飞机结冰数值计算与冰风洞部件设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机在含有过冷水滴的云层中飞行时将会发生结冰现象,飞机结冰对其安全飞行带来严重威胁,近年来因为飞机结冰引发的航空事故并不少见。目前,国内由于缺乏支撑试验的大型结冰风洞(正在建设中),因此本文研究重点研究了结冰数值模拟计算方法,兼有结冰风洞部件的设计方法。论文在参考和学习大量国内外结冰文献的基础上,基于VC/FORTRAN混合编程方法和动态链接库DLL技术,将飞机结冰数值计算模块化编程并集成于MFC软件计算平台中,开发了面向用户的飞机结冰计算软件NUAA-ICE3D,在开发软件的环节中提出了一系列新的研究思路和方法。本文具体的研究工作和取得有价值的成果主要体现在以下几个方面:
     首先研究了二维圆柱、单段翼型、多段翼等模型的网格生成和重构方法,发现采用基于求解椭圆型偏微分方程方法生成的结构化网格最为高效可行。通过对椭圆型微分方程的离散推导,分析了模型表面附近网格质量的控制方式和控制效果。在生成等截面机翼、变截面机翼、翼身组合体的结构化网格时,引入两种适用于结冰计算的网格重构方法,即端面表面O网格法和整体H型网格法;考虑到结冰总是发生在部件迎风部位,为了提高网格重构的效率和稳定性,引入两种辅助性的网格分区方法:椭圆形分区和扇形分区。
     开发了基于密度求解方式的Euler/Navier-Stokes流场求解代码。在离散求解控制方程时,时间上采用了显式四步/五步龙哥库塔、空间上采用了中心差分格式离散了控制方程。为了抑制奇偶失联造成的高频振荡和激波前后的数值波动,引入了人工耗散项,编程中还采用了当地时间步长和隐式残值光顺技术。在计算湍流粘性系数时,采用了三种湍流模型:零方程B-L模型、一方程S-A模型及两方程k-ε模型。随后,对所编的流场求解器进行了验证和分析。
     在过冷水滴撞击特性计算中,分别研究了拉格朗日法和欧拉法两种算法。在拉格朗日法中,将网格拓扑结构应用到了寻找水滴空间位置过程中,同时引入了根据网格分区设置时间步长的方法,解决了拉格朗日法计算水滴轨迹耗时长的问题。在水滴运动方程的时间项离散中,分别采用了欧拉法、预估-校正法、四步龙哥库塔法。在欧拉法计算中,基于FLUENT软件的用户自定义标量功能,编写了用于计算任意几何体表面水滴撞击特性的UDF代码。通过对二维翼型、三维球体、DLR-F6翼身组合体、DLR-F6翼身架舱组合体的水滴撞击计算,验证了所开发代码的正确性。最后,采用FLUENT特有的日志运行功能,基于MFC界面对动态加载UDF、设置来流计算条件、监视收集系数收敛等一系列操作进行了封装。
     研究了冰层增长中的复杂传热传质过程,将网格单元作为控制体,使得冰层增长计算与其它模块共用同一套网格。从热边界层和动量边界层理论出发,推导和讨论了空气、水膜、冰层三者之间的换热机理,完成了水滴发生冻结并转化冰层的模拟,将所开发的代码模块命名为ICEC。通过对对流换热系数曲线和结冰冰形的计算,验证了代码的可靠性。以圆柱结冰为研究对象,分析了冰层表面粗糙度对空气、水膜、冰三相间传热传质及结冰冰形的影响,提出了一种全新的几何粗糙度修正模型,它是通过冰形边界的曲折程度来衡量表面粗糙程度的。以集成的结冰软件为计算平台,模拟并研究了结冰参数对对流换热系数和冰形的影响。最后在三维结冰数值计算方面,将二维中的计算方法进行了三维空间的拓展。
     在计算代码的高度集成性和面向用户性方面作了深入的研究工作。首先将结冰计算分为网格生成与重构模块GRID、空气流场计算FLOW、水滴撞击计算模块DROP、结冰冰形计算ICEC,将结冰边界修复并入GRID程序模块中,然后基于动态链接库技术把每个模块代码转为化编译的DLL文件。从软件开发的角度出发,还研究了各个模块数据存储、数据通信、用户界面、结果显示、文件管理及软件模块更新等方面的内容。基于MFC框架编写了控制模块计算和反复内部调用模块的多线程仿真平台,同时软件中引入了两种执行方式以适应多步长冰层增长的模拟。最后,书写了软件用户手册,将所开发的结冰软件打包为setup.exe,即可交付用户使用。在结冰数值软件NUAA-ICE3D中,除了集成了自编的各个模块程序及其计算功能外,还内嵌了通过MFC界面启动的FLUENT流场计算和UDF水滴撞击计算功能,所有初始计算工况均由用户界面输入,然后软件自动查找并替换FLUENT日志文件和UDF程序中的参数,以实现模块程序的无缝封装和数值计算的自动化。
     对冰风洞的关键部件进行了阐述,然后重点展开了两个方面的研究工作,即冰风洞洞体和四大拐角导流叶片的设计。根据风洞设计理论,设计了某型回流结冰风洞,计算了风洞各段截面上的总压、静压、速度等参数的分布。在确定风洞各段尺寸之后建立了三维几何模型,依次设计了剖面形状为翼剖面型、圆弧直线型、圆弧形的导流叶片,给出了各个拐角处的叶片形式和叶片数目,并绘制了可用于加工的CAD图。随后,以扩散段、第一拐角段(含导流叶片9片)、出口过渡段为计算模型,在进口参数分别为V=80、100、120m/s、静温为t=-30℃的工况下,数值模拟了扩散段、导流叶片附件的流场分布。因此,在结冰数值模拟和冰风洞设计方面,本文的研究成果具有很好的参考价值。
When the aircraft is flying in the clouds containing supercooled water droplets, these dropletsimpinge on the surfaces of the lift components and then freeze. The ice accretion on these componentsis one of the potential hazards in flight, and can lead to air crash. Icing research tunnel is not availablein China now, so the major focus of current research is numerical simulation of aircraft icing. Afterreferring and studying many domestic and foreign literatures, modular icing codes have beenestablished using VC/FORTRAN mixed programming and DLL technology, and the software packagecalled NUAA-ICE3D is well developed to perform normal functions of these modules based on MFCframework. In addition, some ideas and new methods are also presented. The main research andachievements of this thesis are as follows:
     At first, grid generation and reconstruction for calculation of airfoil ice accretion on cylinder,single and multi airfoils are studied carefully, and it is a very efficient and feasible way to generate thegrid by solving the elliptic PDEs. The forcing terms are automatically chosen in the manner ofHilgenstock method such that orthogonality and spacing control on the icing smoothed boundary areachieved. In order to obtain the appropriate structured grid for the wings and wingbody models, twokinds of grid reconstruction method are introduced; they are H-type grid around the wing and O-typegrid on the end face of the wing tip. Taking account of ice accretion on the upwind surfaces of the liftcomponents such as wings, in order to improve the efficiency, quality and reliability of grid,ellipse-shaped and fan-shaped partition methods have been introduced and validated. Finally, the gridgeneration and reconstruction can be carried out successfully during the calculations of ice accretionbased on these new techniques.
     The flow field solver based on the density pattern is developed in this thesis which can be used tosolve the Euler/Navier-Stokes controlled equations. In this code, the modified central differencemethod with artificial viscosity by Jameson scheme is applied for spacial discretization and an explicitfour/five stages Runge-Kutta seheme is used for temporal discretization. The convergence procedure isaccelerated by using local time step and implicit residual smooth technology. In order to calculate theturbulence viscosity coefficient, three turbulence models, zero-equation B-L model, one-equationSpalart-Allmaras model and two-equation k-ε model, are employed in this thesis. After this, thevalidation and analysis of the developed solver are carried out.
     Two classes of methods for supercooled water droplet impinging calculation are adopted in thisthesis; they are Lagrangian and Eulerian methods. In the Lagrangean formulation, the grid topologicalrelation is employed to seek the spatial location of water droplet and the grid partition method is usedto set the time step for discretizing the governing equations of droplet, which has resolved thetime-consuming problem. In addition, three discretization approaches including Euler method, estimatealong with adjustment method, and four stages Runge-Kutta time stepping scheme are employed todiscretize the time term of the momentum equations. In Eulerian approach, the UDF codes for solvingtransport equations for momentum and phase volume fraction are developed by integrating the UserDefined Scalar. For the sake of the UDF codes, some classic models are tested here such as airfoils,sphere, DLR-F6wing/body model, DLR-F6wing/body/pylon/nacelle model. Based on the automatic script function of FLUENT software, a series of encapsulation for loading the UDF codes, setting theinitial conditions, monitoring the iteration residual value are completed by using the MFC framework.
     This thesis gives systematic study on the process of ice layer accretion, especially the mass andenergy transfer between two-phase distribution (air and water droplet) and icing build-up region alongthe surface of airfoil. Based on the theory of momentum and thermal boundary layer, the governingequations are established by considering the conservation of mass and energy in each control volume.The developed code for calculating the ice-layer accretion is called ICEC module. Taking the cylinderas the example, this thesis also studies the effects of roughness height on the heat and mass transferamong the air, water film and ice, together with the final ice shape in the ice-layer accretion module. Anew correction model for roughness height is given to measure the rough characteristics of roughnessalong the iced surface more accurately. In this model, the roughness height is regarded as a function oficing condition, spatial coordinate, and icing time step by considering the local curvature of icedsurface. Based on the icing software developed, the effects of several key parameters on heat transfercoefficient and ice shape are presented, and these factors include free-stream velocity, statictemperature, angle of attack and the roughness height of surface, and so on. At last, the prediction ofthree-dimensional ice shape is implemented based on the two-dimensional analysis.
     In order to improve the capability of integration and users orientation for icing software, thedetailed study on the development of the icing simulation software is given in this work. Thecalculation of ice accretion is devided into four modules; grid generation and reconstruction (GRID),flow field calculation (FLOW), particle trajectory and impingement calculation (DROP),thermodynamic and ice growth calculation (ICEC). At first, a new module programming method isused to convert the source code into the file format called Dynamic Link Library. Then, a multi-threadsimulation platform is designed based on the MFC framework to execute related functions, includingthe implement of each module, data storage, data communication, displays of results and so on. Besides,two execute modes are adopted in icing calculations in order to simulate the multiple ice-layersaccretion. It is found that these methods used in this work have made the software efficient and easy tobe updated. The validation and robustness of the software are also well tested. In addition, theFLUETN flow solver and UDF codes for calculating the water droplet impingements are alsointegrated into our software. All the initial conditions can be input via the user interface.
     The functions of the key parts of ice tunnel are described in this thesis, and the full size of icetunnel and the turning vane are designed together based on the wind tunnel design principle. Thesecharacteristic parameters including total pressure, static pressure, and velocity are computed for all thesections in the different locations of ice tunnel. As the ice tunnel has been designed, three-dimensionaldiagram is drawn clearly. In order to decrease the pressure loss in the turning period, three kinds ofturning vanes which sections are airfoil, arc-line, and arc shape are well designed to fit the demands oftunnel corners. Then, the numerical simulation of flow field for the first expanding section, first turningsection (including nine vanes) and transition section is completed when the inlet condition is V=80,100,120m/s, and t=-30℃. The design features and flow qualities near this corner are discussed.
引文
[1] Michael Bradford Bragg. Rime Ice Accretion and Its Effect on Airfoil Performance [D]. PhDThesis,The Ohio State University.1981.
    [2] James William Melody. In-flight Characterization of Aircraft Icing [D]. PhD Thesis, University ofIllinois at Urbana-Champaign.2004.
    [3] William Olsen, Robert Shaw, and James Newton. Ice shapes and the resulting drag increase for aNACA0012airfoil [R]. NASA TM-14427,1984.
    [4] X. Chi1, B. Williams and N. Crist, et al.2-D and3-D CFD Simulations of Clean and Iced Wings[R]. AIAA2006-1267,2006.
    [5] Robert J. Shaw. NASA’s Aircraft Icing Analysis Program [R]. NASA TM-88791,1986.
    [6] William B. Wright. LEWICE2.2Capabilities and Thermal Validation [R]. AIAA2002-0383,2002.
    [7] FENSAP-ICE Icing software User’s Guide (Version2005R2)[Z]. NTI Newmerical Inc.2003–2005.
    [8] Jaiwon Shin and Thomas H. Bond. Results of an Icing Test on a NACA0012Airfoil in the NASALewis Icing Research Tunnel [R]. AIAA92-0647,1992.
    [9] Thomas B. Irvine, John R. Oldenburg, and David W. Sheldon. The New Icing Cloud SimulationSystem at NASA Lewis’ Icing Research Tunnel [R]. AIAA98-0143,1998.
    [10] Richard K. Jeck. Icing Design Envelopes (14CFR Parts25and29, Appendix C) Converted to aDistance-Based Format [R]. DOT/FAA/AR-00/30,2002.
    [11] Mark G. Potapczuk. LEWICE/E: An Euler Based Ice Accretion Code [R]. AIAA92-0037,1992.
    [12] Colin S. Bidwell, David Pinella and Peter Garrison. Ice Accretion Calculations for a CommercialTransport Using the LEWICE3D, ICEGRID3D and CMARC Programs [R]. NASA TM-208895,1999.
    [13] F. Morency, H. Beaugendre, G.S. Baruzzi and W.G. Habashi. FENSAP-ICE: A Comprehensive3DSimulation System for In-flight Icing [R]. AIAA2001-2566,2001.
    [14] X. Veillard, W. G. Habashi M. S. Aubé and G. S. Baruzzi. FENSAP-ICE: Ice Accretion inMulti-stage Jet Engines [R]. AIAA2009-4158,2009.
    [15] Abdelkader Baggag, Mondher Chekki, Wagdi G. Habashi and Fran ois Morency. Parallelization ofa Finite Volume Scheme Applied to Ice Accretion [R]. AIAA2006-3728,2006.
    [16] T.Hedde and D.Guffond. Improvement of the ONERA3D Icing Code and Comparison with3DExperimental Shapes [R]. AIAA92-0169,1993.
    [17] T. Hedde, D. Guffond and Antonio Saporiti. ONERA Three-Dimensional Icing Model [J]. AIAAJournal, Vol.33, No.6,1995.
    [18] G. Mirngiope and V. Brandi and A. Saporiti. A3D Ice Accretion Simulation Code [R]. AIAA99-0247,1999.
    [19] Guy Fortin, Adrian Ilinca, Jean-Louis Laforte and Vincenzo Brandi. New Roughness ComputationMethod and Geometric Accretion Model for Airfoil Icing [J]. Journal of Aircraft, Vol.41, No.1,2004.
    [20] William B. Wright, R.W. Gent and Didier Guffond. DRA/NASA/ONERA Collaboration on IcingResearch, Part II-Prediction of Airfoil Ice Accretion [R]. NASA CR-202349.
    [21] Gary A. Ruff and Brian M. Berkowitz. Users Manual for the NASA Lewis Ice AccretionPrediction Code (LEWICE)[R]. NASA CR-185129,1990.
    [22] G. Baruzzi, P. Tran, W.G. Habashi, I. Akel and S. Balage. FENSAP-ICE: Progress Towards aRotorcraft Full3-D Icing Simulation System [R]. AIAA2003-0024,2003
    [23] E. Montreuil, A. Chazottes D. Guffond and A. Murrone, et al. Enhancement of PredictionCapability in Icing Accretion and Related Performance Penalties, Part I: Three-dimensional CFDPrediction of the Ice Accretion [R]. AIAA2009-3969,2009.
    [24] F. Dezitter, E. Montreuil, D. Guffond, and F. Caminade, et al. Enhancement of PredictionCapability in Icing Accretion and Related Performance Penalties, Part II: CFD Prediction of thePerformance Degradation Due to Ice [R]. AIAA2009-3970,2009.
    [25] Tim G. Myers. Extension to the Messinger Model for Aircraft Icing [J]. AIAA Journal Vol.39,No.2,2001.
    [26] G. Fortin, J. Perron, G. Mingione and E. Luliano. CIRAAMIL Ice Accretion Code Improvement.AIAA2009-3968,2009.
    [27]裘燮纲,韩凤华编著.飞机防冰系统[M].北京:航空专业教材编审组出版.1985年6月.
    [28]陈维建,张大林.飞机机翼结冰过程的数值模拟[J].航空动力学报,2005,20(6):1010-1017.
    [29]易贤,朱国林.考虑传质传热效应的翼型积冰计算[J].空气动力学学报,2004,22(4):490-493.
    [30]易贤,朱国林.飞机积冰的数值计算与积冰试验相似准则研究[D].中国空气动力研究与发展中心研究生部博士学位论文,2007年3月.
    [31]卜雪琴,林贵平.基于CFD的水收集系数及防冰表面温度预测[J].北京航空航天大学学报.2003,33(10):1182-1185.
    [32]杨倩,常士楠,袁修干.水滴撞击特性的数值计算方法研究[J].航空学报,2002,23(2):173-176.
    [33]桑为民,李凤蔚,施永毅.结冰对翼型和多段翼型绕流及气动特性影响研究[J].西北工业大学学报,2005,23(6):729-732.
    [34] Hess, J.L. and Smith, A.M.O. Calculation of Potential Flow about Arbitrary Bodies [M]. Progressin Aeronautical Sciences,8:1-138, Elmsford, New York, Pergmon Press,1967.
    [35] M. G. Potapczuk. A Review of NASA Lewis’ Development Plans for Computational Simulation ofAircraft Icing [R]. AIAA99-0243,1999.
    [36] S. Caruso. Development of an Unstructured Mesh/Navier-Stokes Method for Aerodynamics ofAircraft with Ice Accretions [R]. AIAA90-0758,1990.
    [37] M. B. Bragg and G. M. Grregorek. Aerodynamic Characteristics of Airfoils with Ice Accretions[R]. AIAA82-0282,1982.
    [38] William Olsen, Robert Shaw,and James Newton. Ice Shapes and the Resulting Drag Increase for aNACA0012Airfoil [R]. AIAA84-0109,1984.
    [39] S.Caruso. Development of an Unstructured Mesh/Navier-Stokes Method for Aerodynamics ofAircraft with Ice Accretion [R]. AIAA90-0758,1990.
    [40] J.Eric Holcomb and Bahman Namdar. Coupled Lewice/Navier-Stokes Code Development [R].AIAA91-0804,1991.
    [41] Mark G. Potapczuk. LEWICE/E: An Euler Based Ice Accretion Code [R]. AIAA92-0037,1992.
    [42] Colin S.Bidwell and Mark G. Potapczuk. Users Manual for the NASA Lewis Three-DimensionalIce Accretion Code (LEWICE3D)[R]. NASA TM-105974,1993.
    [43] William B. Wright. Users Manual for the Improved NASA Lewis Ice Accretion Code LEWICE1.6[R]. NASA CR-198355,1995.
    [44] William B. Wright. User Manual for the NASA Glenn Ice Accretion Code LEWICE Version2.0[R]. NASA CR-209509,1999.
    [45] William B. Wright. User Manual for the NASA Lewis Three-Dimensional Ice Accretion CodeVersion2.2.2[R]. NASA TM-211793,2002.
    [46] William B. Wright. LEWICE2.2Capabilities and Thermal Validation [R]. AIAA2002-0383,2002.
    [47] William B. Wright. Validation Results for LEWICE3.0[R]. AIAA2005-1243,2005.
    [48] William B. Wright. User’s Manual for LEWICE Version3.2[R]. NASA CR-214255,2008.
    [49] William B. Wright, Mark G. Potapczuk, and Laurie H. Levinson. Comparison of LEWICE andGlennICE in the SLD Regime [R]. AIAA2008-0439,2008.
    [50] Thompson, Joe F. Numerical grid generation: foundations and applications [M]. New York:North-Holland: Elsevier Science Pub. Co.[distributor],1985.
    [51] S. K. Jung, S. M. Shin, and R. S. Myong, et al. Ice Accretion Effect on the AerodynamicCharacteristics of KC-100Aircraft [R]. AIAA2010-1237,2010.
    [52] J. A. Garriz. A Preprocessor for Numerical Grid Generation of Boundary-Fitted Grids: AnApplication to a Solid Propellant Ablating Boundary Problem [R]. AIAA85-0073,1985.
    [53] Reese L. Sorenson. A Computer Program to Generate Two-Dimensional Grids About Airfoils andOther Shapes by the Use of Poisson’s Equation [R]. NASA TM-81198,1980.
    [54] S. J. Scherr and J. S. Shang. Three-Dimensional Body-Fitted Grid System for a Complete Aircraft[R]. AIAA86-0428,1986.
    [55] Hoa V. Cao and T. J. Kao. Three-Dimensional Orthogonal-To-Surface Structured Grid Generationwith Transonic Navier-Stokes Flow Solution for a Commercial Transport Configuration [R]. AIAA92-2616,1992.
    [56] Thompson, David S.,and Soni, Bharat K. ICEG2D-An Integrated Software Package forAutomated Prediction of Flow Fields for Single-Element Airfoils With Ice Accretion [R]. NASACR-2099914,2000.
    [57] Shieh C F. Three-dimensional grid generation using elliptic equations with direct grid distributioncontrol [R]. AIAA1983-0448,1983.
    [58]陈维建,张大林.飞机机翼结冰的数值模拟研究[D].南京航空航天大学博士学位论文.2006.
    [59] Mary B. Vickerman, Yung K. Choo, Donald C. Braun, and Marivell Baez, et al. SmaggIce:Surface Modeling and Grid Generation for Iced Airfoils—Phase1Results [R]. NASA TM-209678,1999.
    [60] Richard E. Kreeger, Marivell Baez, Donald C. Braun, and Herbert W. Schilling, et al. SmaggIce2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils [R]. AIAA2007-0502,2007.
    [61] Choo Y K, Vickerman M B, Lee K D, et al. Geometry Modeling and Grid Generation for IcingEffects and Ice Accretion Simulations on Airfoils [R]. NASA-TM-061365,2001.
    [62] Choo Y K, Slater J W, Vickerman M B, et al. Geometry Modeling and Grid Generation forComputation Aerodynamic Simulations Around Iced Airfoils and Wings [R]. NASA TM-071136,2002.
    [63]孙志国,朱程香,付斌,朱春玲.结冰计算中翼面网格重构研究[J].航空学报,2011, Vol.32(2):231-241.
    [64]孙志国,朱程香,付斌,朱春玲.二维翼型结冰数值计算[J].航空动力学报,2010, Vol.25(7):1485-1490.
    [65] Chi X, Zhu B, Shih T I-P, et al. Computing Aerodynamic Performance of a2D IcedAirfoil-Blocking Topology and Grid Generation [R]. AIAA2002-0381,2002.
    [66] Mario Vargas and Dr. Eli Reshotko. Ice Accretion on Swept Wings at Glaze Ice Conditions [D].PhD Thesis, Case Western Reserve University,1998.
    [67] M. G. Potapczuk and C. S. Bidwell. Numerical Simulation of Ice Growth on a MS-317SweptWing Geometry [R]. AIAA91-0263,1991.
    [68]任玉新,陈海昕编著.计算流体力学基础[M].北京,清华大学出版社,2006.
    [69] William B. Wright. Further Refinement of the LEWICE SLD Model [R]. NASA CR-214132,2006.(AIAA2006-0464)
    [70] Nasser Ashgriz and Javad Mostaghimi. An Introduction to Computational Fluid Dynamics [M].University of Toronto, Toronto, Ontario.
    [71]陆志良等编著.空气动力学[M].北京:北京航空航天大学出版社,2009年8月.
    [72] J. Blazek. Computational Fluid Dynamics Principles and Applications [M]. Alstom Power Ltd.,Baden-Daettwil, Switzerland,2001.
    [73]高延达,招启军.涵道尾桨气动特性的CFD模拟及结构参数影响分析[D].南航航空航天大学硕士学位论文,2010年3月.
    [74]李杰,白俊强. Navier-Stokes方程数值模拟及湍流模型研究[D].西北工业大学硕士学位论文,2006年3月.
    [75] Sherrie L. Krist, Robert T. Biedron and Christopher L. Rumsey. CFL3D User's Manual (Version5.0)[R]. NASA TM-208444,1998.
    [76] Professor Joel H. Ferziger, Dr. Milovan Peril. Computational Methods for Fluid Dynamics [M].Springer-Verlag Berlin Heidelberg NewYork,2002.
    [77] H. Q. Yang and A. J. Przekwas. Pressure-Based High-Order TVD Methodology for Dynamic StallSimulation [R]. AIAA93-0690,1993.
    [78]陈义良编著.湍流计算模型[M].合肥,中国科学技术大学出版社,1991年5月.
    [79] Marcel Lesieur. Turbulence in Fluids, Fourth Revised and Enlarged Edition [M]. Published bySpringer, the Netherlands,2008.
    [80] B. S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic Model for SeparatedTurbulent Flows [R]. AIAA78-0257,1978.
    [81] P. R. Spalart and S. R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows [R].AIAA92-0439,1992.
    [82] Sarun Benjanirat, Lakshmi N. Sankar and Guanpeng Xu. Evaluation of Turbulence Models for thePrediction of Wind Turbine Aerodynamics [R]. AIAA2003-0517,2003.
    [83] Mani, M., J.A. Ladd, A. B. Cain, and R.H. Bush. An Assessment of One-and Two-EquationTurbulence Models for Internal and External Flows [R]. AIAA97-2010,1997.
    [84] Chi R. Wang. Navier-Stokes Computations with One-Equation Turbulence Model for Flows AlongConcave Wall Surfaces [R]. NASA TM-213830,2005.
    [85] S. K. Saxena and Manoj T. Nair. Implementation and Testing of Spalart-Allmaras Model in aMulti-Block Code [R]. AIAA2002-0835,2002.
    [86] Masoud Darbandi, Alireza Setayeshgar and Soheyl Vakili. Modification of Standard k-epsilonTurbulence Model for Multi-element Airfoil Application Using Optimization Technique [R]. AIAA2006-2829,2006.
    [87] Mark G. Potapczuk. Navier-Stokes Analysis of Airfoils with Leading Edge Ice Accretions [R].NASA CR-191008,1993
    [88] C.-C. Rossow. Convergence Acceleration for Solving the Compressible Navier-Stokes Equations[R]. AIAA2005-0094,2005.
    [89] Luis Manzano. Implementation of Multi-grid for Aerodynamic Computations on Multi-BlockGrids [D]. PhD Thesis, University of Toronto,1999.
    [90] Tuncer Cebeci, Eric Besnard and Hsun H. Chen. Calculation of Multi-element Airfoil Flows,Including Flap Wells [R]. AIAA96-0056,1996.
    [91] P. Tran, M. T. Brahimi, L. N. Sankar and I. Paraschivoiu. Ice Accretion Prediction on Single andMulti-element Airfoils and the Resulting Performance Degradation [R]. AIAA1997-0178,1997.
    [92] K. M. J. de Cock.2D Maximum lift prediction of a three element airfoil [C]. The Symposium onComputational and Experimental Methods in Mechanical and Thermal Engineering, May7-8,1998,University of Gent, Belgium.
    [93] Qunzhen Wang, Steven J. Massey and Khaled S. Abdol-Hamid. Solving Navier-Stokes Equationswith Advanced Turbulence Models on Three-Dimensional Unstructured Grids [R]. AIAA99–0156,1999.
    [94] S. Chalasani, E. A. Luke, V. Senguttuvan and D. S. Thompson. Assessing Generalized MeshQuality via CFD Solution Validation [R]. AIAA2005-0687,2005.
    [95] Jason E. Hicken and David W. Zingg. A parallel Newton-Krylov Flow Solver for the EulerEquations on Multi-block Grids [R]. AIAA2007-4333,2007.
    [96] Adam Rutkowski, William B. Wright, and Mark Potapczuk. Numerical Study of DropletSplashing and Re-impingement [R]. AIAA2003-0388,2003.
    [97] Adam Rutkowski, William B. Wright, and Mark Potapczuk. Numerical Study of DropletSplashing and Re-impingement [R]. AIAA2003-0388,2003.
    [98] C.S. Bidwell and S. R. Mohler. Collection Efficiency and Ice Accretion Calculations for a Sphere,a Swept MS(1)-317Wing, a Swept NACA-0012Wing Tip, an Axisymmetric Inlet, and a Boeing737-300Inlet [R]. AIAA1995-0755,1995.
    [99] Andrew L. Reehorst. Study of Water Droplet Trajectories in the NASA Lewis Research CenterIcing Research Tunnel (IRT)[R]. NASA TM-107221,1996.
    [100] Michael Papadakis, Arief Rachman, See-Cheuk Wong, and Hsiung-Wei Yeong, et al. WaterDroplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions [R]. NASA TM-213961,2007.
    [101] Thomas H. Bond, Dean R. Miller and Mark G. Potapczuk. Overview of SLD Engineering ToolsDevelopment [R]. AIAA2003-0386,2003.
    [102] S. C. Tan and M. Papadakis. General Effects of Large Droplet Dynamics on Ice AccretionModeling [R]. AIAA2003-0392,2003.
    [103] Michael Papadakis, Arief Rachman, and See-Cheuk Wong, et al. Water ImpingementExperiments on a NACA23012Airfoil with Simulated Glaze Ice Shapes [R]. AIAA2004-0565,2004.
    [104] Raimund Honsek and Wagdi G. Habashi. FENSAP-ICE: Eulerian Modeling of DropletImpingement in the SLD Regime of Aircraft Icing [R]. AIAA2006-.0465,2006.
    [105] Sutikno Wirogo, Shashidhar Srirambhatla. An Eulerian Method to Calculate THE CollectionEfficiency on Two and Three Dimensional Bodies [R]. AIAA2003-1073.
    [106]孙志国,朱春玲.三维机翼水滴撞击特性研究[J].计算物理.2011, Vol.28(5):40-48.
    [107] Farooq Saeed, Corentin Brette, and Mathieu Fregeau, et al. A Three-Dimensional Water DropletTrajectory and Impingement Analysis Program [R]. AIAA2005-4838,2005
    [108]关治,陆金甫.数值方法[M].北京:清华大学出版社,2006.
    [109] Stanley R. Mohler and Colin S. Bidwell. Comparison of Two-Dimensional and ThreeDimensional Droplet Trajectory Calculations in the Vicinity of Finite Wings [R]. AIAA92-0645,1992.
    [110] T. Hedde, D. Guffond. Improvement of the ONERA3D icing code: Comparison with3DExperimental Shapes [R]. AIAA93-0169,1993.
    [111] Andrew L. Reehorst. Prediction of Ice Accretion on a Swept NACA0012Airfoil andComparisons to Flight Test Results [R]. AIAA92-0043,1992.
    [112] FLUENT6.3User’s Guide [Z]. Fluent Inc.2006-09-20.
    [113] Kelly R. Laflin, Olaf Brodersen, Mark Rakowitz et al. Summary of Data from the Second AIAACFD Drag Prediction Workshop (Invited)[R]. AIAA2004-0555,2004.
    [114] Y. Bourgault, W. G. Habash, J. Dompierre and Z. Boutanios. An Eulerian Approach ToSupercooled Droplets Impingement Calculations [R]. AIAA97-0176,1997.
    [115] FLUENT6.3UDF Manual. Fluent Inc.2006-09-20.
    [116]杨胜华,林贵平,申晓斌.三维复杂表面水滴撞击特性计算[J].航空动力学报,2010,25(2):284-290.
    [117]张曜,郭立山,戴传智. Windows API函数实用手册[M].冶金工业出版社,2003.
    [118] K. M. Al-Khalil, T. G.. Keith,Jr., K. J. De Witt. Icing Calculations on a Typical Commercial JetEngine Inlet Nacelle [R]. AIAA1994-0610,1994.
    [119] Wonjin Jin, Ray Taghavi. Computational study of the Effects of Ice Accretions on the Flowfieldsin the M2129S-Duct Inlets [R]. AIAA2008-0075,2008.
    [120] ANSYS ICEMCFD Tutorial Manual for ANSYS ICEM CFD/AI*Environment11.0SP1.ANSYS,Inc. Published:2007-08-13.
    [121] M. J. Hemsch and J. H. Morrison. Statistical Analysis of CFD Solutions from2nd DragPrediction Workshop [R]. AIAA2004-0556,2004.
    [122] E. Iuliano, V. Brandi, G. Mingione. Water Impingement Prediction on Multi-Element Airfoils byMeans of Eulerian and Lagrangian Approach with Viscous and Inviscid Air Flow. AIAA2006-1270,2006
    [123] D.G. Jackson, D.G. Owens and D.J. Cronin et al. Certification and Integration Aspects of aPrimary Ice Detection System. AIAA2001-0398,2001.
    [124] O. Brodersen and A. Sturmer. Drag Prediction of Engine-Airframe Interference Effects UsingUnstructured Navier-Stokes Calculations [R]. AIAA2001-2414,2001.
    [125] X-L Tong, E. A. Luke. Eulerian Simulations of Icing Collection Efficiency Using a SingularityDiffusion Model [R]. AIAA2005-1246,2005.
    [126] Ziad Boutanios,Yves Bourgault and Wagdi G. Habashi.3D Droplets Impingement Analysisaround an Aircraft’s Nose and Cockpit Using FENSAP-ICE [J]. Journal of Aircraft,1997.
    [127] L. M. Stefanini, Otavio de Mattos Silvares, and Guilherme Araujo Lima da Silva, et al. HeatTransfer on Iced Cylinders [R]. AIAA2010-7672,2010.
    [128] Zhiguo Sun, Chengxiang Zhu, Bin Fu, Chunling Zhu. Study on Thermodynamic Characteristicsof Ice-Layer Accretion for Airfoils [J]. Journal of Heat and Mass Transfer. Springer-Verlag201248:427-438, DOI10.1007/s00231-011-0877-6.
    [129] S. A. Sherif and N.Pasumarthi. Local Heat Transfer and Ice Accretion in High Speed SubsonicFlow Over an Airfoil [R]. AIAA95-2104,1995.
    [130] P. Tran, M. T. Brahimi, I. Paraschivoiu et al. Ice Accretion on Aircraft Wings withThermodynamic Effects [R]. AIAA94-0605,1994.
    [131] Mathieu Fregeau, F. Saeed and I. Paraschivoiu. Surface Heat Transfer Study for Ice Accretionand Anti-Icing Prediction in Three Dimension [R]. AIAA2004-0063,2004.
    [132] G.. Fortin and J. Perron. Wind Turbine Icing and De-Icing [R]. AIAA2009-0247,2009.
    [133] H.史里希廷著.边界层理论(上、下册)(徐燕侯,徐立功,徐书轩译)[M].北京:科学出版社,1988年2月.
    [134]杨强生.对流传热与传质[M].北京:高等教育出版社,1985年7月.
    [135] Luciano Martinez Stefanini, Otavio de Mattos Silvares et al. Boundary-Layers IntegralAnalysis–Airfoil Icing [R]. AIAA2008-0474,2008.
    [136] Guilherme Araujo Lima da Silva, Otavio de Mattos Silvares and Euryale Jorge Godoy de JesusZerbini. Boundary-Layers Integral Analysis–Heated Airfoils in Icing Conditions [R]. AIAA2008-0475,2008.
    [137] Jaiwon Shin, Hsun H. Chen and Tuncer Cebeci. A Turbulence Model for Iced Airfoils and ItsValidation [R]. AIAA92-0417,1992.
    [138] Heloise Beaugendre Francois Morency and Wagdi G..Habashi. Development of A SecondGeneration In-Flight Simulation Code [J]. Journal of Fluids Engineering Vol.128:2378-387,2006.
    [139] G. J. Van, R. J, Simoneau, W. A. Olsen, Jr. and R. J. Shaw. Heat transfer Distributions AroundNominal Ice Accretion Shapes Formed on a Cylinder in the NASA Lewis Icing Research Tunnel[R]. NASA TM-83557,1984.
    [140] J. E. Newton, G.. J. VanFossen, P. E. Poinsatte and K. J. DeWitt. Measurement of LocalConvective Heat Transfer Coefficients from a Smooth and Roughened NACA-0012Airfoil: FlightTest Data [R]. AIAA88-0287,1988.
    [141] William B. Wright. User Manual for the NASA Glenn Ice Accretion Code LEWICE Version2.0[R]. NASA CR-209409,1999.
    [142] Yamaguchi, Keiko, and R. John Hansman. Improved Ice Accretion Prediction Techniques Basedon Experimental Observations of Surface Roughness Effects on Heat Transfer [C].1990. URL:http://hdl.handle.net/1721.1/14148.
    [143] Guy Fortin, Adrian Ilinca, Jean-Louis, and Vincenzo Brandi. New Roughness ComputationMethod and Geometric Accretion Model for Airfoil Icing [J]. Journal of Aircraft, Vol.41, No.1.January2004.
    [144] Guy Fortin, Jean-Louis Laforte, Adrian Ilinca. Heat and Mass Transfer During Ice Accretion onAircraft Wings with an Improved Roughness Model [J]. International Journal of Thermal Sciences45(2006)595–606.
    [145] Krzysztof Szilder and Edward P. Lozowski. Discrete Modeling of Ice Accretion Shape andStructure Forming on a Cylinder under In-Flight Icing Conditions [R]. AIAA2003-1075,2003.
    [146] Brian Daniel Matheis. Numerical investigation of roughness effects in aircraft icing calculations[D]. PhD Thesis, Iowa State University, Ames, Iowa. May2008.
    [147] Beaugendre H, Morency F, Habashi W. G.. FENSAP-ICE: Roughness Effects on Ice ShapePrediction [R]. AIAA2003-1222,2003.
    [148] H. Beaugendre, F. Morency and W. G. Habashi. ICE3D, FENSAP-ICE's3D IN-Flight IceAccretion Module [R]. AIAA2002-0385,2002.
    [149]易贤,桂业伟,朱国林.飞机三维结冰模型及其数值求解方法[J].航空学报,2010, Vol.31,No.11,2152-2158.
    [150]常士楠,苏新明,邱义芬.三维机翼结冰模拟[J].航空学报,2011, Vol.32,No.2:212-222.
    [151] Alberto Pueyo, Ph.D. Dan Chocron.3D Icing Simulation Codes at Bombardier [Z]. AIRAConference, Toronto. August4th,2010.
    [152] Laurie H. Levinson, Mark G. Potapczuk, and Pamela A. Mellor. Software DevelopmentProcesses Applied to Computational Icing Simulation [R]. AIAA99-0248,1999.
    [153] Thomas P. Ratvasky, Billy P. Barnhart, and Sam Lee. Current Methods for Modeling andSimulating Icing Effects on Aircraft Performance, Stability and Control [R]. AIAA2008-6204,2008.
    [154]孙志国,朱程香,朱春玲.飞机结冰数值仿真软件开发[J].计算机仿真.2012年第04期.
    [155]曾凡锋,苗雨编著. MFC编程技巧与范例详解[M].北京:清华大学出版社,2008年10月.
    [156]赵英良,仇国巍,薛涛.软件开发技术基础(21世纪重点大学规划教材)[M].北京:机械工业出版社,2006年2月.
    [157] Charles A. Farrell and Yung K. Choo. Simulation of Two Dimensional Icing Effects on AirfoilPerformance Using Smaggice and WIND [R]. AIAA2005-1370,2005.
    [158] Michael B. Bragg, Andy P. Broeren, Harold E. Addy, Jr. and Mark G. Potapczuk et al. AirfoilIce-Accretion Aerodynamics Simulation [R]. AIAA2007–0085,2007.
    [159] Billy P. Barnhart, Edward G. Dickes, and David R. Gingras, et al. Simulation ModelDevelopment for Icing Effects Flight Training [R]. NASA TM-212115,2003.
    [160] Andy P. Broeren, Edward A. Whalen Greg T. Busch and Michael B. Bragg. AerodynamicSimulation of Runback Ice Accretion [J]. Journal of Aircraft, Vol.47,No.3,2010.
    [161] James William Melody. Inflight characterization of aircraft icing [D]. PhD Thesis, University ofIllinois at Urbana-Champaign,2004.
    [162] Jose C. Gonsalez and E. Allen Arrington. Aerodynamic Calibration of the NASA Lewis IcingResearch Tunnel (1997Tests)[R]. NASA CR-210809,2001.
    [163] J. Dwayne Bell. Icing at the Mckinley Climatic Laboratory, An Update of the New IcingCapability Project (end of FY03)[R]. AIAA2004-0735,2004.
    [164]张雪苹,朱春玲.飞机结冰适航审定与冰风洞试验方法[D].南京航空航天大学硕士学位论文,2010年12月.
    [165] Edward Herman. Goodrich Icing Wind Tunnel Overview, Improvements and Capabilities [R].AIAA2006-0862,2006.
    [166] G. Leone, L. Vecchione and P. de Matteis. The New CIRA Icing Wind Tunnel Spray Bar SystemDevelopment [R]. AIAA2000-0629,2000.
    [167] L. Imperato, G. Leone, L. Vecchione. Spray Nozzles Experiment Comparison in Laboratory andIcing Wind Tunnel Testing [R]. AIAA2000-0478,2000.
    [168]中国人民解放军总装备部军事训练教材编辑工作委员会.低速风洞试验[M].北京:国防工业出版社,2002年7月.
    [169]刘政崇著.风洞结构设计[M].北京:中国宇航出版社,2005年5月.
    [170]伍荣林,王振羽编著.风洞设计原理[M].北京:北京航空学院出版社,1985年10月.
    [171]姚惠中等编.南航NH-2低速风洞[M].南京:南京航空学院,1981年10月.
    [172]华绍曾,杨学宁等编译.实用流体阻力手册[M].北京:国防工业出版社,1985年3月.
    [173] Seetharam H. Chintamani. Experimental Design of the Expanding Third Corner for the BoeingResearch Aerodynamic Icing Tunnel [R]. AIAA92-0031,1992.
    [174] Seetharam H. Chintamani. Design Feature and Flow Qualities of the Boeing ResearchAerodynamic Icing Tunnel [R]. AIAA94-0540,1994.