无机及有机材料复合膜对碳钢腐蚀行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对海洋开发利用的逐步深入和规模不断扩大,海洋腐蚀给国民经济造成的重大损失日益增加。海洋腐蚀不仅缩短了海洋工程结构的使用寿命,大大增加维护维修的费用,而且还直接影响这些设施或设备的使用安全,甚至会造成灾难性事故,从而带来巨大的经济损失。因此,研究海水中金属的腐蚀与防护具有重要的应用意义和经济价值。
     本文主要应用恒电位电解方法制备了两种无机粒子/聚电解质复合膜(氧化锌(ZnO)/聚二烯丙基二甲基氯化铵(PDDA)复合膜和ZnO/壳聚糖(CS)复合膜)及一种无机粒子/金属复合膜(锌(Zn)/二氧化硅(SiO_2)复合膜)。应用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶转换红外光谱(FT-IR)等方法对复合膜的相关性质进行了研究,并应用极化曲线、交流阻抗等方法对复合膜耐蚀性进行研究。主要结论如下:
     1、采用吸附方法在碳钢表面制备了PDDA薄膜,极化曲线结果表明在2 g L~(-1)的PDDA溶液中吸附1 h制得的膜层具有较好的耐蚀效果。SEM结果表明与空白样品相比,表面吸附PDDA膜的碳钢样品在氯化钠(NaCl)溶液中浸泡2 h后未有腐蚀产物生成。这表明PDDA在碳钢防腐领域有一定应用价值。
     2、采用恒电位电解法在碳钢表面制备了ZnO薄膜,系统研究了硝酸锌(Zn(NO_3)_2)溶液的温度、浓度、沉积电位、搅速等因素对所成膜耐蚀性的影响。结果表明,与其它条件相比,当Zn(NO_3)_2溶液温度为50 oC、浓度为5 mM、沉积电位为-1.2 V、搅速为200 r min~(-1)时,在碳钢表面制得的膜层具有最佳耐蚀性。
     3、采用恒电位电解法在碳钢表面制备了ZnO/PDDA复合膜。极化曲线结果表明与所选用其他条件相比当溶液中PDDA浓度为2 g L~(-1)时制得的复合膜最有最佳耐蚀性。XRD结果表面产物中有ZnO存在;FT-IR结果表明复合膜中有PDDA存在。SEM结果表明与ZnO膜相比,ZnO/PDDA复合膜表面变得更加致密。
     4、采用恒电位电解法在碳钢表面制备制备了ZnO/CS复合膜。极化曲线结果表明与所选用其他条件相比当溶液中CS浓度为0.6 g L~(-1)时制得的复合膜最有最佳耐蚀性。XRD结果表面产物中有ZnO的存在;FT-IR结果表明复合膜中有CS存在。SEM结果表明与ZnO膜相比,ZnO/CS复合膜表面更加平滑,这是由CS良好成膜性决定的。
     5、通过电解Zn(NO_3)_2和正硅酸乙酯(TEOS)混合溶液的方法在碳钢表面制备了Zn/SiO_2复合膜。极化曲线结果与所选用其他条件相比表明当溶液中TEOS浓度为0.012 M时制得的复合膜最有最佳耐蚀性。SEM结果表明随着TEOS加入,制得的膜层逐渐变平滑,当TEOS为0.012 M时复合膜表面最致密。XRD结果表明未加TEOS时,产物为ZnO;当TEOS浓度为0.012 M时,产物为Zn和SiO_2。电化学交流阻抗结果表明随着浸泡时间延长,阻抗先逐渐减小,这是由于电解质不断进入,且未在膜层表面形成腐蚀产物层造成的;当浸泡时间超过120 h后,阻抗值逐渐增大,说明膜层表面有腐蚀产物聚集。通过对阻抗谱进行电路拟合发现,膜层在NaCl溶液中浸泡时间超过120 h后膜电阻和电荷转移电阻均增大。
The loss cost by marine corrosion has increased year by year because many marine engineering had built for marine development and utilization. Corrosion can reduce load carrying capacity either by generally reducing its size or by pitting, both of which can lead to huge economic losses or even catastrophic accident. Thus the research on metal corrosion and protection in seawater has important application significance and economic value.
     In this work, two kinds of inorganic/polyelectrolyte composite film (zinc oxide (ZnO)/poly (diallyldimethylammonium) (PDDA) composite film and ZnO/chitosan (CS) composite film) and a kind of inorganic particles/metal composite film (zinc (Zn)/silicon dioxide (SiO_2) composite film) have been fabricated by potentiostatic electrolysis method. The character of composite films was studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and fourier transform infrared spectrometer (FT-IR). The corrosion resistance of composite film was studied by polarization curves method. The main conclusions are shown as follows:
     1、The PDDA thin film has been fabricated on carbon steel surface by self-adsorption method. Polarization curves indicated that compared with other conditions the film fabricated in 2 g L~(-1) PDDA solution for 1 h had optimal corrosion resistance. SEM results indicated that compared with bare carbon steel, the sample with PDDA film had no corrosion products on surface after immersion in sodium chloride (NaCl) solution for 2 h. This result indicated PDDA has potential application in carbon steel corrosion protection field.
     2、ZnO film has been fabricated on the carbon steel surface by potentiostatic electrolysis method. The influence factors of corrosion resistance, such as temperature, concentration, potential and stir rate were studied. The results indicated that compared with other conditions the best condition for ZnO electrodeposition was zinc nitrate (Zn(NO_3)_2) concentration, 5 mM, potential, -1.2 V, stir rate, 200 r min~(-1).
     3、A composite film consisting of ZnO and PDDA, has been fabricated on a carbon steel substrate by an potentiostatic electrolysis method. Polarization curves showed that compared with other conditions the composite film fabricated at the PDDA concentration of 2 g L~(-1) had the best corrosion resistance. XRD results indicate that ZnO could be fabricated by electrodeposition in composite films. FT-IR results evidence the existence of PDDA in ZnO/PDDA composite film. SEM results show that compared with ZnO film, the composite film becomes more compact and smooth.
     4、ZnO/CS composite film was obtained on the carbon steel surface via potentiostatic electrolysis method. It is shown that compared with other conditions the ZnO/CS film obtained at the concentration of 0.6 g L~(-1) has the best corrosion resistance. XRD results indicate that ZnO could be fabricated by electrodeposition in composite film. FT-IR results evidence the existence of CS in composite film. SEM results demonstrate that the composite film was much smoother and crack free. This was attributed to the good film-form property of CS.
     5、A Zn/SiO_2 composite film has been electrodeposited on the carbon steel surface via adding tetraethylorthosilicate (TEOS) in Zn(NO_3)_2 solution. Polarization curve results showed that compared with other conditions the composite film obtained at the TEOS concentration of 0.012 M had the best corrosion resistance. SEM results indicated that the film surface became compact with TEOS’s addition and the film showed best quality when the concentration was 0.012 M. XRD results showed that the product was ZnO when no TEOS was added. The products were Zn and SiO_2 when TEOS concentration was 0.012 M. Electrochemical impedance spectroscopy results indicated that the impedance of the film decreased with immersing time within 120 h, which could be attributed to the penetration process of electrolyte in solution. However, the impedance presented an increases trend with the immersion time after 120 h, which was a result of building-up of zinc corrosion products on coating surface. This trend was in accordance with the change of charge transfer resistance and film resistance.
引文
[1]朱立业,陈立功.金属防腐蚀有机涂料的研究进展.训练与科技, 2008 (2):86-89
    [2]马久明.金属材料在海水中腐蚀因素分析及预防措施.科协论坛, 2010 (8):106-106
    [3]陈达,东培华,廖迎娣.海洋环境中受腐蚀混凝土的力学研究现状和展望.腐蚀与防护, 2007 (12):630-632
    [4]侯保荣,肖纪美,苏纪兰,梁应辰,徐滨士,金翔龙.我国浪花飞溅区的海洋钢铁设施保护工作亟待加强.科学新闻, 2007 (3):4-5
    [5]朱相荣,张启富.海水中钢铁腐蚀与环境因素的灰关联分析.海洋科学, 2000 (5):37-40
    [6]包月霞.金属腐蚀的分类和防护方法.广东化工, 2010 (7):199-199
    [7]陶琦,李芬芳,邢健敏.金属腐蚀及其防护措施的研究进展.湖南有色金属, 2007 (2):43-46
    [8] H. Chen, Y. Chen, W. Gong, K. Xiang, B. Sun, J. Liu. Preparation and electrochemical performance of LiFePO_4/C composite with network connections of nano-carbon wires. Materials Letters, 2011 (3):559-561
    [9] B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller. High capacity graphite-silicon composite anode material for lithium-ion batteries. Journal of Power Sources, 2011 (5):2889-2892
    [10] V.V.D. Rani, R. Ramachandran, K.P. Chennazhi, H. Tamura, S.V. Nair, R. Jayakumar. Fabrication of alginate/nanoTiO_2 needle composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011 (2):858-864
    [11] G. Sgambitterra, A. Adumitroaie, E.J. Barbero, A. Tessler. A robust three-node shell element for laminated composites with matrix damage. Composites Part B: Engineering, 2011 (1):41-50
    [12] A. Vimmrov, M. Keppert, L. Svoboda, R. Cern. Lightweight gypsum composites: Design strategies for multi-functionality. Cement and Concrete Composites, 2011 (1):84-89
    [13]马志云,郭百凯,赵建社.有机/无机纳米复合材料的研究进展.中国科技博览, 2010 (3):119-120
    [14] L. Vandeperre, O. Van Der Biest, F. Bouyer, J. Persello, A. Foissy. Electrophoretic forming of silicon carbide ceramics. Journal of the European Ceramic Society, 1997 (2-3):373-376
    [15] P.S. Nicholson, P. Sarkar, S. Datta. Producing ceramic laminate composites by EPD. American Ceramic Society Bulletin, 1996 (11):48-51
    [16] P. Sarkar, P.S. Nicholson. Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 1996 (8):1987-2002
    [17] J. Tabellion, R. Clasen. Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses - applications. Journal of Materials Science, 2004 (3):803-811
    [18] I.G. Casella, M. Gatta. Anodic electrodeposition of copper oxide/hydroxide films by alkaline solutions containing cuprous cyanide ions. Journal of Electroanalytical Chemistry, 2000 (1):12-20
    [19] Y.Y. Xi, B.Q. Huang, A.B. Djurisic, C.M.N. Chan, F.C.C. Leung, W.K. Chan, D.T.W. Au. Electrodeposition for antibacterial nickel-oxide-based coatings. Thin Solid Films, 2009 (24):6527-6530
    [20] D.-D. Zhao, M.W. Xu, W.-J. Zhou, J. Zhang, H.L. Li. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochimica Acta, 2008 (6):2699-2705
    [21] G. Zou, R. Liu, W. Chen. Highly textural lamellar mesostructured magnesium hydroxide via a cathodic electrodeposition process. Materials Letters, 2007 (10):1990-1993
    [22] S.H. Pawar, H.A. Mujawar. Electrodeposition of Bi-Sr-Ca-Cu alloyed films from non-aqueous bath. Materials Research Bulletin, 1990 (12):1443-1451
    [23] S.H. Pawar, M.H. Pendse. Electrodeposition of Dy-Ba-Cu alloyed films from aqueous bath. Materials Research Bulletin, 1991 (7):641-648
    [24] L.Z. Zhao, J.B. Zhang, C.Y. Xu, S.H. Liu. Electrodeposition of large Bal-xKxBiO_3 crystals from molten KOH/KNO_3 solution. Solid State Communications, 1998 (1):59-62
    [25] M.-M. Song, W.-J. Song, H. Bi, J. Wang, W.-L. Wu, J. Sun, M. Yu. Cytotoxicity and cellular uptake of iron nanowires. Biomaterials, 2010 (7):1509-1517
    [26] Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomaterialia, 2010 (5):1736-1742
    [27] J. Xu, F. Shang, J.H.T. Luong, K.M. Razeeb, J.D. Glennon. Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosensors and Bioelectronics, 2010 (6):1313-1318
    [28] G.-R. Li, Q.-F. Ke, G.-K. Liu, P. Liu, Y.-X. Tong. Electrodeposition of nano-grain sized Bi-Co thin films in organic bath and their magnetism. Materials Letters, 2007 (3):884-888
    [29] M.V. Rastei, S. Colis, R. Meckenstock, O. Ersen, J.P. Bucher. Pulsed electrodeposition and magnetism of two-dimensional assembly of controlled-size Co particles on Si substrates. Surface Science, 2006 (10):2178-2183
    [30] A. Yamada, T. Houga, Y. Ueda. Magnetism and magnetoresistance of Co/Cu multilayer films produced by pulse control electrodeposition method. Journal of Magnetism and Magnetic Materials, 2002 (1-3):272-275
    [31]李敏,刘平生.聚电解质在污水处理中的应用.周口师专学报, 1997 (4):38-39
    [32]陈宝剑,王士斌.聚电解质复合物在生物工程与医药中的应用.福建化工, 2006 (2):29-33
    [33]秦霞,王艳艳,赵紫霞,王新胜,李莎,于敏,黄楠,苗智颖,陈强.层层自组装制备基于多壁碳纳米管的胆碱生物传感器.分析化学, 2008 (6):827-830
    [34]李莎,王艳艳,赵紫霞,秦霞,王新胜,吴宝艳,陈强.基于纳米材料、聚电解质制备高性能乙醇生物传感器.分析化学, 2008 (2):227-230
    [35]宋昭,黄加栋,史海滨,吴宝艳,李静,长哲郎,陈强.基于layer-by-layer技术构建胆碱检测生物传感器酶电极的研究.高技术通讯, 2007 (1):49-53
    [36] T. Hirai, J. Yamaki, T. Okada, A. Yamaji. Inhibiting effects of Al corrosion by polymer ammonium chlorides in alkaline electrolyte. Electrochimica Acta, 1985 (1):61-67
    [37] S.L. Westcott, N.A. Kotov, J.W. Ostrander, A.A. Mamedov, D.K. Reust, J.P. Roark. Corrosion protection by multifunctional stratified coatings. Nsti Nanotech 2004, Vol 3, Technical Proceedings, 2004:288-291
    [38] T.R. Farhat, J.B. Schlenoff. Corrosion Control Using Polyelectrolyte Multilayers. Electrochemical and Solid-State Letters, 2002 (4):B13-B15
    [39] J.H. Dai, D.M. Sullivan, M.L. Bruening. Ultrathin, layered polyamide and polyimide coatings on aluminum. Industrial & Engineering Chemistry Research, 2000 (10):3528-3535
    [40] Tabellion, Clasen. Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses—applications Journal of Materials Science, 2004 (3):803-811
    [41] I. Zhitomirsky. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Advances in Colloid and Interface Science, 2002 (1-3):279-317
    [42] I. Zhitomirsky, A. Petric. The electrodeposition of ceramic and organoceramic films for fuel cells. Jom-Journal of the Minerals Metals & Materials Society, 2001 (9):48-50
    [43] I. Zhitomirsky, A. Petric. Electrochemical deposition of ceria and doped ceria films. Ceramics International, 2001 (2):149-155
    [44] I. Zhitomirsky, A. Petric, M. Niewczas. Nanostructured ceramic and hybrid materials via electrodeposition. Jom-Journal of the Minerals Metals & Materials Society, 2002 (9):31-34
    [45] I. Zhitomirsky, A. Petric. Electrolytic deposition of Gd_2O_3 and organoceramic composite. Materials Letters, 2000 (5):273-279
    [46] I. Zhitomirsky, A. Petric. Electrolytic deposition of zirconia and zirconia organoceramic composites. Materials Letters, 2000 (1):1-6
    [47] X. Pang, I. Zhitomirsky, M. Niewczas. Cathodic electrolytic deposition of zirconia films. Surface and Coatings Technology, 2005 (2-3):138-146
    [48] I. Zhitomirsky, M. Niewczas, A. Petric. Electrodeposition of hybrid organic-inorganic films containing iron oxide. Materials Letters, 2003 (5-6):1045-1050
    [49] P. Bon, I. Zhitomirsky, J.D. Embury. Electrodeposition of composite iron oxide-polyelectrolyte films. Materials Chemistry and Physics, 2004 (1):44-50
    [50] P. Bon, I. Zhitomirsky, J.D. Embury. Electrochemical preparation of Ni and Fe hydroxide/oxide films using polyethylenimine. Surface Engineering, 2004 (1):5-10
    [51] E.A. McNally, I. Zhitomirsky, D.S. Wilkinson. Cathodic electrodeposition of cobalt oxide films using polyelectrolytes. Materials Chemistry and Physics, 2005 (2-3):391-398
    [52] I. Zhitomirsky. Electrodeposition of lanthanum hydroxide-polyethylenimine films. Materials Letters, 2003 (24-25):3761-3766
    [53] I. Zhitomirsky. Electrodeposition of composite ceria-polyethylenimine films. Surface Engineering, 2004 (1):43-47
    [54] I. Zhitomirsky. Composite nickel hydroxide - polyelectrolyte films prepared by cathodic electrosynthesis. Journal of Applied Electrochemistry, 2004 (2):235-240
    [55] I. Zhitomirsky. Fabrication of oxide and composite films using polymer - Metal ion complexes. Surface Oxide Films, 2004 (25):251-258
    [56] N. Nagarajan, H. Humadi, I. Zhitomirsky. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimica Acta, 2006 (15):3039-3045
    [57] X. Pang, I. Zhitomirsky. Fabrication of Composite Films Containing Zirconia and Cationic Polyelectrolytes. Langmuir, 2004 (7):2921-2927
    [58] D. Bardetsky, I. Zhitomirsky. Electrochemical preparation of composite films containing cationic polyelectrolytes and cobalt hydroxide. Surface Engineering, 2005 (2):125-130
    [59] Wang, d. Boer, d. Groot. Preparation and Characterization of Electrodeposited Calcium Phosphate/Chitosan Coating on Ti6Al4V Plates. Journal of dental research, 2004 (4):296-301
    [60] J. Redepenning, G. Venkataraman, J. Chen, N. Stafford. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. Journal of Biomedical Materials Research Part A, 2003 (2):411-416
    [61] H. Yi, L.-Q. Wu, R. Ghodssi, G.W. Rubloff, G.F. Payne, W.E. Bentley. A Robust Technique for Assembly of Nucleic Acid Hybridization Chips Based on Electrochemically Templated Chitosan. Anal. Chem., 2004 (2):365-372
    [62]余晓阳,吴霞琴,张凡,廖慧,杨仕平,章宗穰.电沉积PAMAM/羟基磷灰石复合涂层的研究.应用化学, 2006 (9):970-973
    [63] M. Cheong, I. Zhitomirsky. Electrodeposition of alginic acid and composite films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008 (1-3):73-78
    [64] X. Pang, I. Zhitomirsky. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Materials Characterization, 2007 (4):339-348
    [65] X. Pang, I. Zhitomirsky. Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surface and Coatings Technology, 2008 (16):3815-3821
    [66] X. Pang, T. Casagrande, I. Zhitomirsky. Electrophoretic deposition of hydroxyapatite-CaSiO_3-chitosan composite coatings. Journal of Colloid and InterfaceScience, 2009 (2):323-329
    [67] Y. Haseko, N.K. Shrestha, S. Teruyama, T. Saji. Reversal pulsing electrodeposition of Ni/polypyrrole composite film. Electrochimica Acta, 2006 (18):3652-3657
    [68] E. Rudnik, L. Burzynska, L. Dolasinski, M. Misiak. Electrodeposition of nickel/SiC composites in the presence of cetyltrimethylammonium bromide. Applied Surface Science, 2010 (24):7414-7420
    [69] S.-E. Nam, K.-H. Lee. A study on the palladium/nickel composite membrane by vacuum electrodeposition. Journal of Membrane Science, 2000 (1):91-99
    [70] N.S. Qu, K.C. Chan, D. Zhu. Pulse co-electrodeposition of nano Al_2O_3 whiskers nickel composite coating. Scripta Materialia, 2004 (8):1131-1134
    [71] K.E. Pappacena, M.T. Johnson, S. Xie, K.T. Faber. Processing of wood-derived copper-silicon carbide composites via electrodeposition. Composites Science and Technology, 2010 (3):485-491
    [72] S. Arai, M. Endo. Carbon nanofiber-copper composite powder prepared by electrodeposition. Electrochemistry Communications, 2003 (9):797-799
    [73] S. Arai, M. Endo. Various carbon nanofiber-copper composite films prepared by electrodeposition. Electrochemistry Communications, 2005 (1):19-22
    [74] B.M. Praveen, T.V. Venkatesha. Electrodeposition and properties of Zn-nanosized TiO2 composite coatings. Applied Surface Science, 2008 (8):2418-2424
    [75] L. Shi, C.F. Sun, P. Gao, F. Zhou, W.M. Liu. Electrodeposition and characterization of Ni-Co-carbon nanotubes composite coatings. Surface and Coatings Technology, 2006 (16-17):4870-4875
    [76] L.M. Chang, M.Z. An, H.F. Guo, S.Y. Shi. Microstructure and properties of Ni-Co/nano-Al_2O_3 composite coatings by pulse reversal current electrodeposition. Applied Surface Science, 2006 (4):2132-2137
    [77] E. Gomez, S. Pan, E. Valles. Magnetic composites CoNi-barium ferrite prepared by electrodeposition. Electrochemistry Communications, 2005 (12):1225-1231
    [78] A. Sohrabi, A. Dolati, M. Ghorbani, A. Monfared, P. Stroeve. Nanomechanical properties of functionally graded composite coatings: Electrodeposited nickel dispersions containing silicon micro- and nanoparticles. Materials Chemistry and Physics, 2010 (3):497-505
    [79] T.J. Tuaweri, G.D. Wilcox. Behaviour of Zn-SiO_2 electrodeposition in the presence of N,N-dimethyldodecylamine. Surface and Coatings Technology, 2006 (20-21):5921-5930
    [80] J.-l. Wang, R.-d. Xu, Y.-z. Zhang. Influence of SiO_2 nano-particles on microstructures and properties of Ni-W-P/CeO2-SiO_2 composites prepared by pulse electrodeposition. Transactions of Nonferrous Metals Society of China, 2010 (5):839-843
    [81] R. Xu, J. Wang, L. He, Z. Guo. Study on the characteristics of Ni-W-P composite coatings containing nano-SiO_2 and nano-CeO_2 particles. Surface and Coatings Technology, 2008 (8):1574-1579
    [82] S. Wei, Y. Chen, Y. Ma, Z. Shao. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance. Journal ofMolecular Catalysis A: Chemical, 2010 (1-2):112-116
    [83] M.T.A. El-Khair, A.A. Aal. Erosion-corrosion and surface protection of A356 Al/ZrO_2 composites produced by vortex and squeeze casting. Materials Science and Engineering: A, 2007:156-163
    [84] P.-A. Gay, P. Bercot, J. Pagetti. Electrodeposition and characterisation of Ag-ZrO_2 electroplated coatings. Surface and Coatings Technology, 2001 (2):147-154
    [85] F. Hou, W. Wang, H. Guo. Effect of the dispersibility of ZrO_2 nanoparticles in Ni-ZrO_2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings. Applied Surface Science, 2006 (10):3812-3817
    [86] S.S. Mahmoud, M.M. Ahmed. Electrocatalytic oxidation of phenol using Ni-Al_2O_3 composite-coating electrodes. Journal of Alloys and Compounds, 2009 (1-2):570-575
    [87] Y. Liu, L. Ren, S. Yu, Z. Han. Influence of current density on nano-Al_2O_3/Ni~(+)Co bionic gradient composite coatings by electrodeposition. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008 (5):633-637
    [88] Z.-j. Huang, D.-s. Xiong. MoS_2 coated with Al_2O_3 for Ni-MoS_2/Al_2O_3 composite coatings by pulse electrodeposition. Surface and Coatings Technology, 2008 (14):3208-3214
    [89] H.-Y. Zheng, M.-Z. An. Electrodeposition of Zn-Ni-Al_2O_3 nanocomposite coatings under ultrasound conditions. Journal of Alloys and Compounds, 2008 (1-2):548-552
    [90] B.M. Praveen, T.V. Venkatesha. Electrodeposition and properties of Zn-Ni-CNT composite coatings. Journal of Alloys and Compounds, 2009 (1-2):53-57
    [91] W. Wang, F.-Y. Hou, H. Wang, H.-T. Guo. Fabrication and characterization of Ni-ZrO_2 composite nano-coatings by pulse electrodeposition. Scripta Materialia, 2005 (5):613-618
    [92] B. Courant, J.J. Hantzpergue, L. Avril, S. Benayoun. Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition. Journal of Materials Processing Technology, 2005 (3):374-381
    [93] M.L.T. Guo, C.Y.A. Tsao. Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Composites Science and Technology, 2000 (1):65-74
    [94] J. Li, D. Xiong. Tribological behavior of graphite-containing nickel-based composite as function of temperature, load and counterface. Wear, 2009 (1-2):360-367
    [95] W. Ma, J. Lu, B. Wang. Sliding friction and wear of Cu-graphite against 2024, AZ91D and Ti6Al4V at different speeds. Wear, 2009 (11-12):1072-1081
    [96] Y.W. Bae, W.Y. Lee, T.M. Besmann, C.S. Yust, P.J. Blau. Preparation and friction characteristics of self-lubricating TiN-MoS_2 composite coatings. Materials Science and Engineering: A, 1996 (1-2):372-376
    [97] N.M. Renevier, J. Hamphire, V.C. Fox, J. Witts, T. Allen, D.G. Teer. Advantages of using self-lubricating, hard, wear-resistant MoS_2-based coatings. Surface and Coatings Technology, 2001:67-77
    [98] N.M. Renevier, H. Oosterling, U. Konig, H. Dautzenberg, B.J. Kim, L. Geppert, F.G.M. Koopmans, J. Leopold. Performance and limitations of MoS_2/Ti compositecoated inserts. Surface and Coatings Technology, 2003 (1):13-23
    [99] P. Skarvelis, G.D. Papadimitriou. Microstructural and tribological evaluation of potential self-lubricating coatings with MoS_2[-45 degree rule]MnS additions produced by the plasma transferred arc technique. Tribology International, 2009 (11-12):1765-1770
    [100] Y. Wu, F. Wang, Y. Cheng, N. Chen. A study of the optimization mechanism of solid lubricant concentration in Ni/MoS_2 self-lubricating composite. Wear, 1997 (1-2):64-70
    [101] Z. Wang, L. Wu, Y. Qi, W. Cai, Z. Jiang. Self-lubricating Al_2O_3/PTFE composite coating formation on surface of aluminium alloy. Surface and Coatings Technology, 2010 (20):3315-3318
    [102] D. Xiang, K. Shan. Friction and wear behavior of self-lubricating and heavily loaded metal-PTFE composites. Wear, 2006 (9-10):1112-1118
    [103] C. Baruffaldi, S. Cattarin, M. Musiani. Deposition of non-stoichiometric tungsten oxides+MO_2 composites (M=Ru or Ir) and study of their catalytic properties in hydrogen or oxygen evolution reactions. Electrochimica Acta, 2003 (25-26):3921-3927
    [104]李爱昌,骆鹏飞,刘瑛.电沉积制备(Ni-W-P)-TiO_2纳米复合电极的催化析氢性能.中国有色金属学报, 2010 (4):712-717
    [105] M.R. Vaezi, S.K. Sadrnezhaad, L. Nikzad. Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008 (1-3):176-182
    [106] B. Szczygiel, M. Kolodziej. Composite Ni/Al_2O_3 coatings and their corrosion resistance. Electrochimica Acta, 2005 (20):4188-4195
    [107] T. Tuken, G. Arslan, B. YazIcI, M. Erbil. The corrosion protection of mild steel by polypyrrole/polyphenol multilayer coating. Corrosion Science, 2004 (11):2743-2754
    [108] H. Nguyen Thi Le, B. Garcia, C. Deslouis, Q. Le Xuan. Corrosion protection and conducting polymers: polypyrrole films on iron. Electrochimica Acta, 2001 (26-27):4259-4272
    [109] M.-A. De Paoli, R.C.D. Peres, S. Panero, B. Scrosati. Properties of electrochemically synthesized polymer electrodes--X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 1992 (7):1173-1182
    [110] A.T. Ozyilmaz, M. Erbil, B. Yazici. Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy. Progress in Organic Coatings, 2004 (1):47-54
    [111] T. Tuken. Polypyrrole films on stainless steel. Surface and Coatings Technology, 2006 (16-17):4713-4719
    [1] D.-S. Kong, S.-L. Yuan, Y.-X. Sun, Z.-Y. Yu. Self-assembled monolayer of o-aminothiophenol on Fe(1 1 0) surface: a combined study by electrochemistry, in situ STM, and molecular simulations. Surface Science, 2004 (2):272-283
    [2] C.R. Weber, L.F.P. Dick, G. Benitez, M.E. Vela, R.C. Salvarezza. Electrochemically induced self-assembly of alkanethiolate adlayers on carbon steel in aqueous solutions. Electrochimica Acta, 2009 (21):4817-4821
    [3] X. He, X. Shi. Self-repairing coating for corrosion protection of aluminum alloys. Progress in Organic Coatings, 2009 (1):37-43
    [4] I. Maege, E. Jaehne, A. Henke, H.-J.P. Adler, C. Bram, C. Jung, M. Stratmann. Self-assembling adhesion promoters for corrosion resistant metal polymer interfaces.Progress in Organic Coatings, 1997 (1-4):1-12
    [5] Z. Quan, S. Chen, Y. Li, X. Cui. Adsorption behaviour of Schiff base and corrosion protection of resulting films to copper substrate. Corrosion Science, 2002 (4):703-715
    [6] F. Sinapi, L. Forget, J. Delhalle, Z. Mekhalif. Self-assembly of (3-mercaptopropyl)trimethoxysilane on polycrystalline zinc substrates towards corrosion protection. Applied Surface Science, 2003:464-471
    [7] X. Chen, X. Yan, K.A. Khor, B.K. Tay. Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosensors and Bioelectronics, 2007 (12):3256-3260
    [8] Z. Liu, S.P. Jiang. Synthesis of PDDA-Pt nanoparticles for the self-assembly of electrode/Nafion membrane interface of polymer electrolyte fuel cells. Journal of Power Sources, 2006 (1):55-58
    [9] Q. Wang, P.J. Hauser. Developing a novel UV protection process for cotton based on layer-by-layer self-assembly. Carbohydrate Polymers, 2010 (2):491-496
    [10] Y. Ye, Y. Jiang, J. Yu, Z. Wu, H. Zeng. Fabrication of polymeric PVDF/PDDA ultrathin films on quartz crystal microbalance. Materials Science and Engineering: B, 2006 (3):278-282
    [11] M. Yin, J. Qian, Q. An, Q. Zhao, Z. Gui, J. Li. Polyelectrolyte layer-by-layer self-assembly at vibration condition and the pervaporation performance of assembly multilayer films in dehydration of isopropanol. Journal of Membrane Science, 2010 (1-2):43-50
    [12] S. Zhao, K. Zhang, J. An, Y. Sun, C. Sun. Synthesis and layer-by-layer self-assembly of silver nanoparticles capped by mercaptosulfonic acid. Materials Letters, 2006 (9-10):1215-1218
    [1] D.B. Mitzi. Thin-film deposition of organic-inorganic hybrid materials. Chemistry of Materials, 2001 (10):3283-3298
    [2] I. Zhitomirsky. Electrosynthesis of organic-inorganic nanocomposites. Journal of Alloys and Compounds, 2007 (1-2):823-825
    [3] D. Pradhan, M. Kumar, Y. Ando, K.T. Leung. Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties. Appl. Mater. Interfaces, 2009 (4):789-796
    [4] J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu. Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange. Surface and Coatings Technology, 2009 (1-2):205-214
    [5] Q.Z. An, Y.C. Xin, K.F. Huo, X. Cai, P.K. Chu. Corrosion behavior of ZnOnanosheets on brass substrate in NaCl solutions. Materials Chemistry and Physics, 2009 (1):439-443
    [6] S. Fay, J. Steinhauser, S. Nicolay, C. Ballif. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells. Thin Solid Films, 2010 (11):2961-2966
    [7] S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto. Optical and electrical properties of URT-IP ZnO thin films for photovoltaic devices. Thin Solid Films, 2004 (1):212-218
    [8] K. Tominaga, T. Murayama, I. Mori, T. Ushiro, T. Moriga, I. Nakabayashi. Effect of insertion of thin ZnO layer in transparent conductive ZnO:Al film. Thin Solid Films, 2001 (2):267-270
    [9] K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, I. Nakabayashi. Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets. Thin Solid Films, 1998 (1-2):35-39
    [10] O. Troconis de Rincon, O. Perez, E. Paredes, Y. Caldera, C. Urdaneta, I. Sandoval. Long-term performance of ZnO as a rebar corrosion inhibitor. Cement and Concrete Composites, 2002 (1):79-87
    [11] S.K. Dhoke, A.S. Khanna, T.J.M. Sinha. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Progress in Organic Coatings, 2009 (4):371-382
    [12] R.C. Patil, S. Radhakrishnan. Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings. Progress in Organic Coatings, 2006 (4):332-336
    [13] S.M.A. Shibli, B. Jabeera, R.I. Anupama. Incorporation of nano zinc oxide for improvement of electroless nickel plating. Applied Surface Science, 2006 (3):1644-1648
    [14] S.M.A. Shibli, B. Jabeera, R.I. Anupama. Development of ZnO incorporated composite Ni-ZnO-P alloy coating. Surface and Coatings Technology, 2006 (12-13):3903-3906
    [15] S.M.A. Shibli, R. Manu, S. Beegum. Studies on the influence of metal oxides on the galvanic characteristics of hot-dip zinc coating. Surface and Coatings Technology, 2008 (9):1733-1737
    [16] X. Yu, J. Wang, M. Zhang, L. Yang, J. Li, P. Yang, D. Cao. Synthesis, characterization and anticorrosion performance of molybdate pillared hydrotalcite/in situ created ZnO composite as pigment for Mg-Li alloy protection. Surface and Coatings Technology, 2008 (3-4):250-255
    [17] J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, X. Zhang. High field emission enhancement of ZnO-nanorods via hydrothermal synthesis. Solid-State Electronics, 2008 (2):294-298
    [18] E. Pal, V. Hornok, A. Oszk, I. Dwkany. Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009 (1-3):1-9
    [19] X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry and Physics, 2003(1):99-104
    [20] B. Wang, M.J. Callahan, C. Xu, L.O. Bouthillette, N.C. Giles, D.F. Bliss. Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals. Journal of Crystal Growth, 2007 (1):73-79
    [21] Z. Zhu, D. Yang, H. Liu. Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances. Advanced Powder Technology, 2010 (doi:10.1016/j.apt.2010.07.002):xxx-xxx
    [22] C.-J. Chang, Y.-H. Lee, C.-A. Dai, C.-C. Hsiao, S.-H. Chen, N.P.D. Nurmalasari, J.-C. Chen, Y.-Y. Cheng, W.-P. Shih, P.-Z. Chang. A large area bimaterial sheet of piezoelectric nanogenerators for energy harvesting: Effect of RF sputtering on ZnO nanorod. Microelectronic Engineering, 2011 (doi:10.1016/j.mee.2010.12.010 ):xxx-xxx
    [23] W. Gao, Z. Li. ZnO thin films produced by magnetron sputtering. Ceramics International, 2004 (7):1155-1159
    [24] H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim. Properties of fluorine doped ZnO thin films deposited by magnetron sputtering. Solar Energy Materials and Solar Cells, 2008 (11):1366-1372
    [25] Z. Zhang, M.F. Hossain, T. Arakawa, T. Takahashi. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application. Journal of Hazardous Materials, 2010 (1-3):973-978
    [26] J. Bruncko, A. Vincze, M. Netrvalova. Study of ZnO layers growth by pulsed laser deposition from Zn and ZnO targets. Vacuum, 2009 (1):162-165
    [27] X. Ma, J. Zhang, J. Lu, Z. Ye. Room temperature growth and properties of ZnO films by pulsed laser deposition. Applied Surface Science, 2010 (4):1310-1313
    [28] M. Okoshi, K. Higashikawa, M. Hanabusa. Pulsed laser deposition of ZnO thin films using a femtosecond laser. Applied Surface Science, 2000 (4):424-427
    [29] X. Xu, Y. Shen, N. Xu, W. Hu, J. Lai, Z. Ying, J. Wu. Large-sized-mismatched group-V element doped ZnO films fabricated on silicon substrates by pulsed laser deposition. Vacuum, 2010 (11):1306-1309
    [30] X.G. Zheng, Q.S. Li, W. Hu, D. Chen, N. Zhang, M.J. Shi, J.J. Wang, L.C. Zhang. Photoconductive properties of ZnO thin films grown by pulsed laser deposition. Journal of Luminescence, 2007 (1):198-201
    [31] B.L. Zhu, X.Z. Zhao, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu. Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition. Vacuum, 2010 (11):1280-1286
    [32] R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, J.R. Ramos-Barrado. Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 2003 (1-2):68-77
    [33] A. Chakraborty, T. Mondal, S.K. Bera, S.K. Sen, R. Ghosh, G.K. Paul. Effects of aluminum and indium incorporation on the structural and optical properties of ZnO thin films synthesized by spray pyrolysis technique. Materials Chemistry and Physics, 2008 (1):162-166
    [34] I. Kortidis, K. Moschovis, F.A. Mahmoud, G. Kiriakidis. Structural analysis of aerosol spray pyrolysis ZnO films exhibiting ultra low ozone detection limits at roomtemperature. Thin Solid Films, 2009 (4):1208-1213
    [35] P. Singh, A. Kaushal, D. Kaur. Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2009 (1-2):11-15
    [36] Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M. Morsli, K. Napo, M.A. del Valle, J.C. Bernede. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells. Applied Surface Science, 2009 (13-14):6615-6619
    [37] W. Lee, S.K. Min, V. Dhas, S.B. Ogale, S.-H. Han. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochemistry Communications, 2009 (1):103-106
    [38] R. Saravana Kumar, P. Sudhagar, R. Sathyamoorthy, P. Matheswaran, Y.S. Kang. Direct assembly of ZnO nanostructures on glass substrates by chemical bath deposition through precipitation method. Superlattices and Microstructures, 2009 (6):917-924
    [39] Z.J. Yan, D.W. Zeng, C.S. Xie, H.H. Wang, W.L. Song. Nanostructured ZnO network films deposited on Al2O3 substrates by chemical bath deposition. Thin Solid Films, 2009 (5):1541-1545
    [40] R. Chander, A.K. Raychaudhuri. Electrodeposition of aligned arrays of ZnO nanorods in aqueous solution. Solid State Communications, 2008 (1-2):81-85
    [41] E.A. Dalchiele, P. Giorgi, R.E. Marotti, F. MartIn, J.R. Ramos-Barrado, R. Ayouci, D. Leinen. Electrodeposition of ZnO thin films on n-Si(1 0 0). Solar Energy Materials and Solar Cells, 2001 (3):245-254
    [42] J. Elias, R. Tena-Zaera, C. Levy-Climent. Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: Role of buffer layer. Thin Solid Films, 2007 (24):8553-8557
    [43] M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraibi, A. Ennaoui. Growth and characterization of ZnO thin films prepared by electrodeposition technique. Solar Energy Materials and Solar Cells, 2006 (10):1437-1444
    [44] P. Bon, I. Zhitomirsky, J.D. Embury. Electrodeposition of composite iron oxide-polyelectrolyte films. Materials Chemistry and Physics, 2004 (1):44-50
    [45] X. Pang, I. Zhitomirsky, M. Niewczas. Cathodic electrolytic deposition of zirconia films. Surface and Coatings Technology, 2005 (2-3):138-146
    [46] J. Elias, R. Tena-Zaera, C. Levy-Clement. Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. Journal of Physical Chemistry C, 2008 (15):5736-5741
    [47] T. Pauporte, E. Jouanno, F. Pelle, B. Viana, P. Aschehoug. Key Growth Parameters for the Electrodeposition of ZnO Films with an Intense UV-Light Emission at Room Temperature. Journal of Physical Chemistry C, 2009 (24):10422-10431
    [48] A. Goux, T. Pauport, J. Chivot, D. Lincot. Temperature effects on ZnO electrodeposition. Electrochimica Acta, 2005 (11):2239-2248
    [49] I. Zhitomirsky. Electrochemical processing and characterization of nickel hydroxide-polyelectrolyte films. Materials Letters, 2004 (3-4):420-424
    [50] I. Zhitomirsky, A. Petric. Electrolytic deposition of zirconia and zirconia organoceramic composites. Materials Letters, 2000 (1):1-6
    [51] Z. Han, J. Zhang, X. Yang, H. Zhu, W. Cao. Synthesis and photoelectric property of poly (3-octylthiophene)/zinc oxide complexes. Solar Energy Materials and Solar Cells, 2010 (2):194-200
    [52] Z.H. Liu, X.J. Yang, Y. Makita, K. Ooi. Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process. Chemistry of Materials, 2002 (11):4800-4806
    [1] A. Niederhofer, B.W. Muller. A method for direct preparation of chitosan with low molecular weight from fungi. European Journal of Pharmaceutics and Biopharmaceutics, 2004 (1):101-105
    [2] J.R. Evans, W.G. Davids, J.D. MacRae, A. Amirbahman. Kinetics of cadmium uptake by chitosan-based crab shells. Water Research, 2002 (13):3219-3226
    [3] I. Yamaguchi, S. Itoh, M. Suzuki, M. Sakane, A. Osaka, J. Tanaka. The chitosan prepared from crab tendon I: the characterization and the mechanical properties. Biomaterials, 2003 (12):2031-2036
    [4] M.-T. Yen, J.-H. Yang, J.-L. Mau. Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 2008 (4):840-844
    [5] M.-T. Yen, J.-H. Yang, J.-L. Mau. Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 2009 (1):15-21
    [6] M.F. Cervera, J. Heinamaki, M. Rasanen, S.L. Maunu, M. Karjalainen, O.M.N. Acosta, A.I. Colarte, J. Yliruusi. Solid-state characterization of chitosans derived from lobster chitin. Carbohydrate Polymers, 2004 (4):401-408
    [7] A. Gamage, F. Shahidi. Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 2007 (3):989-996
    [8] I.S. Lima, A.M. Lazarin, C. Airoldi. Cyclic voltammetric investigations on copper [alpha]-N,O-succinated chitosan interactions. Carbohydrate Polymers, 2006 (3):385-390
    [9] L.C. Lu, C.I. Wang, W.F. Sye. Applications of chitosan beads and porous crab shell powder for the removal of 17 organochlorine pesticides (OCPs) in water solution. Carbohydrate Polymers, 2011 (4):1984-1989
    [10] M. Rinaudo. Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006 (7):603-632
    [11] I. Yamaguchi, S. Itoh, M. Suzuki, A. Osaka, J. Tanaka. The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials, 2003 (19):3285-3292
    [12] D. Feng, F. Wang, Z. Chen. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensors and Actuators B: Chemical, 2009 (2):539-544
    [13] J. Gong, T. Liu, D. Song, X. Zhang, L. Zhang. One-step fabrication of three-dimensional porous calcium carbonate-chitosan composite film as the immobilization matrix of acetylcholinesterase and its biosensing on pesticide. Electrochemistry Communications, 2009 (10):1873-1876
    [14] A. Kaushik, P.R. Solanki, A.A. Ansari, B.D. Malhotra, S. Ahmad. Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochemical Engineering Journal, 2009 (2):132-140
    [15] A. Kaushik, P.R. Solanki, A.A. Ansari, G. Sumana, S. Ahmad, B.D. Malhotra.Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors and Actuators B: Chemical, 2009 (2):572-580
    [16] R.K. Nagarale, J.M. Lee, W. Shin. Electrochemical properties of ferrocene modified polysiloxane/chitosan nanocomposite and its application to glucose sensor. Electrochimica Acta, 2009 (26):6508-6514
    [17] P.R. Solanki, A. Kaushik, A.A. Ansari, A. Tiwari, B.D. Malhotra. Multi-walled carbon nanotubes/sol-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors and Actuators B: Chemical, 2009 (2):727-735
    [18] Y. Yang, G. Yang, Y. Huang, H. Bai, X. Lu. A new hydrogen peroxide biosensor based on gold nanoelectrode ensembles/multiwalled carbon nanotubes/chitosan film-modified electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009 (1-3):50-55
    [19] S. Cheng, S. Chen, T. Liu, X. Chang, Y. Yin. Carboxymenthylchitosan as an ecofriendly inhibitor for mild steel in 1 M HCl. Materials Letters, 2007 (14-15):3276-3280
    [20] A.M. Fekry, R.R. Mohamed. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochimica Acta, 2010 (6):1933-1939
    [21]李言涛,吴茂涛,姜信德,李再峰.羧甲基壳聚糖与其他缓蚀剂的协同缓蚀效能.装备环境工程, 2010 (1):1-5
    [22]张晓波,刘丽荣,陈炜,陆金凤.模拟海水中羧甲基壳聚糖对Q235钢的缓蚀及复配性能研究.淮海工学院学报, 2009 (4):84-87
    [23]陈德英,尹衍升,程莎,陈守刚,刘通.羧甲基壳聚糖在酸性溶液中对铝的缓蚀作用.材料开发与应用, 2009 (2):55-59
    [24]程莎,尹衍升,陈守刚,常雪婷,闫林娜,刘涛.羧甲基壳聚糖在酸性溶液中缓蚀性能.化工学报, 2007 (3):704-708
    [25]程莎,尹衍升,闫林娜,常雪婷.盐酸溶液中羧甲基壳聚糖对碳钢的缓蚀吸附性能研究.腐蚀科学与防护技术, 2007 (1):24-26
    [26] M. Cheong, I. Zhitomirsky. Electrodeposition of alginic acid and composite films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008 (1-3):73-78
    [27] X. Pang, I. Zhitomirsky. Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surface and Coatings Technology, 2008 (16):3815-3821
    [28] E. Tondo, M. Boniardi, D. Cannoletta, M.F. De Riccardis, B. Bozzini. Electrodeposition of yttria/cobalt oxide and yttria/gold coatings onto ferritic stainless steel for SOFC interconnects. Journal of Power Sources, 2010 (15):4772-4778
    [29] Z. Han, J. Zhang, X. Yang, H. Zhu, W. Cao. Synthesis and photoelectric property of poly (3-octylthiophene)/zinc oxide complexes. Solar Energy Materials and Solar Cells, 2010 (2):194-200
    [30] R. Murugan, S. Ramakrishna. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 2004 (17):3829-3835
    [31] T.C. Coelho, R. Laus, A.S. Mangrich, V.T. de Favere, M.C.M. Laranjeira. Effect of heparin coating on epichlorohydrin cross-link chitosan microspheres on the adsorption of copper (II) ions. Reactive and Functional Polymers, 2007 (5):468-475
    [32] M.R. Kasaai. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. CarbohydratePolymers, 2008 (4):497-508
    [33] B. Guan, W. Ni, Z. Wu, Y. Lai. Removal of Mn (II) and Zn (II) ions from flue gas desulfurization wastewater with water-soluble chitosan. Separation and Purification Technology, 2009 (3):269-274
    [34] X. Wang, Y. Du, H. Liu. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydrate Polymers, 2004 (1):21-26
    [1] Y. Liu, L. Ren, S. Yu, Z. Han. Influence of current density on nano-Al_2O_3/Ni+Co bionic gradient composite coatings by electrodeposition. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008 (5):633-637
    [2] K.E. Pappacena, M.T. Johnson, S. Xie, K.T. Faber. Processing of wood-derived copper-silicon carbide composites via electrodeposition. Composites Science and Technology, 2010 (3):485-491
    [3] N.S. Qu, K.C. Chan, D. Zhu. Pulse co-electrodeposition of nano Al_2O_3 Bwhiskers nickel composite coating. Scripta Materialia, 2004 (8):1131-1134
    [4] E. Rudnik, L. Burzynska, L. Dolasinski, M. Misiak. Electrodeposition of nickel/SiC composites in the presence of cetyltrimethylammonium bromide. Applied Surface Science, 2010 (24):7414-7420
    [5] Y.-h. Song, G. Wei, R.-c. Xiong. Properties and structure of RE-Ni-W-P-SiC composite coating prepared by impulse electrodeposition. Transactions of Nonferrous Metals Society of China, 2007 (2):363-367
    [6] F. Wang, S. Arai, M. Endo. Preparation of nickel-carbon nanofiber composites by a pulse-reverse electrodeposition process. Electrochemistry Communications, 2005 (7):674-678
    [7] X. Xia, I. Zhitomirsky, J.R. McDermid. Electrodeposition of zinc and composite zinc-yttria stabilized zirconia coatings. Journal of Materials Processing Technology, 2009 (5):2632-2640
    [8] Y.-J. Xue, X.-Z. Jia, Y.-W. Zhou, W. Ma, J.-S. Li. Tribological performance of Ni-CeO_2 composite coatings by electrodeposition. Surface and Coatings Technology, 2006 (20-21):5677-5681
    [9] C. Guo, Y. Zuo, X. Zhao, J. Zhao, J. Xiong. Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surface and Coatings Technology, 2008 (14):3385-3390
    [10] J. Park, J. Eom, H. Kwon. Fabrication of Sn-C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries. Electrochemistry Communications, 2009 (3):596-598
    [11] E. Pompei, L. Magagnin, N. Lecis, P.L. Cavallotti. Electrodeposition of nickel-BN composite coatings. Electrochimica Acta, 2009 (9):2571-2574
    [12] B.M. Praveen, T.V. Venkatesha. Electrodeposition and properties of Zn-Ni-CNT composite coatings. Journal of Alloys and Compounds, 2009 (1-2):53-57
    [13] L. Shi, C.F. Sun, P. Gao, F. Zhou, W.M. Liu. Electrodeposition and characterization of Ni-Co-carbon nanotubes composite coatings. Surface and Coatings Technology, 2006 (16-17):4870-4875
    [14] Y. Suzuki, S. Arai, M. Endo. Ni-P alloy-carbon black composite films fabricated by electrodeposition. Applied Surface Science, 2010 (22):6914-6917
    [15] J.-l. Wang, R.-d. Xu, Y.-z. Zhang. Influence of SiO_2 nano-particles on microstructures and properties of Ni-W-P/CeO_2-SiO_2 Bcomposites prepared by pulse electrodeposition. Transactions of Nonferrous Metals Society of China, 2010 (5):839-843
    [16] H. Li, Y. Wan, H. Liang, X. Li, Y. Huang, F. He. Composite electroplating of Cu-SiO_2 nano particles on carbon fiber reinforced epoxy composites. Applied SurfaceScience, 2009 (5):1614-1616
    [17] W.-Y. Tu, B.-S. Xu, S.-Y. Dong, H.-d. Wang. Electrocatalytic action of nano-SiOB2B with electrodeposited nickel matrix. Materials Letters, 2006 (9-10):1247-1250
    [18] T.J. Tuaweri, G.D. Wilcox. Behaviour of Zn-SiO_2 electrodeposition in the presence of N,N-dimethyldodecylamine. Surface and Coatings Technology, 2006 (20-21):5921-5930
    [19] R.-d. Xu, J.-l. Wang, Z.-c. Guo, H. Wang. High-temperature oxidation behavior of CeO_2-SiO_2/Ni-W-P composites. Transactions of Nonferrous Metals Society of China, 2009 (5):1190-1195
    [20] A.M. Mahajan, L.S. Patil, D.K. Gautam. Influence of process parameters on the properties of TEOS-PECVD-grown SiO_2 films. Surface and Coatings Technology, 2004 (4):314-318
    [21] K. Kamimura, D. Kobayashi, S. Okada, T. Mizuguchi, E. Ryu, R. Hayashibe, F. Nagaune, Y. Onuma. Preparation and characterization of SiO_2/6H-SiC metal-insulator-semiconductor structure using TEOS as source material. Applied Surface Science, 2001 (1-4):346-349
    [22] H. Kinoshita, T. Murakami, F. Fukushima. Chemical vapor deposition of SiO_2 films by TEOS/OB2B supermagnetron plasma. Vacuum, 2004 (1):19-22
    [23] J. Lee, E. Chung, W. Moon, D.H. Suh. Effect of H_2O evolving from TEOS based SiO_2 film on the EEPROM cell characteristic. Microelectronic Engineering, 2006 (10):2001-2003
    [24] A.M. Mahajan, L.S. Patil, J.P. Bange, D.K. Gautam. Growth of SiO_2 films by TEOS-PECVD system for microelectronics applications. Surface and Coatings Technology, 2004 (2-3):295-300
    [25] M. Xu, S. Xu, Y.C. Ee, C. Yong, J.W. Chai, S.Y. Huang, J.D. Long. Visible photoluminescence from the annealed TEOS SiO_2. Materials Science and Engineering: B, 2006 (1-3):89-92
    [26] N. Bogdanchikova, A. Pestryakov, M.H. Farias, J.A. Diaz, M. Avalos, J. Navarrete. Formation of TEM- and XRD-undetectable gold clusters accompanying big gold particles on TiO_2-SiO_2 supports. Solid State Sciences, 2008 (7):908-914
    [27] Y. Gao, N.R. Choudhury, N. Dutta, J. Matisons, M. Reading, L. Delmotte. Organic-Inorganic Hybrid from Ionomer via Sol-Gel Reaction. Chemistry of Materials, 2001 (10):3644-3652
    [28] S.C. Chung, J.R. Cheng, S.D. Chiou, H.C. Shih. EIS behavior of anodized zinc in chloride environments. Corrosion Science, 2000 (7):1249-1268
    [29] V. Barranco, S. Feliu. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 1: directly exposed coatings. Corrosion Science, 2004 (9):2203-2220
    [30] D.A. Donatti, D.R. Vollet. Study of the hydrolysis of TEOS-TMOS mixtures under ultrasound stimulation. Journal of Non-Crystalline Solids, 1996 (3):301-304
    [31] A. Kierys, M. Dziadosz, J. Goworek. Polymer/silica composite of core-shell type by polymer swelling in TEOS. Journal of Colloid and Interface Science, 2010 (1):361-365
    [32] S.-B. Park, J.-O. You, H.-Y. Park, S.J. Haam, W.-S. Kim. A novel pH-sensitivemembrane from chitosan -- TEOS IPN; preparation and its drug permeation characteristics. Biomaterials, 2001 (4):323-330
    [33] V. Singh, S. Pandey, S.K. Singh, R. Sanghi. Removal of cadmium from aqueous solutions by adsorption using poly(acrylamide) modified guar gum-silica nanocomposites. Separation and Purification Technology, 2009 (3):251-261
    [34] L. Sudheendra, A.R. Raju. Peptide-induced formation of silica from tetraethylorthosilicate at near-neutral pH. Materials Research Bulletin, 2002 (1):151-159
    [35] A. Venkateswara Rao, G.M. Pajonk, N.N. Parvathy. Preparation and characterization of nanocrystalline CdS doped monolithic and transparent TEOS silica xerogels using sol-gel method. Materials Chemistry and Physics, 1997 (3):234-239
    [36] X. Zhang, Y. Wu, S. He, D. Yang. Structural characterization of sol-gel composites using TEOS/MEMO as precursors. Surface and Coatings Technology, 2007 (12):6051-6058