小麦近等基因导入系的建立及产量相关性状主效QTL位点作图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以普通小麦品种莱州953、六倍体人工合成小麦Am3(波斯小麦×粗山羊草)、8个从莱州953(受体)/Am3杂交组合的BC4F4代选出的导入系,以及其中2个导入系(IL15、IL16)与莱州953杂交获得的F2群体及F3家系为材料,进行了4个产量相关性状的调查分析、导入片段的检测及产量相关性状主效QTLs的作图,主要获得以下结果:
     1、利用957对小麦SSR引物对供体Am3与轮回亲本莱州953进行了多态性检测,结果有793对引物能在莱州953和Am3中扩增出稳定的带型,241对引物在莱州953和Am3之间揭示多态性,多态性引物的频率为30.4%。有132对引物能被准确定位在染色体的具体位置上。其中有72对引物在8个导入系中检测到了Am3的片段。共检测到115个Am3片段,平均长度为11.4cM,共覆盖基因组11.4%。导入系中导入的片段最高的为IL-21,含27个供体片段;最低的为IL-17,有7个供体片段。各导入系中导入片段的平均长度最高的为IL-21,平均长度为17.6cM。最低的为IL-20,平均长度为9.55cM。供体片段覆盖基因组的比例最高的为IL-21,占25.3%;最低的为IL-17和IL20,占5.2%。
     2、对莱州953与2个导入系(IL-15、IL-16)的单株穗数、穗长、小穗数、穗粒数4个性状进行了调查。结果表明,2个导入系4个性状的表现与莱州953相比均达到了极显著水平。与莱州953相比它们主要表现为穗长变短,穗粒数减少,小穗数减少,但单株有效穗数明显增加。相关分析表明4个性状的表型值之间存在高度相关(0.57-0.72),单株穗数与其它3个性状(穗长、小穗数、穗粒数)存在明显的负相关(-0.57~-0.71)。
     3、根据对亲本的调查结果,对导入系IL-15、IL-16与莱州953杂交的F2及F3家系单株穗数、穗长、小穗数、穗粒数进行了调查分析。结果发现,4个性状在分离群体中呈现明显的分离,其中在IL-16/莱州953分离群体中,4个性状都呈现较明显的双峰分布。根据该群体4个产量相关性状都呈双峰分布的特点,对该群体的性状划分为莱州953和IL-16两种类型,并根据F3株系的性状表现进行了F2基因型的推导。对4个性状在F2分离群体中分离规律进行分析。χ2检验表明:4个性状的分离都符合3:1的分离比例。以上结果表明,在导入系IL-16中,已将控制单株穗数、穗长、小穗数、穗粒数的QTLs分解开来,将由多基因控制的数量性状位点,变成了由单个的孟德尔遗传因子控制的质量性状位点,从而可以将其作为质量性状基因进行定位。
     4、利用IL-16/莱州953 F2群体中在4个性状上表现两种极端类型的单株,通过检测各多态性引物的分离结果与性状之间的关系,初步找到3个SSR标记Xgwm513、Xwmc657、Xgwm495与4个性状位点连锁。利用IL16/莱州953分离群体的基因型数据建立了连锁图,3个标记之间遗传距离分别为10.12,6.47cM,连锁群长度总共16.59 cM。为进一步确定控制这些性状的QTLs与这3个标记间的连锁关系,以该连锁群为基础,利用Zhu et al.(2007)提出的F2:3家系分析模型及计算软件对该群体的F2、F3表型数据进行分析,结果表明,控制这4个性状的QTL位点均位于标记Xwmc657、Xgwm495之间,在12.9cM处。因此,确定控制单株穗数、穗长、小穗数、穗粒数这4个性状的QTLs位于同一位点。并将此4个位点暂命名为Qsl-am3、Qspp-am3、Qgps-am3、Qspi-am3。在此基础上,绘出该连锁群的连锁图。该区间与Somer et al. (2004)发表的小麦SSR连锁图一致,位于4B染色体长臂近着丝粒位置。
Common wheat genotype Laizhou953, wheat genotype Am3 synthesized by crossing Triticum carthlicum (AABB) with Aegilops tauschii (DD), 8 intro -gression lines (ILs) derived from the BC4F4 generation of Laizhou (recurrent parent)/Am3, 2 F2 populations using the 2 introgression lines (IL15, IL16) to cross with Laizhou953 and the F3 families were used as materials to carried out SSR detection of the introgressed donor segments, investigation of 4 traits related to yield, and mapping of major QTLs (quantitative trait loci) related to yield. Results were obtained as below:
     1. 957 pairs of wheat SSR markers were used to detected polymorphism between Laizhou953 and Am3, in which 793 pairs of them amplified stable PCR products and 241 pairs showed polymorphism between the two parents, the frequency of polymorphic markers was 30.4%. Among the polymorphic markers, 83 markers were located on the linkage groups and 72 of them detect -ed introgressed segements of Am3 in the 8 introgression lines. Totally,115 donor segements with average length of 11.4 cM, covering 11.4% of the total of genome were detected. Among 8 introgression lines, IL21 had the most introgression segements of 27, while IL17 were the least of 7, respectively. IL21 had the longestest ingression segements with average length of 17.6cM, while IL-20 was the shortest with the length of 9.55 cM. IL-21 showed the highest coverage of donor introgression (25.3%), while IL17 and IL20 were the lowest (5.2%).
     2. Four traits, the spikes per plant, spike length, grains number per spike, spikelets of Laizhou 953 and 2 introgression lines were investigated. The results showed that the 4 traits of the 2 introgression lines had significant difference from Laizhou953. Compared with Laizhou953, the two introgre ssion lines showed shorter spike length, fewer grains number per spike and spikelets, but more spikes per plant. Correlation analysis indicated that the performance value of 4 traits showed high correlation (0.57~0.72), spikes per plant and other 3 traits had an obvious negative correlation (-0.57~-0.71).
     3. The spikes per plant, spike length, grains number per spike and spike -lets of IL15/Laizhou953 and IL16/Laizhou953 F2 and F3 families were investi -gated. The results showed that 4 traits segregated significantly, in the popula -tion of IL16/Laizhou953, 4 traits had shown a clear bimodal distri bution. According to the traits of F3 families we deduced the corre spon ding F2 genetype, and analyzed the segregation of F2 populations.χ2 (Chi square) tests showed that 4 traits segregate according to the 3:1 ratio which indicated that QTLs of 4 traits have been dissected into single Mendelian factor and can be mapped as qualitative trait loci in this population.
     4. Two extreme types of individual plants of 4 traits in the population were used to study the relationship between the introgressed donor segment and phenotype. It was showed that 3 SSR makers Xgwm513, Xwmc657 and Xgwm495 located on 4B showed high correlation with 4 traits and were run across the population. A linkage group was constructed with a total genetic distance of 16.59 cM. A F2:3 model and software proposed by Zhu et al. (2007) was used to analyze the phenotype data of this population to ascertain the position of the QTLs in this linkage group, and the four QTLs were all located to the position of 12.9 cM in this linkage group between marker Xwmc657 and Xgwm495. Therefore, the four QTLs designed as Qspp-am3, Qsl-am3, Qspi-am3, Qgps-am3 were controlled by one locus. The linkage of this region was constructed which was coincide with the 4B linkage map of Somer et al. (2004). Mapping of the QTLs related to yield as Mendalian factors lay a foundation for the fine mapping of this region for the map-based cloning and marker assist selection in breeding program.
引文
1.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    2.何风华,席章营,曾瑞珍,Akshay Talukdar,张桂权.利用单片段代换系定位水稻抽穗期QTL.中国农业科学,2005a,38(8):1505-1513
    3.何风华,席章营,曾瑞珍,Akshay Talukdar,张桂权.利用单片段代换系鉴定水稻株高及其构成因素的QTL.中国水稻科学,2005,19 (5):387-392
    4.惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129-136
    5.李俊周,小麦穗部相关性状的遗传与QTL分析,麦类作物学报,2005,03.
    6.李平.水稻分子图谱的构建与从因分析[D].雅安:四川农业大学水稻研究说,1994.
    7.李斯深,小麦产量性状QTL的分子标记定位,山东农业大学博士学位论文,2002.
    8.李维明,吴为人,卢浩然,Worland A J, Law C N.小麦7D染色体数量性状基因定位和效应估计的研究.作物学报,1996,22(6):641-645
    9.李维明,吴为人,卢浩然,Worland A J, Law C N.用籼/籼交重组自交系群体构建的分子遗传图谱及其与籼/粳交群体的分子图谱的比较.中国水稻利学,2000,14(2):71-78
    10.李文才,李涛等.小麦D基因组产量性状QTL定位.华北农学报,2005,20(1):23-26
    11.刘冠明,李文涛,曾瑞珍,张泽民,张桂权.水稻单片段代换系代换片段的QTL鉴定.遗传学报,2004,31(12):1395-1400
    12.刘树兵,王洪刚,孔令让,贾继增.高等植物的遗传作图.山东农业大学学报,1999,30(1):73-78
    13.莫惠栋.数量性状遗传基础研究的回顾与思考—后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版),2003,24(2):24-31
    14.穆平,张洪壳,姜德峰等.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学,2005,38(9):1725-1733
    15.任丽娟,蔡士宾,汤廷页,吴纪中,周淼平,颜伟,马鸿翔,陆维忠.小麦纹枯病抗性QTL的SSR标记研究.扬州大学学报,2004,25(4):16-19
    16.徐云碧,朱立煌.,分子数量遗传学,北京:中国农业出版社,1994
    17.徐建龙,薛庆中,梅捍卫,黎志康.水稻数量性状位点(QTL)定位研究进展.浙江农业学报,2001,13(5):315-321
    18.徐建龙,薛庆中,罗利军等.水稻单株有效穗和每穗粒数的QTL剖析.遗传学报,2001,28(8):752-759
    19.许自成,池振中,贾志强,许时伦.小麦数量性状基因定位及比较基因组研究进展.河南农业大学学报,1997,31(4):327-333
    20.叶少平,张启军,李杰勤等.用(培矮64S/N ipponbare)F2群体对水稻产量构成性状的QTL定位分析.作物学报,2005,31(2):1620-1627
    21.郑景生,李义珍,林文雄.应用SSR标记定位水稻再生力和再生产量及其构成的QTL.分子植物育种,2004,2(3):342-347
    22.朱军.数量性状基因定位的混合线性模型分析方法.遗传,1998,20(增刊):137-138
    23.朱立煌,徐吉臣,陈英,凌忠专,陆朝福,徐云碧.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24(10):1048-1052
    24.朱振东,贾继增.小麦SSR标记的发展及应用.遗传,2003,25(3):355-360
    25. Ahn SN, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proceedings of the National Academy of Sciences, USA, 1993, 90: 7980-7984
    26. Alpert KB, Grandillo S, Tanksley SD. fw2.2: a major QTL controlling fruit weight is commom to both red-and green-fruited tomato species. Theoretical and Applied Genetics, 1995, 91: 994-1000
    27. Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Science, USA, 1996, 93: 15503-15507
    28. Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA, Dhaliwal HS, Rao VS, Gupta VS, Ranjekar PK. Identification of inter-simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical and Applied Genetics, 2001, 102: 726-732
    29. Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB, Frohberg RC. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theoretical and Applied Genetics, 2001, 102: 1164-1168
    30. Araki E, Miura H, Sawada S. Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat. Theoretical and Applied Genetics, 2000, 100: 1113-1120
    31. Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylase content and agronomic traits on chromosome 4A of wheat. Theoretical and Applied Genetics, 1999, 98: 977-984
    32. Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G., A major QTL for powdery mildew resistance is stable over time and at two development stages in wheat. Theoretical and Applied Genetics, 2001, 103: 962-971
    33. Chetelat RT, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theoretical and Applied Genetics, 2000, 100: 232-241
    34. Concibido VC, Vallee BL, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine sojainto commercial soybean cultivars. Theoretical and Applied Genetics, 2003, 106: 575-582
    35. Darvasi A, Weinreb A, Minke V, Weller J L, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map position using a saturated genetic map. Genetics, 1993, 134: 943-951
    36. Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masoje P, Xie DX, Gale MD. Chromosomal rearrangements in the rye genome relative to that of wheat. Theoretical and Applied Genetics, 1993, 85: 673-680
    37. Elena G, Pestsova, Borner A, Roder MS. Development and QTLassessment of Triticum aestivum-Aegilop tauschii introgression lines. Theoretical and Applied Genetics, 2006, 112: 634-647
    38. Eshed Y, Zamir D A genomic library of Lycopersicon pennellii in L. esculentum: a tool for mapping of genes. Euphytica 1994, 79: 175-179
    39. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162
    40. Fang DQ, Roose ML. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and applied Genetics, 1997, 95: 408-417
    41. Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap E, Cong B, Lin J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
    42. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics, 1997, 95: 881-894
    43. Galande A.A, Tiwarietal R, Genetic analysis of kernel hardeness in bread wheat using PCR-based markers. Theoretical and applied Genetics, Volume 103,Number 4/Septermber,2001
    44. Helentjaris T, Slocum M, Whright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theoretical and Applied Genetics, 1986, 72: 761-769
    45. Helentjaris T. Implication for conserved genomic structure among plant species. Proceedings of the National Academy of Sciences, USA, 1993, 90: 8308-8309
    46. Howell PM, Marshall D F, Lydiate DJ. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348-358
    47. Hyne G, Snape J,et al.Mapping quantitative trait loci for yield in wh eat.Biometrics in plant breeding:Proceedings of the eighth meeting of Eucarpia section Bioetrics on plant breeding.Brno,Czechoslovakia ,1991,47-56
    48. Hyne V, Kearsey MJ, Pike DJ, Snape JW. QTL analysis: unreliability and bias in estimation procedures. Molecular Breeding, 1995, 1: 273-282
    49. Kato H, Taketa S, Ban T, Iriki N, Murai K. The influence of a spring habit gene, Vrn-D1, on heading time in wheat. Plant Breeding, 2001, 120: 115-120
    50. Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theoretical and Applied Genetics, 2000, 101: 1114-1121
    51. Kato. K, Nakamura W, Detection of loci controlling seed dormancy on group 4 chromosome of wheat and comparative mapping with rice and barley genomes. Theoretical and applied Genetics,Volume102,Number 5-7/May,2001
    52. Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population .Theoretical and Applied Genetics, 1999a, 98: 1171-1182
    53. Keller M, Keller B, Schachermayr G., Winzeler M, Schmid JE, Stamp P, Messmer MM. Quantitative trait loci for resistance against powdery mildew in segregating wheat×spelt population. Theoretical and applied genetics, 1999, 98: 903-912
    54. Korff M, Wang H, Leon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theoretical and Applied Genetics, 2004, 109: 1736-1745
    55. Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breeding Science, 2002, 52: 319-325
    56. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    57. Li ZK, Pinson SRM, Stansel JW, Paterson AH. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Molecular Breeding, 1998, 4: 419-426
    58. Liang CZ, Gu MH, Pan XB, Liang GH. RFLP tagging of a newsemidwarfing gene in rice. Theoretical and Applied Genetics, 1994, 88: 898-900
    59. Lin, YR, Schertz, KF, Paterson AH. Comparative analysis of QTL affecting plant heights and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics, 1995, 141: 391-411
    60. Liu SB, Zhou RZ, Dong YC, Li P, Jia JZ. Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics, 2006, 112: 1360-1373
    61. Mansur LM, Orf J, Lark KG. Determining the linkage of quantitative trait loci to RFLP marker using extreme phenotypes of recombinant inbreds of Soybean (Glycine max L.Merr). Theoretical and Applied Genetics, 1993, 86: 914-918
    62. Martin G.B, Frary A, Wu T, Brommonschenkel S, Chunwongse J, Earle ED, Tanksley SD. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell, 1994, 6: 1543-1552
    63. Martin GB, Williams JGK, Tanksley SD. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proceedings of the National Academy of Sciences, USA, 1991, 88: 2336-2340
    64. Matus L, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome, 2003, 46(6): 1010-1023
    65. Michelmore RW, Paran I, Kesselli RV. Identification of markers linked to disease resistance genes by bulked segregate analysis: a rapid method to detect markers in specific genome region using segregating populations. Proceedings of the National Academy of Sciences, USA, 1991, 88: 9828-9832
    66. Miller JC, Tanksley SD. Effects of restriction enzymes, probe source, and probe length on detecting restriction fragment length polymorphism in tomato. Theoretical and Applied Genetics, 1990, 80: 385-389.
    67. Miura H, Parker BB, Snape JW. The location of major genes and associated quantitative trait loci on chromosome arm 5BL of wheat. Theoretical and Applied Genetics, 1990, 1992, 85: 197-204
    68. Miura H, Parker B.The location of major genes and associated quantitative trait loci on chromosome and associated and associated quantitative trait loci on chromosome arm 5BL of wheat.Theoretical and applied Genetics,1992,85:197-204
    69. Mohan M, Nair S, Bentur JS, Rao UP, Bennett J. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of gall midge (Orseolia oryzae). Theoretical and Applied Genetics, 1994, 87: 782-788
    70. Monforte AJ, Tanksley SD. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theoretical and Applied Genetics, 2000, 100: 471-479
    71. Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and applied Genetics, 1997, 94: 597-602
    72. Paran I, Kesselli R, Michelmore RW. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downey mildew resistance genes in lettuce, using near-isogenic lines. Genome, 1991, 34: 1021-1027
    73. Paterson AH, De Verna JW, Lanini B, Tanksley SD. Fine mapping of QTLs using selected overlapping recombinant chromosomes in an interspecific cross of tomato. Genetics, 1990, 124: 735-742
    74. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721-726
    75. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 1995, 269: 1714-1718
    76. Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G., Bernard S, Bernard M. QTL analysis of bread-making quality in wheat using a doubled haploid population.Theoretical and applied Genetics, 2000, 100: 1167-1175
    77. Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC. A microsatelite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theoretical and Applied Genetics, 1999, 99: 341-345
    78. Price AH, Tomos AD. Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers. Theoretical and applied Genetics, 1997, 95: 143-152
    79. Ramsey LD, Jennings DE, Bohuon EJR, Arther AE, Lydiate DJ, Kearsey MJ, Marshall DF. The construction of a substitution library of recombinant backcross lines in Brassica oleraces for the precision mapping of quantitative trait loci. Genome, 1996, 39: 558-567
    80. Ranjit, Kaur, Sidhu S. Establishiment of a molecular linkage map in hexaploid wheat crop impropreme.Theoretical and applied Genetics 2000,27:24-32
    81. Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristics. Theoretical and applied Genetics, 1998, 96, 957-963
    82. Shah M.M,Gill K.S et al.Molecular mapping of loci for agronomic trait on chromosome 3A of bread wheat . CropSci,1999,3(6):1728-1732
    83. Sharp PJ, Soltes-Rak E. Homoelogous relationships between wheat group
    2 chromosome arms as determined by RFLP analysis. Proceedings of 7th international wheat genetics symposium, Cambridge, 1988, 635-637
    84. Snape JW, Quarrie SA, Laurie DA. Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica, 1996, 89: 27-31
    85. Soller M., Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theoretical and Applied Genetics, 1976, 47: 35-39
    86. Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensusmap for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 1105-1114
    87. Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled haploid population. Genome, 2000, 43: 487-494
    88. Sourdille P, Tixier MH, Charmet G, Cadelen T, Bernard S, Bernard M. Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Molecular Breeding, 2000a, 6: 247-255
    89. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced back-cross QTL analysis in a cross between an elite processing line of tomato and its wild relative L.pimpinellifolium. Theoretical and applied Genetics, 1996, 92: 213-224
    90. Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and applied Genetics, 1996, 92: 191-203
    91. Thoday JM. Location of polygenes. Nature, 1961, 191: 368-370
    92. Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theoretical and applied Genetics, 2005, 112: 570-580
    93. Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK, Sun CQ. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theoretical and applied Genetics, 2006, 113: 619-629
    94. Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theoretical and applied Genetics, 1998, 97: 1076-1082
    95. Torp AM, Hansen AL, Andeson SB. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica, 2001, 119: 377-387
    96. Varshney. R K, Prasad. M, et al. Identification of eight chromosome and amicosatellite marker on Asassociated with QTL for grain weight in bread wheat. Theoretical and applied Genetics, 2000,100(8):1290-1294
    97. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414
    98. Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theoretical and applied Genetics, 1999, 99: 1255-1264
    99. Wang GL, Paterson AH. Assessment of DNA pooling strategies for mapping of QTLs. Theoretical and applied Genetics, 1994, 88: 355-361
    100.Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990, 18: 7213-7218
    101.Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18: 6531-6535
    102.Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinantinbred population derived subspecific rice cross. Theoretical and applied Genetics, 1996,92(2)230-2 44
    103.Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theoretical and applied Genetics, 1998, 97: 37-44
    104.Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map. Theoretical and applied Genetics, 1997, 95: 1025-1032
    105.Yano M, Katayose Y, Ashikari M Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483
    106.Yano M, Sasaki T. Genetic and molecular dissection of quantitative traitsin rice. Plant Molecular Biology, 1997, 35: 145-153
    107. Young ND, Tanksley SD. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theoretical and applied Genetics, 1989, 77: 353-359
    108.Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    109.Zhuang, JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. Analysis of QTL×environment interaction for yield components and plant height in rice. Theoretical and applied Genetics, 1997, 95: 799-808
    110.Zhu CS, Huang J, Zhang YM. Mapping binary trait loci in the F2:3. Desigh.J of Heredity, 2007,98:337-344