗糖尿病合成药物研究进展[J].沈阳药科大学学报,1996,13(12):148
    [2]Wild S,Roqlic G,Green A,et al.Global prevalence of diabetes:estimates for the year 2000 and projections for 2030[J].Diabetes Care,2004,27(5):1047-1053
    [3]蔡健,华景清.黄酮提取工艺进展[J].淮阴工学院学报,2003,12(5):82-85
    [4]王龙,孙建设.类黄酮的化学结构及其生物学功能[J].河北农业大学学报,2003,26(5):1452-1471.
    [5]姚新生主编.天然药物化学[M].第二版,北京:人民卫生出版社,1997,278~299.
    [6]Zhang Y.Natural functional extract of bamboo leaves-bamboo leaf anthoxanthin[J].China Food Addtives,2002,(3):54-58.
    [7]Anila L,Vijayalakshmi N R.Antioxidant action of flavonoids from mangifera indica and emblica officinalis in hypercholesterolemic rats[J].Food Chem,2003,83(4):569-574.
    [8]Wu JH,Wang X H,YI Y H,et al Apotent anti2HIV chalcone and flavonoids from genus desmos[J].Bioorg Med Chem Lett,2003,13(10):1813-1815.
    [9]Clark A,Wells CA,Buley ID,et al.Islet amyloid,increased α-cells,reduced β-cells and exocrine fibrosis:quantitative changes in the pancreas in type 2 diabetes[Y].Diabetes Res,1988,9:151
    [10]Listenberger LL,Nan X,Lewis SE,et al.Triglyceride accumulation protects against fatty acid-induced lipotoxicity [J].PNAS,2003,100(6):3077
    [11]Federici M,Hribal M,Perego L,et al.High glucose causes apoptosis in cultured human pancreatic islets of langerhans[J].Diabetes,2001,50:1290
    [12]Maedler K,Spinas GA,DyntarD,et al.Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function[J].Diabetes,2001,50:69
    [13]Candlish JK,Das NP.Antioxidants in food and chronic degenerative diseases[J].Biomed Environ Sci,1996,9(223):117-123
    [14]江清林,李延君,辛华,等.黄芪甲甙对胰岛素C肽分泌作用研究[J].黑龙江医药科学,1999,22(3):9-11
    [15]Mahmood V,Mina H,Mahmood V.Antidiabetic effects of quercetin in streptozocin-induced diabetic rats[J].Comp Biochem Phys C,2003,135(3):357-364
    [16]Ahmad M,Akhtar MS,Malik T,et al.Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds[J].Phytother Res,2000,14(2):103-105
    [17]杨新波,黄正明,曹文斌,等.水芹黄酮的抗糖尿病作用[J].中国药理学报,2000,21(3):239-240.
    [18]Soto CP,Perez BL,Favari LP,et al.Prevention of alloxan-induced diabetes mellitus in the rat by silymarin[J].Comp Biochem Physiol C Pharmacol Toxicol Endocrinol,1998,119(2):125-129
    [19]郭舜民,郭尧惠.天然药降血糖成分的研究进展[J].海峡药学,2000,12(1):123
    [20]Ong KC,Khoo HE.Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation[J].Biochem Pharmacol,1996,(4):423-429
    [21]Waltner LM,Wang XL,Law BK,et al.Epigallocatechin gallate,a constituent of green tea,represses hepatic glucose production[J].J Biol Chem,2002,277(38):34933-34940
    [22]Chen F,Nakashima N,Kimura I,et al.Hypoglycemic activity and mechanisms of extracts from mulberry leaves(folium mori)and cortex mori radicis in streptozotocin-induced diabetic mice[J].Yakugaku Zasshi,1995,115(6):476-482
    [23]Hnatyszyn O,Mino J,Ferraro G,et al.The hypoglycemic effect of phyllanthus sellowianus fractions in streptozotocin-induced diabetic mice[J].Phytomedicine,2002,9(6):556-559
    [24]俞灵莺,李向荣.植物黄酮类抗糖尿病及其并发症的研究进展[J].国外医学卫生学分册,2000,27(6):331-335
    [25]黄秋云,旌海潮.中药苦骨的抗糖尿病活性研究[J].海峡药学,1998,10(1):9
    [26]Watanabe J,Kawabata J,Kurihara H,et al.Isolation and identification of α-glucosidase inhibitors from tochucha (Eucommia ul2moides)[J].Biosci Biotechnol Biochem,1997,61(1):177-178
    [27]Yoshikawa M,Murakami T,Yamahara J,et al.Bioactive saponins and glycosides.Ⅻ.Horse chestnut.(2):Structures of escins Ⅲb,Ⅳ,Ⅴ,and Ⅵ and isoescins Ⅰa,Ⅰb,and Ⅴ,acylated polyhydro-xyoleanene triterpene oligoglycosides,from the seeds of horse chestnut tree(Aesculus hippocastanum L.,Hippocastanaceae)[J].Chem Pharm Bull(Tokyo)1998,46(11):1764-1769
    [28]Kim JS,Kwon CS,Son KH.Inhibition of alpha-glucosidase and amylase by luteolin,a flavonoid[J].Biosci Biotechnol Biochem,2000,64(11):2458-2460
    [29]全吉淑,尹学哲,柳明洙,等.大豆异黄酮对α-葡萄苷酶抑制作用的研究[J].中草药,2005,36(9):1377-1379
    [30]Angelika E,Stephan S,Markus S,et al.Diabetes-associated sustained activation of the transcription factor muclear factorκ b[J].Diabetes,2001,50:2792-2808
    [31]张世平,吕俊华.糖尿病慢性并发症的糖基化发病机制研究进展[J].广东医学,2005,26(3):411-413
    [32]张建伟,孙仁宇.心血管组织糖基化终产物的形成与其受体表达的关系[J].中国病理生理杂志,2000,16(10):1089
    [33]Raj DSC,Choudhury D,Welbiune TC,et al.Advanced glycation end products:a nephrologist's perspective[J].Am J Kid Dis,2000,35(3):365
    [34]Lander H,Tauras 5,Ogiste J,et al.Activation of RAGE triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress[5].J Biol Chem,1997,272:17810-17814
    [35]Shiro A,Yuichi K,Zetsuro O,et al.Advanced glycation end products in human optic nerve head[J].Clin Sci 2001,85(1):52
    [36]江曼丽,陈家伦。糖基化作用与糖尿病慢性并发症[J].国外医学内分泌学分册,1997,17(1):32
    [37]Asgary S,Naderi G H,Sarrafzadegan N,et al.The effect of flavonoids on the prevention of insulin glycosylation[J].Atherosclerosis,1998,136(Suppl 1):566
    [38]段有金,王韶颖,三轮一智,等.五种中药对蛋白质非酶糖基化的抑制作用[J].中国糖尿病杂志,1998,6(4):227-228
    [39]徐向进,张家庆,黄庆玲.水飞蓟素对糖尿病大鼠肾组织非酶糖化及氧化的影响[J].中国糖尿病杂志,2003,11(6):406-408
    [40]王坚,陈敏,曹宜,等.葛根素、银杏黄酮对蛋白质非酶糖化的影响[J].中药药理与临床,2000,16(1):13-14
    [41]王坚,陈敏,李晓冬,等。葛根素、大黄素对糖基化产物引起的牛视网膜微血管周细胞损伤的影响[J].中药药理与临床,2000,16(6):9-10
    [42]王琦,周玲仙.罗晓东。植物中醛糖还原酶抑制剂的研究进展[J].中草药,2005,36(2):298-303
    [43]Song T J S.药用食物菊花的功能性成分(1):中国野菊花的醛糖还原酶抑制活性及NO生成抑制活性成分[J].国外医学·中医中药分册),1999,21(2):531
    [44]Yoshikawa M,Morikawa T,Murakami T,et al.Medicinal flowers Ⅰ.Aldose reductase inhibitors and three new eudesmane-type sesquiterpenes,kikikanols A,B,and C,from theflowers of Chrysanthem um indicum L.[J].Chem Pharm Bull,1999,47:3401
    [45]Nagasawa T,Tabata N,Ito Y,et al.Suppression of early and advanced glycation by dietary water-soluble rutin derivative in diabetic rats[J].Int Congress Series,2002,1245(122):403-405
    [46]Haraguchi H,Kanada M,Fuknda A,et al.An inhibitor of aldose reductase and sorbitol accumulation from Anthocep harus chinensis[J].Planta Med,1998,64:68-69
    [47]Matsuda H,Cai H,Kubo M,et al.Study on anti-cataract drugs from natural sources Ⅱ.Effects of Buddle jae.Floson invitro aldose reductase activity[J].Bio Pharm Bull,1995,18(3):463-4661
    [48]Okada Y,Miyauchi N,Ito K,et al.Search for natural occurring substances to prevent the complication of diabetesⅡ.Inhibitory effect of coumarin and flavonoid derivatives on Bovine Lens aldose reductase and rabbit platelet aggregation[J].Chem Pharm Bull,1995,43:1385-1387
    [49]Yoshikawa M,Shimada H,Nishida N,et al.Antidiabetic principles of natural medicines Ⅱ.I)Aldose reductase and α-gluco sidase inhibitors from Brazilian natural medicine,the leaves of Myrcia multif iota DC.(Myrtaleae):structure of myrciacitrius Ⅰ andⅡ and myrciaphenones A and B[J].Chem Pharm Bull,1998,46:3401
    [50]常海涛.多花香叶中的醛糖还原酶抑制剂myrciacitrinⅢ、Ⅳ和Ⅴ的分离与结构鉴定[J].国外医药.植物药分册,2003,18(1):19
    [51]宋永熙.五层龙属植物的多酚成分:α-葡糖苷酶及醛糖还原酶抑制活性成分芒果苷的定量分析[J].国外医学·中医中药分册,2002,24(6):3541
    [52]毛士龙,廖时萱,吴久鸿.黄花远志根中两个新黄酮化合物的结构鉴定[J].药学学报,1997,32(5):3601
    [53]Haraguchi H,Ohmi J,Masuda H,et al.Inhibition of aldose reduction by dihydroflavonls in Engehard tiachry solepis and effects on other enzymes[J].Experientia,1996,52(6):564
    [54]闫泉香.黄酮类醛糖还原酶抑制剂的活性研究[J].中药药理与临床,2004,20(2):9-11
    [55]Brownlee M.Biochemistry and molecular cell biology of diabetic complications[J].Nature,2001,414:813-820.
    [56]Aronson,D.Rayfield,E.J.How hyperglycemia promotes atherosclerosis:molecular mechanism[J].Cardiovasc Diabetol 2002,1(1):1-10
    [57]Decharneux T,Dubois F,Beauloye C,et al.Effect of various flavonoids on lysosomes subjected to an oxidative or an osmotic stress[J].Biochem Pharmacol,1992,6,44(7):1243-1248
    [58]Negre SA,Salvayer R.Quercetin prevent the lytotoxicity of oxidized LDL on lymphoid cell lines[J].Free Red Biol Med,1992,12(5):101-103.
    [59]曾云先,刘尚勤.槲皮素对糖尿病大鼠降糖作用的观察[J].华夏医学,1999,12(1):34
    [60]徐向进,张家庆,黄庆玲.槲皮素对糖尿病大鼠肾脏非酶糖化及氧化的抑制作用[J].中华内分泌代谢杂志,1998,14(1):34-35
    [61]Lean ME,Noroozi M,Kelly I,et al.Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA[J].Diabetes,1999,8(1):176-178
    [62]李家富,李红辉,何涛.槲皮素对实验性糖尿病大鼠心肌的保护作用[J].泸州医学院学报,1999,22(2):102-104
    [63] Belinky PA, Aviram M, Fuhrman B, et al. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation[J]. Atherosclerosis, 1998,137 (1):49—53
    [64] Lai HH, Yen GC. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation [J] . Biosci Biotechnol Biochem, 2002, 66(1): 22-25
    [65]Toda S, Shirataki Y. Comparison of antioxidative and chelating effects of daidzein and daidzin on protein oxidative modification by copper in vitro[J]. Biol Trace Elem Res, 2001, 79(1) :83-87