超冷铷铯极性分子的制备及测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光冷却俘获原子的实现使原子分子物理的研究焕发无限生机,尤其是近几年在超冷原子分子物理的研究中形成了若干有重要意义的新方向,如超冷极性分子。永久电偶极矩、易受外场操控、可调控的各向异性长程偶极-偶极作用等特点使其在精密测量、量子计算、多体问题和超冷化学等方面有着重要的应用。分子具有的多重振转能级结构为量子态的并行运算提供了条件,但也几乎排除了用激光冷却技术实现分子直接冷却的可能性。以超冷原子样品为基础,通过光场或者磁场的缔合是目前制备超冷分子的主要技术手段。本文建立了超冷铷铯原子的实验平台,在此基础上实现了超冷铷铯极性分子的制备,利用原子俘获损耗技术和光电离技术分别观测到了超冷激发态和超冷基态铷铯分子,测量了超冷铷铯分子的光缔合光谱和光电离,并对相关物理特性,如原子碰撞特性、分子转动常数和离心扭曲常数及分子的寿命、电偶极矩等进行了研究。
     本文的主要创新性工作概括如下:
     一、利用暗磁光阱技术,将磁光阱中冷原子密度增加了一个数量级:铯原子密度达到6×1011cm-3,铷原子密度达到3×1011cm-3,有效地降低了原子间的碰撞损失率,为制备超冷铷铯分子奠定了基础。
     二、利用原子荧光调制解调和共振增强双光子电离,分别实现了超冷激发态铷铯分子和超冷基态铷铯分子的高灵敏探测。
     三、采用无调制数字伺服系统锁频方法,实现了激光器频率覆盖范围内任意绝对频率的锁定,将缔合光激光器长期锁定在原子-分子跃迁频率上,为研究超冷基态分子的光电离光谱提供了必要的技术支持。
     四、利用工作二和工作三中的高灵敏探测技术和稳频技术,观测到了短程态超冷铷铯分子的光缔合光谱和光电离光谱,为单步光缔合直接制备最低振转态超冷铷铯分子这一新机制奠定了实验基础。
Atomic and molecular physics develop rapidly in rencet years arsing from laser cooling and trapping for cold atom, resulting to some important research interests in ultracold atoms and molecules, such as ultracold polar molecules. Ultracold polar molecules are of particular interest because they have pement electronic dipole moments, which mean that they are easy to be contronlled by extral field. Their dipole-dipole intramolecular interactions are long-range, ani so tropic, and tunable, resulting to some important applications, such as precision measurement, quantum calculation, many body problem and ultracold chemistry. The complicated rovibrational molecular structures provide some conditions for paralled calculation of quantum states, but also exclude the possibility of direct molecule cooling by laser cooling and trapping. The main methods to produce ultracold molecules are to associate ultracold atoms by laser field or magnetic field. In this paper, we constitute an experimental setup for photoassociative production and detection of ultracold RbCs polar molecules baesed ultracold rubidium and cesium atoms, use the atom trap loss technique and ionization spectrum technique to get the Photoassociation spectrum and ionization spectrum, study some related physical properties, such as atom collision property, molecular rotational constant and distortion constant, and molecular electric dipole moment.
     These are some innovative work in this thesis:
     1. We use dark MOT technique to increase cold atomic density in MOT with one order: cesium atomic density increases to6×10cm-3while rubidium atomics increases to6×1011cm-3, at the same time the collison rate decreases to half.This provides a foundation for production of ultracold RbCs molecules.
     2. We use modulation spectroscopy technique of atom fluorescence and resonant enhanced two photo ionization technique to realize the high sensitive detection of ultracold molecules in excited state and ground state, respectively.
     3. By using a robust non-modulation digital servo system to lock the laser frequency to atom-molecule transition, or even any absolute frequency in the laser frequency range. This frequency stabilization provides necessary technical support for the photoionization spectrum of ultracold RbCs molecules in ground state.
     4. Based on high sensitive dection and frequency stabilization of work two and three, we observed the photoassociation spectrum and photoionization spectrum of ultracold RbCs molecules at long range and short range. This work provide experimental basis to produce the lowest rovibrational state RbCs molecules by one step photoassociative laser, whch is a new mechanism to produce RbCs molecules in the X(V=0,J=0) state.
引文
[1]T. W. Hansch, A. L. Shawlow. Cooling of gasses by laser radiation. Opt. Comm.,1975, 13,68-69.
    [2]S. Chu. L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 1985,55,48-51.
    [3]E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett.,1987,59,2631-2634.
    [4]M. Takamoto, F. L. Hong, R. Higashi, H. Katori. An optical lattice clock. Nature,2005, 435,321-324.
    [5]T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, J. Ye. Precision spectroscopy and density-dependent frequency shifts in ultracold Sr. Phys. Rev. Lett., 2005,94,153001.
    [6]K. Gibble, S. Chu. Laser-cooled Cs frequency standard and a measurement of the frequency -shift due to ultracold collisions. Phys. Rev. Lett.,2003,70,1171-1174.
    [7]M. Kasevich, S. Chu. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett.,2001,67,181-184.
    [8]K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett.,2005,75,3969-3973.
    [9]M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Weiman, E. A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science,1995, 269,198-201.
    [10]L. D. Carr, D. DeMille, R. V. Krems, J. Ye. Cold and ultracold molecules:science, technology and applications. New J. Phys.,2009,11,055049.
    [11]P. W. Shor. Algorithms for quantum computation:discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press,1994,35,124-134.
    [12]M. Ortner, Y. L. Zhou, P. Rabl, P. Zoller. Quantum information processing in self-assembled crystals of cold polar molecules. Quantum Inf. Process,2011,10, 793-819.
    [13]T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O'Brien, Quantum computers. Nature,2010,464,45-53.
    [14]D. DeMille. Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002,88,067901.
    [15]E. Bodo, F. A. Gianturco, A. Dalgarno. F+D2 reaction at ultracold temperatures. J. Chem. Phys.,2002,116,9222-99227.
    [16]C. Ticknor, J. L. Bohn. Long-range scattering resonances in strong-field-seeking states of polar molecules. Phys. Rev. A,2005,72,032717.
    [17]A. V. Gorshkov, P. Rabl, G.. Pupillo, A. Micheli, P. Zoller, M. D. Lukin, H. P. Buchler. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett.,2008,101,073201.
    [18]R. V. Krems. Controlling collisions of ultracold atoms with dc electric fields. Phys. Rev. Lett.,2006,96,123202.
    [19]B. C. Regan, E. D. Commins, C. J. Schmidt, D. DeMille. New limit on the electron electric dipole moment. Phys. Rev. Lett.,2002,88,071805.
    [20]P. G. H. Sandars. The electric dipole moment of an atom. Phys. Lett.,1965,14, 194-196.
    [21]J. J. Hudson, B. E. Sauer, M. R. Tarbutt, E. A. Hinds. Measurement of the electron electric dipole moment using YbF molecules. Phys. Rev. Lett.,2002,89,023003.
    [22]M. G. Kozlov, D. DeMille. Enhancement of the electric dipole moment of the electron in PbO. Phys. Rev. Lett.,2002,89,89,133001.
    [23]J. J. Hudson, D. M. Kara, I. J. Smallmanl, B. E. Sauer, M. R. Tarbutt, E. A. Hinds. Improved measurement of the shape of the electron. Nature,2011,473,493-496.
    [24]J. T. Bahns, W. C. Stwalley, P. L. Gould. Laser cooling of molecules:a sequential scheme for rotation, translation, and vibration. J. Chem. Phys.,1996,104,9689.
    [25]E. S. Shuman, J. F. Barry, D. DeMille. Laser cooling of a diatomic molecule. Nature, 2010,467,820-823.
    [26]K. S. Benjamin, C. S. Brian, D. J. Wang, J. Ye. Magneto-optical trap polar molecules. Phys. Rev. Lett.,2008,101,243002.
    [27]J. Doyle, B. Friedrich, R. V. Krems, F. Masnou-Seeuws. Q. vadis, cold molecules?. Eur. Phys. J. D,2004,31,149-164.
    [28]J. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J. M. Doyle. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature,1998,395, 148-150.
    [29]D. Egorov, T. Lahaye, W. Schollkopf, B. Friedrich, J. M. Doyle. Buffer-gas cooling of atomic and molecular beams. Phys. Rev. A,2002,66,043401.
    [30]J. M. Doyle, B. Friedrich. Chemical physics:molecules are cool. Nature,1999,401, 749-750.
    [31]M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, E. A. Hinds. Slowing heavy, ground-state molecules using an alternating gradient decelerator. Phys. Rev. Lett.,2004,92,173002.
    [32]H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, G. Meijer. Electrostatic trapping of ammonia molecules. Nature,2000,406,491-494.
    [33]M. Gupta, D. Herschbach. A mechanical means to produce intense beams of slow molecules. J. Phys. Chem. A.,1999,103,10670-10673.
    [34]M. S. Elioff, J. J. Valentini, D. W. Chandler. Subkelvin cooling NO molecules via billiard-like collisions with argon. Science,2003,302,1940-1943.
    [35]C. Chin, R. Grimm, P. Julienne, E. Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys.,2010,82,1225-1286.
    [36]A. J. Moerdijk, B. J. Verhaar, A. Axelsson. Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys. Rev. A,1995,51,4852-4861.
    [37]H. Feshbach. A unified theory of nuclear reactions. Ann. Phys.,1958,5,357-390.
    [38]H. Feshbach. A unified theory of nuclear reactions. Ⅱ. Ann. Phys.,1962,19,287-313.
    [39]S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. StamperKurn, W. Ketterle. Observation of Feshbach resonances in a Bose-Einstein condensate. Science,1998, 392,151-154.
    [40]S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, C. E. Wieman. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett.,2000, 85,1795-1798.
    [41]C. Chin, V. Vuletic, A. J. Kerman, S. Chu. High resolution Feshbach spectroscopy of cesium. Phys. Rev. Lett.,2000,85,2717-2720.
    [42]C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach, W. Ketterle. Observation of Feshbach resonances between two different atomic species. Phys. Rev. Lett.,2004,93,143001.
    [43]E. Wille, F. M. Spiegelhalder, G Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, P. S. Julienne. Exploring an ultracold Fermi-Fermi mixture:interspecies Feshbach resonances and scattering properties of 6Li and 40K. Phys. Rev. Lett.,2008, 100,053201.
    [44]B. Deh, C. Marzok, C. Zimmermann, Ph. W. Courteille. Feshbach resonances in mixtures of ultracold 6Li and 87Rb gases. Phys. Rev. A,2008,77,010701.
    [45]E. Hodby, S. T. Thompson, C. A. Regal, M. Greiner, A. C. Wilson, D. S. Jin, E. A. Cornell, C. E. Wieman. Production efficiency of ultracold Feshbach mlecules in Bosonic and Fermionic systems. Phys. Rev. Lett.,2005,94,120402.
    [46]K. Pilch, A. D. Lange, A. Prantner, G. Kerner, F. Ferlaino, H.-C. Nagerl, R. Grimm. Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture. Phys. Rev. A,2009,79,042718.
    [47]K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne. Ultracold photoassociation spectroscopy:long-range molecules and atomic scattering. Rev. Mod. Phys.,2006,78, 483-535.
    [48]H. Scheingraber, C. R. Vidal. Discrete and continuous Franck Condon factors of the Mg2 A1Σu+-X1Σg+ system and their J dependence. J. Chem. Phys.,1977,66,3694.
    [49]H. R. Thorsheim, J. Weiner, P. S. Julienne. Laser-induced photoassociation of ultracold sodium atoms. Phys. Rev. Lett.,1987,58,2420-2423.
    [50]J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange, O. Dulieu, R. Wester, M. Weidemuller. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett.,2008,101,133004.
    [51]C. Haimberger, J. Kleinert, M. Bhattacharya, N. P. Bigelow. Formation and detection of ultracold ground-state polar molecules. Phys. Rev. A,2004,70,021402.
    [52]D. Wang, J. Qi, M. F. Stone,O. Nikolayeva, H. Wang, B. Hattaway, S. D. Gensemer, P. L. Gould, E. E. Eyler, W. C. Stwalley. Photoassociative production and trapping of ultracold KRb Molecules. Phys. Rev. Lett.,2004,93,243005.
    [53]J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Optical production of ultracold polar molecules. Phys. Rev. Lett.,2005,94,203001.
    [54]N. Nemitz, F. Baumer, F. Munchow, S. Tassy, A. Gorlitz. Production of heteronuclear molecules in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb. Phys. Rev. A,2009,79,061403.
    [55]A. Ridinger, S. Chaudhuri, T. Salez, D. R. Fernandes, N. Bouloufa, O. Dulieu, C. Salomon, F. Chevy. Photoassociative creation of ultracold heteronuclear 6Li40K molecules. Eur. Phys. Lett.,2011,96,33001.
    [56]K. Bergmann, H. Theuer, B. W. Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys.,1998,70,1003-1025.
    [57]K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, J. Ye. A high phase-space-density gas of polar molecules. Science,2008,322,231-235.
    [58]H. Wang, W. C. Stwalley. Ultracold photoassociative spectroscopy of heteronuclear alkali-metal diatomic molecules. J. Chem. Phys.,1998,108,5767.
    [59]S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quemener, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science,2010,327,853-857.
    [60]P. S. Zuchowski, J. M. Hutson. Reactions of ultracold alkali-metal dimmers. Phys. Rev. A,2010,81,060703.
    [61]A. Petrov, S. Kotochigova. Universalities in ultracold reactions of alkali-metal polar molecules. Phys. Rev. A,2011,84,062703.
    [62]L. Santos, G. V. Shlyapnikov, P. Zoller, M. Lewenstein. Bose-Einstein condensation in trapped dipolar gases. Phys. Rev. Lett.,2000,85,1791-1794.
    [63]M. A. Baranov, M. S. Mar'enko, Val. S. Rychkov, G. V. Shlyapnikov. Superfluid pairing in a polarized dipolar Fermi gas. Phys. Rev. A,2002,66,013606.
    [64]M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle. Observation of Bose-Einstein condensation of molecules. Phys. Rev. A,2003,91,250401.
    [65]T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, R. Grimm. Bose-Einstein condensation of cesium. Science,2003,299,232-235.
    [66]D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Koppinger, S. L. Cornish. Dual-species Bose-Einstein condensate of 87Rb and 133Cs. Phys. Rev. A,2011,84, 011603.
    [67]A. D. Lercher, T. Takekoshi, M. Debatin, B. Schuster, R. Rameshan, F. Ferlaino, R. Grimm, H.-C. Nagerl. Production of a dual-species Bose-Einstein condensate of Rb and Cs atoms. Eur. Phys. J. D,2011,65,3-9.
    [68]O. Docenko, M. Tamanis, R. Ferber, H. Knockel, E. Tiemann. Singlet and triplet potentials of the ground-state atom pair Rb+Cs studied by fourier-transform spectroscopy. Phys. Rev. A,2011,83,052519.
    [69]O. Docenko, M. Tamanis, R. Ferber, T. Bergeman, S. Kotochigova, A. V. Stolyarov, Andreia de Faria Nogueira, C. E. Fellows. Spectroscopic data, spin-orbit functions, and revised analysis of strong perturbative interactions for the A1Σ+and b3Π states of RbCs. Phys. Rev. A,2010,81,042511.
    [70]S. Kotochigova. Prospects for making polar molecules with microwave fields. Phys. Rev. Lett.,2007,99,073003.
    [71]S. Kotochgova, and D. DeMille, Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic polar molecules, Phys. Rev. A 82,063421 (2010).
    [72]B. E. Londono, J. E. Mahecha, E. Luc-Koenig, A. Crubellier. Resonant coupling effects on the photoassociation of ultracold Rb and Cs atoms. Phys. Rev. A,2009,80, 032511.
    [73]B. E. Londono, J. E. Mahecha, E. Luc-Koenig, A. Crubellier. Shape resonances in ground-state diatomic molecules:general trends and the example of RbCs. Phys. Rev. A,2010,82,012510.
    [74]A. Homer, G. Roberts. Chirped fields for Rb+Cs photoassociation. Phys. Rev. A,2008, 78,053404.
    [75]A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Production of ultracold, polar RbCs* molecules via photoassociation. Phys. Rev. Lett.,2004,92,033004.
    [76]A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Production and state-selective detection of ultracold RbCs molecules. Phys. Rev. Lett.,2004,92, 153001.
    [77]M. Debatin, T. Takekoshi, R. Rameshan, L. Reichsollner, F. Ferlaino, R. Grimm, R. Vexiau, N. Bouloufa, O. Dulieu, H.-C. Nagerl. Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules. Phys. Chem. Chem. Phys.,2011, 13,18926-18935.
    [78]H. W. Cho, D. J. McCarron, D. L. Jenkin, M. P. Koppinger, S. L. Cornish. A high phase-space density mixture of Rb and 133Cs:towards ultracold heteronuclear molecules. Eur. Phys. J. D,2011,65,125-131.
    [79]W. C. Stwalley, J. Banerjee, M. Belos, R. Carollo, M. Recore, M. Mastroianni. Resonant coupling in the heteronuclear alkali dimers for direct photoassociative formation of X(V=0,J=0) ultracold molecules. J. Phys. Chem. A,2010,114,81-86.
    [80]N. Bouloufa-Maafa, M. Aymar, O. Dulieu, C. Gabbanini, Formation of ultracold RbCs molecules by Photoassociation,2011, arXiv:1111.3503v1.
    [81]Zhonghua Ji, Hongshan Zhang, Jizhou Wu, Jinpeng Yuan, Yonggang Yang, Yanting Zhao, Jie Ma, Lirong Wang, Liantuan Xiao, Suotang Jia, Photoassociative formation of ultracold RbCs molecules in the (2)3Π state, Phys. Rev. A,2012,85,013401.
    [1]E. E. Nikitin, R. N. Zare. Correlation diagrams for hund's coupling cases in diatomic molecules with high rotational angular momentum. Mol. Phys.1994,82,85-100.
    [2]A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, M. Aubert-Frecon. Theoretical electronic structure of RbCs revisited. J. Phys. B,2000,33, 2307-2316.
    [3]H. Fahs, A. R. Allouche, M. Korek, M. Aubert-Frecon. The theoretical spin-orbit structure of the RbCs molecule. J. Phys. B,2002,35,1501-1508.
    [4]C. E. Fellows, R. F. Gutterres, A. P. C. Campos, J. Verges, C. Amiot. The RbCs X1Σ+ ground electronic state:new spectroscopic study. J. Mol. Spectrosc.1999,197,19-27.
    [5]J. L. Bohn, P. S. Julienne. Semianalytic theory of laser-assisted resonant cold collisions. Phys. Rev. A,1999,60,414-425.
    [6]J. L. Bohn, P. S. Julienne. Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms. Phys. Rev. A,1996,4637-4640.
    [7]F. H. Mies, A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering. J. Chem. Phys.,1984,80,2514-2525.
    [8]M. J. Seaton. Quantum defect theory. Rep. Prog. Phys.,1983,46,167-257.
    [9]F. H. Mies. A scattering theory of diatomic molecules. Mol. Phys.,1980,41,953-972.
    [10]B.Gao. Quantum-defect theory of atomic collisions and molecular vibration spectra. Phys. Rev. A,1998,58,4222-4225.
    [11]J. P. Shaffer, W. Chalupczak, N. P. Bigelow. Photoassociative ionization of heteronuclear molecules in a novel two-species magneto-optical trap. Phys. Rev. Lett., 1999,82,1124-1127.
    [12]H. Wang. Progress toward making ultracold heteronuclear RbCs molecules via photoassociation. Bulletin of the American Physical Society,2003,48, J1.025.
    [13]A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Production of ultracold, polar RbCs* molecules via photoassociation. Phys. Rev. Lett.,2004,92,033004.
    [14]P. S. Julienne. Cold binary atomic collisions in a light field. J. Res. Natl. Inst. Stand. Technol.1996,101,487.
    [15]J. O. Hirschfelder, W. J. Meath. Nature of Intermolecular Forces. Adv. Chem. Phys., 1967,12,3.
    [1]S. Chu. L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 1985,55,48-51.
    [2]李义民.用磁光阱捕获与冷却铯原子的理论和实验研究.北京大学博士论文,1996.
    [3]C. J. Foot, Atomic physics. Oxford University Press,2005,178-182.
    [4]E. Ertmer, R. Blatt, J. Hall, M. Zhu. Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal. Phys. Rev. Lett.,1985,54, 996-999.
    [5]W. D. Phillips, H. Metcalf. Laser deceleration of an atomic beam. Phys. Rev. Lett., 1982,48,596-599.
    [6]T. E. Barrett, S. Dapore-Schwartz, M. Ray, G. Lafyatis. Slowing atoms with σ-polarized light. Phys. Rev. Lett.,1991,67,3483-3486.
    [7]R. Gaggl, L. Windholz, C. Umfer, C. Neureiter. Laser cooling of a sodium atomic beam using the Stark effect. Phys. Rev. A,1994,49,1119-1121.
    [8]E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett.,1987,59,2631-2634.
    [9]C. Monroe, W. Swann, H. Robinson, C. Wieman. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett.,1990,65,1571-1574.
    [10]D. Sesko, T. Walker, C. Monroe, A. Gallagher, C. Wieman. Collisional losses from a light-force atom trap. Phys. Rev. Lett.,1989,63,961-964.
    [11]M. H. Anderson, W. Petrich, J. R. Ensher, E. A. Cornell. Reduction of light-assisted collisional loss rate from a low-pressure vapor-cell trap. Phys. Rev. A,1994,50, 3597-3600.
    [12]W. D. Phillips. Laser cooling and trapping of neutral atoms.Rev. Mod. Phys.,1998, 70,721.
    [13]P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. Gould, H. Metcalf. Observation of atoms laser cooled below the doppler limit. Phys. Rev. Lett.,1988,61, 169-172.
    [14]C. N. Cohen-Tannoudji, W. D. Phillips. New Mechanisms for Laser Cooling. Physics Today,1990,43,33-43.
    [15]J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients:simple theoretical models. J. Opt. Soc. Am. B,1989,6, 2023-2045.
    [16]B. Sheehy, S. Q. Shang, P. Van der Straten, S. Hatamian, H. Metcalf. Magnetic-field-induced laser cooling below the doppler limit. Phys. Rev. Lett.,1990, 64,858-861.
    [17]王军民.铯原子汽室磁光阱装置的建立及激光冷却与俘获铯原子的实验研究.山西大学博士论文,1999.
    [18]A. Aspect, E. Arimondo, R. Kaiser, V. Vansteenkiste, C. Cohen-Tannoudji. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett.,1988,61,826-829.
    [19]M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu. Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett.,1991,66,2297-2300.
    [20]D. A. Steck. Rubidium 85D Line Data. http://steck.us/alkalidata,2010.
    [21]D. A. Steck. Rubidium 87D Line Data. http://steck.us/alkalidata,2010.
    [22]D. A. Steck. Cesium 133D Line Data. http://steck.us/alkalidata,2010.
    [23]National Institute of Standards and Technology (NIST). Atomic spectra database, http://physics.nist.gov/cgi-bin/ASD/levels pt.pl,2005.
    [24]张靖,陶桦,卫栋,董雅宾,耿涛,王军民,彭堃墀.铷原子饱和吸收稳频半导体激光器系统.光学学报,2004,3,197-201.
    [25]韩燕旭,王波,马杰,校金涛,王海.冷原子EIT介质的原子数目和温度的测量.量子光学学报,2007,13,30-34.
    [26]T. Walker, D. Sesko, C. Wieman. Collective behavior of optically trapped neutral atoms. Phys.Rev.Lett.,1990,64,408-411.
    [27]L. Marcassa, V. Bagnato, Y. Wang et al. Collisional loss rate in a magneto-optical trap for sodium atoms:light-intensity dependence. Phys. Rev. A,1993,47, 4563-4566.
    [28]A. Gallagher, D. Pritchard, Exoergic collision of cold Na-Na, Phys. Rev. Lett.,1989, 63,957-960.
    [29]孟腾飞.超冷Rb-Cs原子碰撞特性的实验研究.山西大学硕士论文,2010.
    [30]Z. H. Ji, J. Z. Wu, H. S. Zhang, T. F. Meng, J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia. Investigation of cold collision in a Rb-Cs magneto-optical trap. J. Phys. B: At. Mol. Opt. Phys.,2011,44,025202.
    [31]M. W. Mancini, A. R. L. Caires, G. D. Telles, V. S. Bagnato, L. G. Marcassa. Trap loss rate for heteronuclear cold collisions in two species magneto-optical trap. Eur. Phys. J. D,2004,30,105-116.
    [32]L. G. Marcassa, G. D. Telles, S. R. Muniz, V. S. Bagnato. Collisional losses in a K-Rb cold mixture. Phys. Rev. A,2000,63,013413.
    [33]Y. E. Young, R. Ejnisman, J. P. Shaffer, N. P. Bigelow. Heteronuclear hyperfine-state-changing cold collisions. Phys. Rev. A,2000,62,055403.
    [34]G. D. Telles, W. Garcia, L. G. Marcassa, V. S. Bagnato, D. Ciampini, M. Fazzi, J. H. M" uller, D. Wilkowski, E. Arimondo. Trap loss in a two-species Rb-Cs magneto-optical trap. Phys. Rev. A,2001,63,033406.
    [35]M. E. Holmes, M. Tscherneck, P. A. Quinto-Su, N. P. Bigelow. Isotopic difference in the heteronuclear loss rate in a two-species surface trap. Phys. Rev. A,2004,69, 063408.
    [36]H. Wang, W. C. Stwalley. Ultracold photoassociative spectroscopy of heteronuclear alkali-metal diatomic molecules. J. Chem. Phys.,1998,108,5767.
    [37]J. P. Shafer. Heteronuclear and homonuclear ultracold optical collisions between Na and Cs. PhD theis of the university of Rochester,1999.
    [38]C. D. Wallace, T. P. Dinneen, K. N. Tan, T. T. Grove, P. L. Gould. Isotopic difference in trap loss collisions of laser cooled rubidium atoms. Phys. Rev. Lett.,1992,69, 897-900.
    [1]H. R. Thorsheim, J. Weiner, P. S. Julienne. Laser-induced photoassociation of ultracold sodium atoms. Phys. Rev. Lett.,1987,58,2420-2423.
    [2]J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange, O. Dulieu, R. Wester, M. Weidemuller. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett.,2008,101,133004.
    [3]C. Haimberger, J. Kleinert, M. Bhattacharya, N. P. Bigelow. Formation and detection of ultracold ground-state polar molecules. Phys. Rev. A,2004,70,021402.
    [4]D. Wang, J. Qi, M. F. Stone, O. Nikolayeva, H. Wang, B. Hattaway, S. D. Gensemer, P. L. Gould, E. E. Eyler, W. C. Stwalley. Photoassociative production and trapping of ultracold KRb Molecules. Phys. Rev. Lett.,2004,93,243005.
    [5]J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Optical production of ultracold polar molecules. Phys. Rev. Lett.,2005,94,203001.
    [6]N. Nemitz, F. Baumer, F. Munchow, S. Tassy, A. Gorlitz. Production of heteronuclear molecules in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb. Phys. Rev. A,2009,79,061403.
    [7]J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Optical production of ultracold polar molecules. Phys. Rev. Lett.,2005,94,203001.
    [8]K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, J. Ye. A high phase-space-density gas of polar molecules. Science,2008,322,231-235.
    [9]S. Ospelkaus, A. Peer, K.-K. Ni, J. J. Zirbel, B. Neyenhuis, S. Kotochigova, P. S. Julienne, J. Ye, D. S. Jin. Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nature. Phys.2008,4,622-626.
    [10]K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, S. Inouye. Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys. Rev. Lett.,2010,105,203001.
    [11]M. Debatin, T. Takekoshi, R. Rameshan, L. Reichsollner, F. Ferlaino, R. Grimm, R. Vexiau, N. Bouloufa, O. Dulieu, H.-C. Nagerl. Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules. Phys. Chem. Chem. Phys.,2011, 13,18926-18935.
    [12]W. C. Stwalley, J. Banerjee, M. Belos, R. Carollo, M. Recore, M. Mastroianni. J. Phys. Chem. A,2010,114,81-86.
    [13]B. E. Londono, J. E. Mahecha, E. Luc-Koenig, A. Crubellier. Resonant coupling effects on the photoassociation of ultracold Rb and Cs atoms. Phys. Rev. A,2009,80, 032511.
    [14]J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange, O. Dulieu, R. Wester, M. Weidemuller. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett.,2008,101,133004.
    [15]P. Zabawa, A. Wakim, M. Haruza, N. P. Bigelow. Formation of ultracold X1Σ+(v"=0) NaCs molecules via coupled photoassociation channels. Phys. Rev. A,2011,84, 061401.
    [16]C. Gabbanini, O. Dulieu. Formation of ultracold metastable RbCs molecules by short-range Photoassociation. Phys. Chem. Chem. Phys.2011,13,18905-18909.
    [17]Zhonghua Ji, Hongshan Zhang, Jizhou Wu, Jinpeng Yuan, Yonggang Yang, Yanting Zhao, Jie Ma, Lirong Wang, Liantuan Xiao, Suotang Jia, Photoassociative formation of ultracold RbCs molecules in the (2)3Π state, Phys. Rev. A,2012,85,013401.
    [18]C. G. Townsend, N. H. Edwards, K. P. Zetie, C. J. Cooper, J. Rink, C. J. Foot. High-density trapping of cesium atoms in a dark magneto-optical trap. Phys. Rev. A, 1996,53,1702-1714.
    [19]D. Comparat, C. Drag, A. Fioretti, O. Dulieu, P. Pillet. Photoassociative spectroscopy and formation of cold molecules in cold cesium vapor:trap-loss spectrum versus ion spectrum. J. Mol. Spectrosc.,1999,195,229-235.
    [20]A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet. Formation of cold Cs2 molecules through photoassociation. Phys. Rev. Lett.,1998,80, 4402-4405.
    [21]H. Wang, P. L. Gould, W. C. Stwalley. Fine-structure predissociation of ultracold photoassociated 39K2 molecules observed by fragmentation spectroscopy. Phys. Rev. Lett.,1998,80,476-479.
    [22]马杰.超冷铯分子的高灵敏研究.山西大学博士论文,2009.
    [23]J. Z. Wu, J. Ma, Y. C. Zhang, Y. Q. Li, L. R. Wang, Y. T. Zhao,G Chen, L. T. Xiao, S. T. Jia. High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules. Phys. Chem. Chem. Phys.,2011,13,18921-18925.
    [24]L.R.Wang, J. Ma, C. Y. Li, J. M. Zhao, L. T. Xiao, S. T. Jia. High sensitive photoassociation spectroscopy based on modulated ultra-cold Cs atoms. Appl. Phys. B,2007,98,53-57.
    [25]J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia. Direct measurement of the Cs2 0u+ (P3/2) high-lying vibrational spectroscopy using photon counting. J. Phys. Soc. Jpn., 2009,78,064302.
    [26]J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia. Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules. Appl. Phys. Lett.,2007,91,161101.
    [27]H. S. Zhang, Z. H. Ji, J. P. Yuan, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, S. T. Jia. Cold cesium molecules produced directly in a magneto optical trap. Chin. Phys. B, 2011,20,123702.
    [28]A. R. L. Caires, V. A. Nascimento, D. C. J. Rezende, V. S. Bagnato, L. G. Marcassa. Atomic density and light intensity dependences of the Rb2 molecule formation rate constant in a magneto-optical trap. Phys. Rev. A,2005,71,043403.
    [29]陈扬骎,杨晓东.激光光谱测量技术,华东师范大学出版社,2005.
    [30]潘京生.微通道板及其主要特征性能.应用光学,2004,25,25-29.
    [31]王长骏,张继胜,吴洪兵,房利君.微通道板工作寿命的研究.应用光学,1992,1330.
    [32]薄春卫,微球板光电倍增管技术的研究.长春理工大学硕士学位论文,2005.
    [33]S. D. Kraft, J. Mikosch, P. Staanum, J. Deiglmayr, J. Lange, A. Fioretti, R. Wester, M. Weidemuller. A high resolution time-of-flight mass spectrometer for the detection of ultracold molecules. Appl. Phys. B,2007,90,453-457.
    [34]Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, S. T. Jia. Photoassociative Production and Detection of Ultracold Polar RbCs Molecules. Chin. Phys. Lett.,2011,28,083701.
    [35]J. M. Hutson, Centrifugal distortion constants for diatomic molecules:an improved computational method. J. Phys. B,1981,14,851-857.
    [1]P. Rambo, J. Schwarz, J.-C. Diels, High-voltage electrical discharges induced by an ultrashort-pulse UV laser system. J. Opt. A,2001,3,146-158.
    [2]A. R. L. Caires, V. A. Nascimento, D. C. J. Rezende, V. S. Bagnato, L. G. Marcassa. Atomic density and light intensity dependences of the Rb2 molecule formation rate constant in a magneto-optical trap. Phys. Rev. A,2005,71,043403.
    [3]M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, L. G. Marcassa. Observation of ultracold ground-state heteronuclear molecules. Phys. Rev. Lett.,2004, 92,133203.
    [4]H. S. Zhang, Z. H. Ji, J. P. Yuan, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, S. T. Jia. Cold cesium molecules produced directly in a magneto optical trap. Chin. Phys. B, 2011,20,123702.
    [5]C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, P. Pillet. Experimental versus theoretical rates for Photoassociation and for formation of ultracold molecules. IEEE J. Quantum Electron.2000,36,1378-1388.
    [6]H. Wang, W. C. Stwalley. Ultracold photoassociative spectroscopy of heteronuclear alkali-metal diatomic molecules. J. Chem. Phys.,1998,108,5767.
    [7]A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Production and state-selective detection of ultracold RbCs molecules. Phys. Rev. Lett.,2004,92, 153001.
    [8]A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, D. DeMille. Production of ultracold, polar RbCs* molecules via photoassociation. Phys. Rev. Lett.,2004,92,033004.
    [9]T. Bergeman, C. E. Fellows, R. F. Gutterres, C. Amiot, Analysis of strongly coupled electronic states in diatomic molecules:Low-lying excited states of RbCs. Phys. Rev. A,2003,67,050501.
    [10]A. R. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, M. Aubert-Frecon. Theoretical electronic structure of RbCs revisited. J. Phys. B,2000, 33,2307-2316.
    [11]Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, S. T. Jia. Photoassociative Production and Detection of Ultracold Polar RbCs Molecules. Chin. Phys. Lett.,2011,28,083701.
    [12]J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange, O. Dulieu, R. Wester, M. Weidemuller. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett.,2008,101,133004.
    [13]P. Zabawa, A. Wakim, M. Haruza, N. P. Bigelow. Formation of ultracold X1Σ+(v"=0) NaCs molecules via coupled photoassociation channels. Phys. Rev. A,2011,84, 061401.
    [14]B. E. Londono, J. E. Mahecha, E. Luc-Koenig, A. Crubellier. Resonant coupling effects on the photoassociation of ultracold Rb and Cs atoms. Phys. Rev. A,2009,80, 032511.
    [15]W. C. Stwalley, J. Banerjee, M. Belos, R. Carollo, M. Recore, M. Mastroianni. J. Phys. Chem.A,2010,114,81-86.
    [16]N. Bouloufa-Maafa, M. Aymar, O. Dulieu, C. Gabbanini, Formation of ultracold RbCs molecules by Photoassociation,2011, arXiv:1111.3503v1.
    [17]C. Gabbanini, O. Dulieu. Formation of ultracold metastable RbCs molecules by short-range Photoassociation. Phys. Chem. Chem. Phys.2011,13,18905-18909.
    [18]M. Y. Ovchinnikova. Transitions between fine-structure components in resonance interactions for alkali metals. Theor. Exp. Chem.,1965,1,12-16.
    [19]V. Kokoouline, O. Dulieu, R. Kosloff and F. Masnou-Seeuws. Mapped fourier methods for long-range molecules:application to perturbations in the Rb2(0u+) photoassociation spectrum. J. Chem. Phys.1999,110,9865-9876.
    [20]K. Willner, O. Dulieu, F. Masnou-Seeuws, Mapped grid methods for long-range molecules and cold collision. J. Chem. Phys.,2004,120,548-561.
    [21]H. Fahs, A. R. Allouche, M. Korek, M. Aubert-Frecon. The theoretical spin-orbit structure of the RbCs molecule. J. Phys. B,2002,35,1501-1508.
    [22]C. H. Townes, A. L. Shawlow. Microwave Spectroscopy. McGraw-Hill Book Company Inc.,1955.
    [23]I. S. Lim,W. C. Lee, Y. S. Lee, G.-H. Jeung, Theoretical investigation of RbCs via two-component spin-orbit pseudopotentials:Spectroscopic constants and permanent dipole moment functions. J. Chem. Phys.,2006,124,234307.
    [24]J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson. Optical heterodyne saturation spectroscopy. App. Phys. Lett.,1981,39,680-682.
    [25]孟腾飞,武跃龙,姬中华,武寄洲,赵延霆,贾锁堂.铯分子饱和吸收谱的半导体激光器稳频.中国激光,2010,37,1182-1185.
    [26]B. G. Lindsay, K. A. Smith, F. B. Dunning. Control of long-term output frequency drift in commercial dye lasers. Rev. Sci. Instrum.,1991,62,1656-1657.
    [27]杨海菁,王彦华,张天才,王军民.基于共焦法布里—珀罗腔的无调制激光频率锁定.中国激光,2006,33,316-320.
    [28]J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, S. T. Jia. Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules. Appl. Phys. Lett.,2007,91,161101.
    [29]姬中华,张冉冉,马杰,董磊,赵延霆,贾锁堂.数字伺服系统实现激光器频率长期锁定.2008,36,804-808.
    [30]K. Matsubara, S. Uetake, H. Ito, Y. Li, K. Hayasaka, M. Hosokawa. Precise frequency-drift measurement of extended-cavity diode laser stabilized with scanning transfer cavity. Jpn. J. Appl. Phys.,2005,44,229-230.
    [31]D. W. Allan. Statistics of atomic frequency standards. Pro. IEEE,1966,52,221-230.
    [32]T. Ikegami, S. Sudo, Y. Sakai. Frequency stabilizaiton of semiconductor dioder. Boston-London:Artech House,1995,60-69.
    [33]National Institute of Standards and Technology (NIST). Atomic spectra database, http://physics.nist.gov/cgi-bin/ASD/levels_pt.pl.2005.
    [34]R. Beuc, M. Movre, B. Horvatic, G. Pichler. Predictions of absorption bands for RbCs on helium clusters. Chem. Phys. Lett.,2007,435,236-241.
    [1]S. H. Autler, C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev.,1955,100, 703-722.
    [2]C. Hamilton, J. Kinsey, and R. Field. Stimulated-emission pumping-new methods in spectroscopy and molecular-dynamics. Annu. Rev. Phys. Chem.,1986,37,493-524.
    [3]S. F. Yelin, K. Kirby, R. Cote, Schemes for robust quantum computation with polar molecules, Phys. Rev. A,2006,74,050301.