脉冲CO_2激光水下致声特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于TEA脉冲CO_2激光器易获得高能量和高峰值功率的输出,而且输出激光波长10.6μm处于大气窗口,水对该波长吸收大,因而TEA脉冲CO_2激光致声在激光水声应用特别是海洋遥感探测中具有广阔的应用前景。对脉冲CO_2激光在水中激发的声波特性进行理论和实验研究,具有重要的军事价值和现实意义。本论文围绕脉冲CO_2激光水中光声信号的产生机理,转换效率,传播特性和测量方法等基础问题进行了系列研究,主要研究内容和结论有:
     从理论上研究了常见的三种尖峰-拖尾型波形的CO_2脉冲激光在水中产生的热弹光声波的波形、幅度、能量转换效率及频谱特征,以及激光脉冲波形参数变化对光声信号的影响规律。研究结果表明:热弹光声波形由激光波形函数的一阶导数决定;其声脉冲由CO_2激光的尖峰和拖尾两部分共同产生;波形和幅度主要由脉冲尖峰的宽度及形状决定;激光脉冲尖峰决定光声信号的高频段,而拖尾部分产生的光声信号对应于低频段。拖尾的宽度与高度和尖峰接近时,拖尾作用加强。
     分析了表面和整体汽化两种光声机制的特点,计算出了整体汽化的阈值,给出了液体温度不同时的蒸汽流密度及光声信号求解的理论模式和汽化光声信号的特征及随激光参数的变化规律。在对光击穿机制的阈值和波形特征进行分析的基础上,得到了汽化和击穿的光声能量转换效率,并通过快速傅里叶分析,得出了汽化和击穿光声信号的频谱特征。
     采用衰减系数与频率平方成正比的模型,得出了在纯水中传输情况下,热弹、汽化、击穿光声信号传输的波形、幅度与频谱的变化情况。结果表明:光声信号水中衰减对热弹光声信号影响较大,而对低频的汽化光声和击穿光声中的低频成分(频率低于50kHz)影响较小。
     通过改变激光器工作电压、混合气体成分、气压等,来改变激光脉冲特性。实验研究了不同的脉冲CO_2激光器光声信号特征,确定了光声信号特征与激光脉冲参数的对应关系。通过监测实验研究容器底部放置待检测物前后的反射光声信号的幅度及频谱变化和采用ICCD摄像机拍摄了液体表面蒸汽反冲运动的方向和速度的方法,确定了光声信号的激发机制、蒸汽的反冲压力和利用光声效应检测水底或水中目标方法的可行性。
     通过在改变盐水的浓度模拟海水的特征的方法,实验测得了光声信号的波形、幅度、频谱等特征与盐水浓度的关系。结果表明:CO_2激光脉冲在盐水中激发光声信号时,盐浓度越高,光声信号幅度与频谱越低。
     上述研究结果,为脉冲激光致声水下目标探测等应用提供了理论和实验依据。
Since the output energy and peak power of the TEA-CO_2 pulse laser are high, its wavelength is 10.6μm which is the atmospheric window, absorption coefficience of air to CO_2 laser is low and absorption coefficience of water to CO_2 laser is high, photoacoustic detection using TEA-CO_2 pulse laser for remote sensing in ocean obtains more and more attentions. Invetigation of laser acoustics induced by TEA-CO_2 pulse laser in water is practical and important in military and remote detection. This paper investigates the characteristics of laser acoustic signal induced by pulsed CO_2 laser in water.
     Firstly, the waveform, amplitude, laser acoustic energy conversion efficiency, spectra of thermoelastic regime, induced by the three common waveforms of CO_2 laser, e.g., an initial gain-switched spike of approximately several tens ns FWHM (full width at half-maximum) in duration and followed by a several us tail, as well as their relations to the laser waveforms and laser waveform parameters, were investigated theoretically in this paper. Some valuable results are obtained. Thermoelastic laser acoustic signal is demermined by the first derivative of laser waveform; the acoustic signal is contributed to the combination effects of the spike peak and the tail of the laser pulse, the waveform amplitude and profile are mainly determined by the duration and the shape of the spike, high frequence singals are induced by the spike, while the low frequence singals are induced by the tail. The role of the tail becomes important when its relative intensity to the peak increased or its duration been near the duration of the peak.
     The flux density of vapor for different liquid temperature and theoretical model for solving optoacoustic induced by surface and body vaporization mechanisms are proposed. Characteristic of laser acoustics of vaporization and relation with the parameters of laser pulse and medium are discussed. The mechanism of breakdown and laser acoustic characteristics is researched. Waveforms and spectra of laser acoustics induced by vaporization and laser breakdown are discussed according to the theoretical results, and conversion efficiency is also acquired.
     Using attenuation model, e.g., absorption coefficient proportional to square of frequency, the transmission and propagation of the laser acoustics in water were theoretically analyzed. The effect of attenuation on the laser acoustics induced by different mechanisms is studied in detail. The results show that the thermoelastic acoustic signals with higher frequency attenuate significantly, while laser acoustic signals with frequency under 50 kHz attenuate slowly, which are induced by vaporization and breakdown of water.
     The parameters of CO_2 laser pulsed were changed by choosing different lasers and working voltage, composition of the hybrid gas or pressure of the working gas. The experimental study of laser acoustic induced by pulsed CO_2 laser has been performed in this thesis. The influence of the laser parameters on the characteristics of the acoustic signals were investigated in detail. By comparing the difference of the waveforms and the spectra if there was an object at the bottom of the container, the scheme of detecting object in water is proposed.
     By analyzing the photos taken by ICCD, the movement veolocity of the steam is got and the mechanism of the laser acoustics can be deduced.
     By solving salt in water as seawater, the influence of salinity on laser acoustics is studied experimentally.The results show that the amplitude and peak frequency of the acoustic signals decrease with the increase of the salt concentration.
     These results can provide theoretical and experimental proof for application of laser acoustics in under-water object detecting.
引文
[1] 柳树要,何焰蓝.激光对潜通信原理及发展.现代物理知识,2005,17(5): 19-21
    [2] Aussel.J.D, Le.Brun.A, Baboux.J.C. Generating acoustic waves by laser: Theoretical and experimental study of the emission source. Ultrasonics, 1988, 26(5): 245-255
    [3] Miklos.A, Bozoki.Z, Jiang.Y, et al. Experimental and theoretical investigation of photoacoustic-signal generation by wavelength-modulated diode lasers. Applied Physics B (Lasers and Optics), 1994, B58(6): 483-492
    [4] Freeborn.Scott.S, Hannigan.John, MacKenzie, et al. Application of pulsed photoacoustics in water at high pressure. Applied Optics, 1999, 38(24): 5118-5121
    [5] Alexander.A.Zemlyanov, Nikolay.N.Bochkarev, Andrey.M.Kabanov. Generation of acoustic pulses on the natural centers of absorption with propagation CO2 laser radiation on atmospheric paths. SPIE, 2000, 4341:202-210
    [6] Anisimov.S.I.Vaporization of metal absorbing laser radiation. Soviet physicis JETP, 1968,27:182-183
    [7] Antonelli.L, Blackmon.F. Experimental demonstration of remote, passive acousto-optic sensing. J. Acoust. Soc. Am., 2004, 116(6): 3393-3403
    [8] 陈清明,蔡虎,程祖海.激光超声技术及其在无损检测中的应用.激光与光电子学进展,2005,42(4):53-58
    [9] 韩家祥,郝绿原,张竞辉等.硅烷泛频态v=6的高分辨光声光谱.化学物理学报,1999,12(6):651-659
    [10] 郝绿原,韩家祥,史强等.高灵敏高分辨钛宝石激光光声光谱仪--光学长程+声学共振.中国激光,2000.A27(1):16-22
    [11] Niemz.M.H. Threshold dependence of laser-induced optical breakdown on pulse duration. Appl. Phys. Lett, 1995, 66(10): 1181-1184
    [12] Ostrovskaya.G.V, Shedova.E.N. Optical study of shock and acoustic waves excited at absorption of pulsed CO2-1aser radiation by water. Bulletin of the Russian Academy of Sciences. Physics, 1997, 61(7): 1047-1055
    [13] Ostrovskaya.G.V, Komissarova.I.I, Philippov.V.N, et al. Shock waves induced by pulsed CO2 laser radiation focused on the free surface of a liquid. SPIE, 1997, 3093: 146-151
    [14] Hu.C. Spherical model of an acoustical wave generated by rapid laser heating in a liquid. J. Acoust. Soc. Am. (USA), 1969, 46(3): 728-736
    [15] Ready.J.F. Effect of high-power laser radiation. 1971, 12-57
    [16] Batanov.V.A, Bunkin.F.V, Prokhorov.A.M, et al. Evaporation of metallic targets caused by intense optical radiation. Sov. Phys.-JETP (USA), 1973, 38(2):311-322
    [17] Y.Qi, L.Xu, D.Zhang, et al. Determination of the nonlinearity parameter of the liquid using spherical finite-amplitude photoacoustic pulse. Journal de Physique Ⅳ (Colloque) , 1994, 4(c7): 761-764
    [18] 李荣福,崔桂华.激光/声在反隐身探潜中的应用.舰船科学技术,1995(2):11-16
    [19] Z.H.Shen, B.Q.Xu, X.W.Ni. Theoretical study on line source laser-induced surface acoustic waves in two-layer structure in ablative regime. Optics & Laser Technology, 2004, 36:139-143
    [20] Karabutov.A.A, Rudenko.O.V. Nonlinear plane waves excited by volume sources in a medium moving with transonic velocity. Sov. Phys.Acoust., 1979, 25(4): 306-309
    [21] Kasoev.S.G, Lyamshev.L.M. Sound generation in a liquid by laser pulses of arbitrary shape. Sov Phys Acoust, 1978, 24(4): 302-305
    [22] Kennedy.P.K, Boppart.S.A, Hammer.D.X, et al. A first-order model for computation of laser induced breakdown thresholds in ocular and aqueous media-Part I:Comparison to experiment. IEEE J Quantum Electron, 1995, 31(12): 2250-2257
    [23] Komissarova.I.I, Ostrovskaya.G.V, Filippov.V.N, et al. Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid. Technical Physics, 1997, 42(2): 247-249
    [24] 泽田嗣郎编,赵贵文,齐文启等译.《光声光谱法及其应用》.1985,安徽教育出版社
    [25] 张淑仪.激光超声与材料无损评价.应用声学,1991,11(4):1-6
    [26] 张淑仪.脉冲光声方法研究液相光化学和光生物化学反应.声学学报(中文版),2004.29(4):289-296
    [27] 郑凯,张淑仪,蔡士杰.超声激发下缺陷红外信号的识别.无损检测,2008,30(10):757-760
    [28] 周岚.纳米BaTiO_3的光声光谱研究.声学学报,1999,24(1):81-87
    [29] White.R.M. Elastic wave generation by electron bombardment or electromagnetic wave absorption. J. Appl. Phys., 1963, 34(4): 2123-2124
    [30] 漆新民,张维,李坚等.激光超声测距仪的研究.大连理工大学学报,1997,37(s2):290
    [31] 范景阳.纸张生产及抄纸工艺流水线用节能型激光超声波传感器.造纸信息, 2007(8):37
    [32] http://www.ndt.cn/nde_tech/laserut.htm.
    [33] 闰宏涛,邓延倬.溶液中三价稀土HO3+、Nd3+的脉冲激光光卢光谱研究及其测定.高等学校化学学报,1988,9(6):556-559
    [34] 李明,张宏超,沈中华等.激光导致水击穿和等离子体形成过程的物理分析~*.光子学报,2005.34(11):1610-1615
    [35] 杨宁利,张淑仪.脉冲光声量热法研究氧合血红蛋白的光解反应.南京大学学报(自然科学),2007,43(1):73-79
    [36] T.Sawada,T.Kitamori. "Analytical Applications of Photoacoustic Spectroscopy to Condensed phase Substances" in "physical Acoustics". 1986, Academic Press
    [37] Tam.A.C. Applications of photoacoustic sensing techniques. Rev.Mod.Phys, 1986, 58(2): 381-431
    [38] Markus.W.Sigrist. Laser generation of acoustic waves in liquids and gases. J.Appl.Phys, 1986, 60(7): 83-121
    [39] Kasoev.S.G, Lyamshev.L.M. Theory of laser-pulse generation of sound in a liquid. Soviet Physics - Acoustics, 1977, 23(6): 510-514
    [40] J.Woenckhaus. A fast pressure monitor for pulsed laser vaporizhtion cluster sources. Rev. Sci. Instrum., 1994, 65(6): 2019-2023
    [41] Tomita.Y, Shima.A, Ohno.T. Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. Journal of Applied Physics, 1984, 56(1): 125-131
    [42] Crum.L.A. Sonoluminescence, sonochemistry, and sonophysics. Journal of the Acoustical Society of America, 1994, 95(1): 559-562
    [43] Teslenko.V.S. Shock-acoustic breakdown in a liquid.The kinetics of stimulated acoustic scattering in the focusing of shockwaves. Technical Physics Letters, 1994, 20(3): 199-201
    [44] Joachim.Noack, Alfred.Vogel. Laser-induced plasma formation in water at nanosecond to femtosecond time scales calculation of thresholds,absorption coefficients,and energy density. IEEE J Quantum Electron, 1999, 35(8):1155-1167
    [45] 王三德,张小安,尚志远.液体中光声热弹光穿透效应的研究.中国激光,2001, A28(3):55-59
    [46] 戚怡让,张德勇,许龙江.液体中的激光超声脉冲.自然杂志,2003,25(2):64-71
    [47] 戚诒让.液体中的瞬态光声现象.物理学进展,1996,16(3):478-488
    [48] 彭玉峰,盛朝霞,张虎等.强激光清除空间碎片的力学行为初探.应用激光,2004,24(1):24-26
    [49] P.Meja, P.Alloncle. Laser cleaning ofanodised aluminium in different surroundings. SPIE, 2000,4065:903-913
    [50] 曹辉,张小凤,尚志远等.液体光击穿激发的辐射声场.陕西师范大学学报(自然科学版),1999,27(2):44-49
    [51] 尚志远,张军平.凝聚态物质的光声效应.陕西师范大学学报(自然科学版),2001,29(2):40-45
    [52] 曹辉,尚志远.液体中光击穿所激发声场的方向性.西北大学学报(自然科学版),2003,33(1):19-23
    [53] 曹辉,尚志远.液体光击穿阈值的研究.光子学报,2002,31(4):438-440
    [54] 戚诒让,许龙江.水下光击穿所激发的声场的方向特性.声学学报,1991,16(2):145-151
    [55] 许龙江,戚治让,张德勇等.液体中声吸收对光声信号波形的影响.青岛海洋大学学报,1996.26(1):64-71
    [56] Szurkowski. J, Wartewig. S. Application of photoacoustic spectroscopy to studies of thin olive oil layers on water. Instrumentation Science and Technology, 1999, 27(4): 311-317
    [57] St(?)phane.Schilt, Luc.Th(?)venaz, Marc.Nikl(?)setal. Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications. Spectrochimica Acta,2004,Part A 60:3259-3268
    [58] Shen.aochun, Zu.hong, Spiers,et al. Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique. Applied Optics, 2000, 39(22): 4007-4012
    [59] Von.A.M. Materials amorphized by laser irradiation in Amorphous and Liquid Materials. Proceedings of the NATO Advanced Study Institute, 1987,450-460
    [60] Shi.Baixuan, Q.Yi, C.Wenbin. Measurement of the sound velocities in chemical fluids by means of laser photoacoustic deflection method. Chinese Journal of Lasers, 1990,17(4): 225-228
    [61] Qi Yirang,Zhou Rucheng,Zhang Deyong, et al. Comparison of effects of water temperature on photoacoustic signals produced through mechanisms of laser-induced liquid breakdown and thermal expansion. Acta Acustica, 1991, 16(1): 13-18
    [62] Sergey.I.Kudryashov, Kevin.Lyon, Susan.D.A. Photoacoustic monitoring of steam bubble cavitation in water superheated by TEA CO2 laser. SPIE, 2006, 6086: 60861Y-1-6
    [63] 倪晓武,陈笑,陆建.激光与液态物质相互作用机理的研究进展.激光技术,2002,26(4):258-261
    [64] 何跃娟,陈国庆,沈中华等.激光线源宽对铝管中温度场的影响.激光杂志,2008: 68-70
    [65] 陈彦北,陆建,倪晓武等.长脉冲激光能量时空分布对金属热作用的影响.光电子.激光,2008,19(3):416-419
    [66] 袁玲,沈中华,倪晓武等.表面性质变化材料中激光声表面波的数值计算.红外与激光工程,2007,36(增刊):328-331
    [67] 李荣福,崔桂华.水中激光声脉冲特性及其传输损失.舰船科学技术,2002,24(1):41-46
    [68] 李荣福.激光声遥感技术.2003:国防工业出版社.
    [69] Lyamshev.L.M. Thermooptical excitation of sound in liquids by modulated radiation of an unstable-cavity laser. Journal of Sound and Vibration, 2001, 239(4): 885-890
    [70] Lyamshev.L.M, Sedov.L.V. Optical generation of sound in a liquid: thermal mechanism (review). Soviet Physics - Acoustics, 1981, 27(1): 4-18
    [71] Hunter.S.D. Acoustic signals of nonthermal origin from high energy protons in water. Journal of the Acoustical Society of America, 1981, 69(6): 1557-1562
    [72] Sulak.L, T.Armstrong, Baranger. H. Experimental studies of the acoustic signature of proton beams traversing fluid media. Nucl. Instrum. Methods, 1979, 161(2): 203-217
    [73] Tam.A.C, C.K.N.Patel. Two-photon absorption spectra and cross-section measurements in liquids. Nature, 1979,280(5720): 304-306
    [74] Vitshas.A.F, Dorozhkin.L.M, Doroshenko.V.S, et al. Nonlinear effects in the optical generation of sound in a liquid. Soviet Physics-accoustics, 1988, 34(3): 254-258
    [75] Bunkin.F.V, Komissatov.V.M. Optical excitation of sound waves. Soviet Physics- Acoustics, 1973, 19(3): 203-211
    [76] Lai.H.M, Young.K. Theory of the pulsed optoacoustic technique. J Acoust Soc Am, 1982, 72(6): 2000-2007
    [77] Patel.C.K.N, Nelson.E.T, Tam.A.C. Opto-acoustic spectroscopy of condensed matter. Springer Series in Optical Sciences, 1981, 26(6): 122-140
    [78] Burmistrova.L.V. Influence of thermal nonlinearity on the thermooptical generation of sound. Soviet Physics - Acoustics, 1979, 25(4): 348-50
    [79] Kim.D. Pulsed laser induced evaporation of liquids and its applications. University of California: Berkeley, 1998
    [80] Bellantone.R, Y.Hahn. Gas dynamics resulting from laser vaporisation of metals in one dimension. Ⅱ. J. Appl. Phys., 1994,76(3): 1447-1454
    [81] Bellantone.R, Y.Hahn. Gas dynamics resulting from laser vaporization of metals in one dimension. I. Journal of Applied Physics, 1994, 76(3): 1436-1446
    [82] Blackmon.F.A, Antonelli.L.T. Experimental detection and reception performance for uplink underwater acoustic communication using a remote, in-air, acousto-optic sensor. IEEE J. Ocean. Eng, 2006.31(1): 179-187
    [83] Egerev.Sergey.V, Morozov.Andrey.K, Lyamshev,et al. Laser sound technique for the remote control of underwater oceanographic instrumentation. Acta Acustica united with Acustica, 2004,90(2): 263-271
    [84] G.D.Hickman, J.A.Edmonds. Laser-acoustic measurements for remotely determining bathymetry in shallow turbid waters. Journal of acoustic society American, 1983, 73(3): 840-843
    [85] G.L.Thornas, Thomas.Hahn. Combining passive and active underwater acoustics with video and laser optics to assess fish stocks. OCEANS ,2006,1-4
    [86] Rees. S.S.M. Final design and testing of the laser airborne depth sounder filter. Opt. Eng, 1997, 36(4):1204-1213
    [87] 田作喜,耿松,刘彦琼等.激光引发水下声波.激光与光电子学进展,2004.41(11):15-19
    [88] Blackmon.F, Antonelli.L. Experimental demonstration of multiple pulse nonlinear optoacoustic signal generation and control. Appl. Opt, 2005,44(1): 103-112
    [89] Blackmon.F, Antonelli.L. Remote, aerial, opto-acoustic communications and sonar. SPIE, 2005, 5778(1): 800-808
    [90] Ove.Steinvall, Kurt.Koppari. Airborne laser depth sounding, System aspects and performance. SPIE, 1994, 2258:392-423
    [91] Mira.Terzic, Markus.W.Sigrist. Diffraction characteristics of laser-induced acoustic waves in liquids. J.Appl.Phys, 1984,56(1): 93-96
    [92] M.Clark, S.D.Sharples. Diffractive acoustic elements for laser ultrasonics. J. Acoust. Soc. Am, 2000, 107(6): 3179-3186
    [93] Maccabee.Bruce.S. Laser induced underwater sound. IEEE Ultrasonics Symposium, 1987,1099-1108
    [94] Wagner.J.W, Deaton.J.B, Spicer.J.B. Generation of ultrasound by repetitively Q switching pulsed ND:YAG laser. Applied Optics, 1988, 27(22): 4696-4700
    [95] Egerev.S.V. Optoacoustics of oceans. 1997, SPIE Optical Engineering Press,379-414
    [96] Egerev.S.V. Optoacoustic sources in the oceanographic experiment. Soviet Physics-Acoustics, 1990, 36(5): 687-690
    [97] Sigrist.M.W, Kneubuhl. Laser-generated stress waves in liquids Source. Journal of the Acoustical Society of America, 1978, 64(6):1652-1663
    [98] 顾金海.水声学基础.1981,国防工业大学出版社,72-79
    [99] L.V.Burmistrova, A.A.Karabutov, A.I.Portnyagin, et al. Influence of thermal nonlinearity on the thermooptical generation of sound. Sov.Phys.Acoust, 1979,24(4): 348-350
    [100] Bukuk.OH, Dongsik.K, Wonseok.Jang, et al. Numerical Simulation of Pulsed Laser Ablation in Air. SPIE, 2003, 5063:323-328
    [101] Terry.Sanderson, Charles.Ume, Jacek.Jarzynski.Experimental and numerical results for intensity modulated laser ultrasonics. J. Acoust. Soc. Am, 1998, 104(4): 2207-2213
    [102] Deaton.J.B, Mckie.A.D.W, Spicer.J.B, et al. Generation of narrow band ultrasound with a long cavity mode locked Nd:YAG laser. Applied Physics Letters, 1990,56(24): 2390-2392.
    [103] He.D.M. Optical Breakdown Laser-Generated Sound in Water.SPIE, 1998,3464: 36-55
    [104] Vitshas.A.F, Grigorev.V.V, Korneev.V.V,et al. Excitation of a pressure pulse in water during explosive evaporation of a surface layer. Sov. Tech. Phys.Lett, 1983,9(12): 620-621
    [105] Teslenko.V.S. Electrical,laser and acoustic breakdown of a liquid,resemblance and distinctions. Proceedings of 14' International Conference on Dielectric Liquids, 2002, 163-167
    [106] Vitshas.A.F, Dmitriev.N.I, Korneev.V.V, et al. Explosive boiling of a liquid in a closed volume caused by a laser. Soviet Technical Physics Letters, 1988,14(1):70-71
    [107] Batchelor.G.K. Mass transfer from small particles suspended in turbulent fluid. Journal of Fluid Mechanics, 1980, 98(12): 609-623
    [108] Plesset.M.S, Prosperetti.A. Bubble Dynamics and Cavitation.Annual Review of Fluid Mechanics, 1977,145-185
    [109] Blake.K.R, Bejan.A. Experiments on the buckling of thin fluid layers undergoing end-compression. J Fluids Eng Trans ASME, 1984,106(1): 74-78
    [110] Dugard.L, Landau.I.D. Stochastic model reference adaptive controllers. Proceedings of the 19th IEEE Conference on Decision & Control Including the Symposium on Adaptive Processes, 1980,1132-1137
    [111] Tabor.D.Friction, surface science and tribology. Proc Inst Mech Eng Part C, 1991. 205(6): 365-378
    [112] Ho.J.R, Grigoropoulos.C.P, Humphrey.J.A.C. Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. Journal of Applied Physics, 1995,78(7): 4696-4709
    [113] Egerev.S.V. In Search of a Noncontact Underwater Acoustic Source. Acoustical Physics, 2003, 49(1): 51-61
    [114] Docchio.F, Regond.P, Capon.M.R.C,et al. Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses I:analysis of the plasma starting times. Appl Opt, 1988, 27(17): 3661-3668
    [115] 李明,张宏超,沈中华等.脉冲激光导致水光学击穿阈值计算的简化模型.红外与激光工程,2005,34(6):660-664
    [116] O.Matsuda, O.B.Wright.Laser picosecond acoustics in multilayer structures. Ultrasonics, 2002.40: 753-756
    [117] Pustovalov.V.K. Explosive vaporization and optical breakdown under the action of laser radiation pulses on the melanosomes. SPIE, 1995,2391: 150-155
    [118] R.S.Taylor, K.E.Leopold, S. Mihailov.Damage measurements of fused silica fibres using long optical pulse XeCl lasers. Opt. Commun, 1987, 63(1): 26-31
    [119] Schoenlein.R.W, Stem.D, Puliafito.C.A, et al. Ablation of the cornea using visible femtosecond pulses. Conf Lasers Electro Opt, 1988,7:332-334
    [120] Ostrovskaya.G.V. Efficiency of optical-to-acoustic energy conversion upon the interaction of a pulsed laser radiation with a liquid. Technical physics, 2002, 47(10): 1299-1305
    [121] Ostrovskaya.G.V. Optical-to-acoustic energy conversion efficiency upon interaction of a pulsed laser radiation with a liquid. Technical physics, 2002, 47(10): 64-71
    [122] Zhenting.M.The study of theory of ultrasound pulse waveform produced by laser pulse. Bulletin of science and technology, 2001,17(5): 38-42
    [123] Richard.E.Fitzpatrick, Stacy.R.Smith, Suchai.S. Depth of Vaporization with the UltraPulse CO2 Laser. SPIE, 1997, 2970:392-395.
    [124] Chen.Qingming, Cheng.Zuhai, Zhu.Haihong. Laser acoustics in water induced by high power CO2 pulsed laser. SPIE, 2008,7276(727611):1-7
    [125] Barchukov.A.I, Bunkin. F.V, Konov.V.I, et al. Low-threshold breakdown at air near a target by CO2 radiation, and the associated large recoil momentum. JETP Letters, 1973, 17(8): 294-296
    [120] J.shi, M.ouyang, W.gong, et al.A Brillouin lidar system using F-P on and ICCD for remote sensing of the ocean. Appl. Phys, 2008,B 90: 569-571
    [127] 陈清明,程祖海.激光在液体中的声效应研究.激光与红外,2006,36(8):623-626
    [128] 陈清明,程祖海,朱海红.脉冲激光在水中激发声脉冲的光声能量转换效率.中国激光,2007,34(3):341-344
    [129] Kolaini.A.R. Effects of salt on bubble acoustic radiation in water. J. Acoust. Soc. Am., 1999, 105(4): 2181-2187