一类浅水波方程的动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了一类非线性浅水波方程---耗散Camassa-Holm方程的Cauchy问题的局部适定性、精细的爆破机制、强解的爆破与整体存在性以及耗散MKdV方程的整体吸引子与数值计算。
     在第一章中,我们首先介绍了方程的物理背景以及最新的研究进展,给出了与本文相关的一些定义与记号。在第二章,我们研究了一个广义弱耗散CH方程的Cauchy问题。首先我们利用Kato定理得到了方程在Hs(R),s>3/2上的局部适定性,然后利用一些先验估计和几个有用的引理给出方程精细的爆破机制和强解爆破的结果,最后证明了强解的爆破率是-2,分析结果表明:弱耗散项对于爆破率没有影响,但是耗散程度的强弱明显对水波的爆破产生影响。在第三章中,研究了一个弱耗散双组份CH方程的Cauchv问题。对于任意的初值z0=(u0,ρ0)∈Hs(R)×Hs-1(R),s≥2,我们利用Kato定理证明了系统Cauchy问题的局部适定性,然后同样给出了方程精细的爆破机制、强解的爆破结果和爆破率。第四章,我们研究了一个带有自由参数σ的弱耗散双组份CH方程的Cauchy问题。首先得到了方程在Hs(R)×Hs-1(R),s≥2上的局部适定性,然后给出了方程爆破的充要条件和几个强解爆破的结果以及爆破率。第五章我们研究了一个周期的弱耗散双组份CH方程。首先对于任意的初值z0=(u0,ρ0)∈Hs(R)×Hs-1(R),s≥2,我们证明了系统Cauchy问题的局部适定性,然后给出了方程爆破的充要条件和几个强解爆破的结果以及爆破率,最后利用构造Lyapunov函数的方法得到了当0<σ<2时方程整体解存在的一个充分条件。在第六章,对无界域上的含四阶耗散项的MKdV方程利用Sovolev插值不等式以及关于时间t的先验估计证明了该方程在无界域上解的存在性,然后利用算子分解技巧以及Kuratowskiiα-非紧测度讨论了解的光滑性并且得到了该方程在H2(R)上存在整体吸引子,最后利用启发性分析法及耗散守恒格式理论证明了所给的普遍性二时间层差分格式的计算稳定性并且做了相应的数值模拟,从图形中得到了与理论证明一致的结论。
In this doctoral dissertation, we study the local well-posedness, precise blow-up scenario and blow-up phenomena, global existence of strong solutions to the Cauchy problem for a class of nonlinear shallow water wave equations and the global attractor, numerical simulation of MKdV equation.
     The dissertation is divided into six chapters. In the first chapter, we first introduce the physical background and the latest research advances of the equations. We then give some related definitions and notations of the dissertation. In the second chapter, we study the Cauchy problem of a generalized dissipative CH equation. We first establish the local well-posedness for the equation on Hs(R),s>3/2by Kato's theory. Then we present a precise blow-up scenario of strong solutions to the equation, and give several blow-up results by using some priori estimates and several useful lemmas. Finally, we prove that the blow-up rate of strong solutions to the equation is-2. This fact shows that the blow-up rate is not affected by the weakly dissipative term, but the occurrence of blow-up is affected by the dissipative parameter A. In the third chapter, we study a weakly dissipative two-component CH equation. We investigate the local well-posedness of the Cauchy problem for any initial data z0=(u0,ρ0)∈Hs(R)×Hs-1(R), s≥2by Kato's theory. Then we also present a precise blow-up scenario, several blow-up results and the blow-up rate of strong solutions to the equation. In fourth chapter, we study the Cauchy problem of a dissipative two-component CH equation with free parameter σ. We obtain the local well-posedness, precise blow-up scenario, blow-up phenomena and the blow-up rate of the equation. In fifth chapter, we study a weakly dissipative periodic two-component CH equation. We first obtain the local well-posedness, precise blow-up scenario, blow-up phenomena and the blow-up rate of the equation. Then we obtain a sufficient condition for the existence of global solution of the equation when0<σ<2by using Lyapunov function. In last chapter, the Sovolev interpolation inequality and prior estimate on time t are applied to show the existence of solution in unbounded domain. Moreover, operator decomposed technique and Kuratowskii α-noncompacted measure are applied to study the smooth property of the solution, then the existence of the global attractor of a dissipative MKdV equation in H2(R) is proved. Finally, we use nature analysis approach and dissipative conservative scheme theory to prove the computational stability of universal double time differential format and the accordant conclusion with theoretical proof is gained by numerical simulation.
引文
[1]郭玉翠,非线性偏微分方程,北京:清华大学出版社,2008.
    [2]郭柏灵,田立新,杨灵娥,殷朝阳,Camassa-holm方程,北京:科学出版社,2008
    [3]T.B.Benjamin,J.L.Bona,and J.J.Mahony,Model equations for long waves in non-linear dispersive systems,Philos.Trans.R.Soc.London A,272,1972,47-78
    [4]R.K.Dodd,J.C.Eilbeck,J.D.Gibbon and H.C.Morris,Solitons and Nonlinear Wave Equations, New York,Academic Press,1984
    [5]G.B.Whitham,Linear and Nonlinear Waves,New York,J.Wiley and Sons,1980
    [6]Camassa R.,Holm D.D, An integrable shallow water equation with peakoned solitons, Phys. Rev. Lett.,1993,71(11),1661-1664
    [7]Fuchssteiner B.,Fokas A.S., Symplectic structures, their Backlund transformation and hereditary symmetries, Physica D,1981,4,47-66
    [8]Johnson R.S., Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid. Mech.,2002,457,63-82
    [9]Camassa R.,Holm D.D,Hyman,J., A new integrable shallow water equation, Adv.Appl. Mech.,1994,31,1-33
    [10]Fisher M.,Schiff J., The Camassa Holm equations:conserved quantities and the initial value problem, Phy. Lett.A.,1999,259 (3),371-376
    [11]Clarkson P.A.,Mansfield E.L.,Priestley T.J., Symmetries of a class of nonlinear third-order partial differential equations, Math. Comput. Modeling,1997,25(8-9), 195-212
    [12]F.Cooper,H.Shepard, Solitons in the Camassa-Holm shallow water equation, Physics. Letters. A,1994,194(4),246-250
    [13]Lixin Tian,Xiuying Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos,Solitons and Fractals,2004,19(3),621-637
    [14]Constantin.A,Escher.J, Global existence and blow-up for a shallow water equation, Ann.Sc. Norm. Sup. Pisa,1998,26,303-328
    [15]Constantin.A, Global existence of solutions and breaking waves for a shallow water equation:a geometric approach, Ann.Inst. Fourier(Grenoble),2000,50, 321-362
    [16]Constantin.A,H.P.Mckean, A shallow water equation on the circle, Comm.Pure Appl.Math.,1999,52 (8),949-982
    [17]Constantin.A, On the scattering problem for the Camassa-Holm equation, Proc.R.Soc. London A.2001,457,953-970
    [18]Lenells J, The scattering approach for the Camassa-Holm equation, J Nonlinear Math. Phys.,2002,9(4),389-393
    [19]J.Eckhardt,G.Teschl, On the isospectral problem of the dispersionless Camassa-Holm equation, Advances in Mathematics,2013 (235):469-495
    [20]R.M.Chen,J.Lenells,Y.Liu, Stability of the μ-Camassa-Holm peakons, J Non-linear Sci,(2012), Doi:10.1007/s00332-012-9141-6
    [21]Z.Jiang,L.Ni,Y.Zhou, Wave breaking of the Camassa-Holm equation, J Nonlinear Sci 22(2012) 235-245
    [22]Constantin.A,R.I.Ivanov, On an integrable two-component Camassa-Holm shallow water system. Phys. Lett.A.2008(372):7129-7132
    [23]M.Chen,S.Liu,Y.Zhang, A 2-component generalization of the Camassa-Holm equation admits solutions. Lett.Math.Phys.2006(75):1-15
    [24]J.Escher,O.Lechtenfeld,Z.Y.Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete Contin.Dyn.Syst.2007 (19): 493-513
    [25]Guan,Z.Y.Yin, Global existence and blow-up phenomena for an integrable two-component Camassa- Holm shallow water system. J. Differential Equations, 2010(248):2003-2014
    [26]G.Gui,Y.Liu, On the Cauchy problem for the two-component Camassa-Holm system. Math.Z.2010:doi:10.1007/s00209-009-0660-2
    [27]G.Gui,Y.Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system. Journal of Functional Analysis,2010 (258):4251-4278
    [28]Y.Fu,C.Z.Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons. Journal of Mathematical Physics,2009 (50), 012906
    [29]Y.Fu,Y.Liu, Well posedness and blow-up solution for a modified two component periodic Camassa-Holm system with peakons. Math.Ann, doi:10.1007/s 00208-010-0483-9
    [30]R.M.Chen,Y.Liu,Z.Qiao, Stability of solitary waves and global existence of a generalized two-component Camassa-Holm system, Commun in PDE,36 (2011) 2162-2188
    [31]K.Yan,Z.Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems, Math.Z.(2011)269:1113-1127
    [32]E.Ott and R.N.Sudan, Damping of solitary waves,Phys.Fluids,13,1970,1432-1434
    [33].M.Ghidaglia,Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time,J.Differential Equations, 74,1988,369-390
    [34]S.Wu,J.Escher and Z.Yin,Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation,Discrete Contin.Dyn.Syst. Ser.B,12, 2009,633-645
    [35]S.Wu and Z.Yin,Blow-up,blow-up rate and decay of the solution of the weakly dissipative Camassa-Holm equation,J.Math.Phys.,47,2006,013504,pp.1-12
    [36]S.Wu and Z.Yin,Blowup and decay of solution to the weakly dissipative Camassa-Holm equation,Acta Math.Appl.Sin.,30,2007,996-1003
    [37]S.Wu and Z.Yin,Blow-up phenomena and decay for the periodic Degasperis-Procesi equation with weak dissipation,J.Nonlinear Math.Phys.,15 2008,28-49
    [38]S.Wu and Z.Yin,Blow-up and decay of the solution of the weakly dissipative Degasperis-Procesi equation,SIAM J.Math.Anal.,40,2008,475-490
    [39]S.Wu and Z.Yin,Global existence and blow-up phenomena for the weakly dissipative Camassa-Holm equation, J.Differential Equations,246,2009,4309-4321
    [40]梅强中,水波动力学,(戴世强,周显初整理)科学出版社,北京,1984
    [41]文书明,微流边界层理论及其应用,冶金工业出版社,北京,2002
    [42]陈卓如主编,工程流体力学(第二版),高等教育出版社,北京,2004
    [43]倪皖荪,魏荣爵,水槽中的孤波,上海科技教育出版社,上海,1997
    [44]莫乃荣,工程流体力学,华中科技大学出版社,武汉,2000
    [45]禹华谦,工程流体力学(水力学),西南交通大学出版社,成都,1999
    [46]郭柏灵,非线性演化方程,上海科技教育出版社,上海,1995
    [47]R.M.Miura,C.S.Gardner and M.D.Kyuskal, KdV equation and generalization Ⅱ. Existence of conservation laws and constants of motion. J.Math.Phys.9(1968)1204
    [48]P.G.Drazin,R.S.Johnson, Soliton:An Introduction, Cambrige Univ.Press, Cambrige,1989
    [49]Uriel Frisch,Turbulence,Cambrige Univ.Press,Cambrige,1995
    [50]A.Constantin,J.Escher, Well-posedness,Global Existence,and Blowup Phenomena for a period Quasi-Linear Hyperbolic Equation. Communications on Pure and Applied Mathematics,1998
    [51]S.Wu,Z.Yin,Blow-up, Blow-up rate and decay of the solution of the weakly dissipative Camassa-Holm equation.Journal of Mathematical Physics.47,1-12 (2006)
    [52]T.Kato,Quasi-linear equations of evolution,with applications to partial differential equations, Spectral Theory and Differential Equations.448,25-70 (1975)
    [53]A.Pazy,Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York,1983
    [54]T.Kato,On the Korteweg-de Vries equation,Manuscripta Math.,28,1979,89-99
    [55]Z.Yin,Well-posedness,global solutions and blowup phenomena for a nonlinearly dispersive equation,J.Evol.Equ.,4,2004,391-419
    [56]Z.Yin,On the Cauchy problem for the generalized Camassa-Holm equation. Nonlinear Analysis,66,460-471(2007)
    [57]Constantin A., Escher J.:Wave breaking for nonlinear nonlocal shallow water equations. Acta Math.181,229-243 (1998)
    [58]Z. Yin, Well-posedness, blowup and global existence for an integrable shallow water equation, Discrete Contin. Dyn. Syst.11 (2004), pp.393-411
    [59]A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z.233 (2000), pp.75-91
    [60J Chen,R.M.,Y.Liu. Wave breaking and global existence for a Generalized two-component Camassa-Holm system.International Mathematics Research Notices 6(2011)1381-1416
    [61]Z.Yin,On the blow-up of solutions of the periodic Camassa-Holm equation, Dyn.Contin. Discrete Impuls.Syst.Ser.A Math.Anal.,12,2005,375-381
    [62]Constantin,A.,R.S.Johnson,Propagation of very long water waves, with vorticity, over variable depth,with applications to tsunamis,Fluid Dynamics Research,40 (2008),175-211
    [63][谷超豪等。孤立子及应用杭州:浙江出版社,1990
    [64]田立新等。耗散孤立波方程的吸引子。应用数学和力学,1994.6第15卷第6期539-547
    [65]田立新 徐振源。弱阻尼Kdv方程中长期动力学行为研究,应用数学和力学
    [66]Olivier Goubet,Ricard M.S. Rosa. Asymptotic smoothing and the Global Attra-ctor of a weakly Damped KdV equation on the Real Line. Journal of Differential Equation 185,25-53(2002)
    [67]R.Rosa.The global attractor of a weakly damped, forced Korteweg-de Vries equation in HA1(R), Matematica Contemporanea 19 (2000), no.1-3,31-66.
    [68]Marco cabral, Ricardo Rosa. Chaos on a damped and forced KdV equation, Physica D 192 (2004) no.3 & 4,265-278.
    [69]Von Neumann,J.and R.D.Richtmyer,A method for the numerical calculation of hydrodynamical shocks,J.Appl.Phys.1950,21,232-257.
    [70]Hirt,C.W.,Heuristic theory for finite-difference equations,J.Comp. Phys.,1968,2, 339-355
    [71]曾庆存,计算稳定的若干问题,大气科学,1978,2(3),181-191.
    [72]曾庆存、季仲贞,发展方程的计算稳定性问题,计算科学,1981,3(1),79-86.
    [73]季仲贞,非线性计算稳定性的比较分析,大气科学,1981,4(4),344-354.
    [74]季仲贞、王斌,再论发展方程差分格式的构造和应用,大气科学1991,15(2),72-78.
    [75]李松波耗散守恒格式理论北京:高等教育出版社,1997
    [76]Guo Boling,Li Yongsheng. Attractor for dissipative Klein-Gordon-Schrodinger equations in R3. J Diff Eq,1997,136(2):356-377
    [77]Li Yongsheng,Guo Boling. Attractor for dissipative Zakharov equations in an unbounded domain.Reviews in Math Physics,1997,9(6):675-687
    [78]Laurencot P. Long-time behavior for weakly damped driven nonlinear Schro-dinger equations in R".Nonlinear Diff Eq Appl,1995,2(3):375-369
    [79]Hale J K.Asymptotic Behavior of dissipative systems. Math,Surveys and Monographs,1988,25
    [80]Babin A V, Vishik M I.Attractors of evolution equation. North- Holland, Amsterdam London,New York Tokyo:Elsevier Science Publishing Company, 1992
    [81]Babin A V, Vishik M I.Attractors of partial differential evolution equations in an unbounded domain.Proc Roy Soc Edinburg,1990,116A:221-243
    [82]李松波 耗散守恒格式理论 北京:高等教育出版社,1997
    [83]Warming R F,Huett B J.The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods.J.Comp.Phys,1974,14(1): 159-179
    [84]Yang Xiao Zhong etal.A New Method for Judging Computational Stability of Difference Schemes of Burgers Equation.华北电大学学报,2002,29(1):91-96