硅基应变材料生长动力学与缺陷控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基应变材料及其技术具有迁移率增强高、能带可裁减、与标准Si工艺完全兼容等高性能、低成本特性,在高速、高频、低压、低功耗等领域被广泛应用,已成为21世纪延续摩尔定律的关键技术。硅基应变技术应用的基础是高质量硅基应变材料的制备,而材料生长的机理、生长动力学以及生长工艺对硅基应变材料的制备有至关重要的影响。
     采用FLUENT数值分析软件,论文对RPCVD(减压化学气相淀积)工艺生长硅基应变与弛豫材料的反应室温度、密度、速度、压强等分布进行CFD(计算流体动力学)仿真研究。首次采用正交法,对FLUENT模拟进行了正交优化与误差分析,得到了RPCVD生长硅基应变与弛豫材料的优化工艺参数。
     基于生长表面结构的二聚体理论与实验结果,论文提出了硅基应变与弛豫材料的分速度机制。基于SiGe(锗硅)材料的合金生长特性,论文提出了Si源和Ge源前驱体的分立流密度机制。基于气体的碰撞理论,论文研究建立了CVD(化学气相淀积)生长硅基应变材料的表面反应生长速率模型。基于分立流密度模型、分速度模型和Grove理论,论文分别建立了硅基应变与弛豫材料的CVD生长动力学模型及其优化模型,并进行了实验验证,模型误差明显小于表面反应生长模型。
     论文系统地研究了硅基应变与弛豫材料中的缺陷机理与行为,并根据低温Si、渐变组分SiGe及离子注入的工艺原理与特性,设计了三种控制应变Si材料穿透位错密度TDD的材料结构及工艺,材料表征结果表明:所设计的应变Si结构材料的TDD低于其他常规结构材料。
     采用RPCVD工艺及FLUENT的工艺模拟优化结果,论文进行了硅基应变与弛豫材料的生长实验研究,并采用AFM、DIC、Raman、TEM等技术,对材料的表面粗糙度、表面位错密度、应力与应变、Ge组分、位错行为等材料性能与特性进行了全面系统地表征。
     基于弹性力学理论和SOI(绝缘层上硅)材料的力学特性,论文提出了一种制作晶圆级单轴应变SOI的新方法,并阐述了新方法的工艺原理。进行了单轴应变SOI晶圆的制备,获得了应变量高于现有相似技术的单轴张应变SOI晶圆。
     基于薛定谔方程和k.p微扰法,论文还建立了适用于(001)、(101)和(111)面任意晶向的应变Ge/Si1-xGex价带色散关系模型,得到了相应的价带结构、空穴各向异性与各向同性有效质量等研究成果。
Si-based strained materials and technologies with high mobility enhancement,flexible energy gap and full compatibility with standard silicon technology, are widelyused in high-speed, high-frequency, low-voltage and low-disspation applications,andbecome the critical technology that extends the Moore’s law in21stcentury. Applicationof Si based straine technology is based on preparation of high quality Si-based strainedmaterialand,thus mechanism of growth, growth kinetics and the growth process are themost critical factors in the preparation of Si based strained materials.
     With the FLUENT numerical analysis software, using CFD(Computational FluidDynamics) simulation methods, the distribution of chamber temperature, density, speedand pressure are simulated for the growth of Si-based strained and relaxed materials byRPCVD (reduced pressure chemical vapor deposition)process in this dissertation. Andfor the first time, orthogonal method is used for error, therefore,the optimized growthprocess parameters of RPCVD are obtained for Si-based strained and relaxed materials.
     Based on Dimer theory and the growth characteristics of SiGe alloy, thecomponent velocity mechanism and the discrete flux density mechanism of Si-basedstrained and relaxed materials are presented in this dissertation. Furthermore,based onthe gas collision theory, the surface reaction growth rate model of Si-based strainedmaterials by CVD (chemical vapor deposition) are built. Finally, based on the discreteflow density model, component velocity model and Grove theory, the CVD growthkinetics model and relevant optimization model are built for Si-based strained andrelaxed materials, compared with experimental data, the proposed model has betteragreement than surface reaction growth model.
     The defect mechanism and behaviors of Si-based strained and relaxed materials aresystematically investigated in this dissertation. According to the process principle oflow temperature Si buffer, graded SiGe buffer and ion implantation, three materialstructures and processes to control TDD (Threading Dislocation Density) of strained Simaterial are designed. The material characterization results prove that these structureshave lower TDD compared with normal structures.
     With Flunt optimized simulation process parameters, the growth experiments ofSi-based strained and relaxed materials are investigated by RPCVD. Using AFM, DIC,Raman and TEM, material performance and characteristics, such as surface roughness,surface dislocation density, stress and strain, Ge component and dislocation behavior,are completely and systematically characterized.
     Based on elastic mechanics theory and mechanical property of SOI materials, a new method of fabricating wafer level uniaxial strained SOI wafer is proposed and theprocess principle of this new method is explained. Uniaxial strained SOI wafer has beenprocessed and the strain values is higher than present uniaxial tensile strained SOI waferusing similar technology.
     On the foundation of Schr dinger’s equation and k.p perturbation theory, thevalence band dispersion relation model of strained Ge/Si1-xGexis also built, whichapplies to any crystal orientation of (001),(101) and (111) plane. And the correspondingvalence band structure and the anisotropic and isotropic effective mass of holes are alsocalculated.
引文
[1] International Technology Roadmap for Semiconductor2011Update Edition.,http://www.itrs.net/Links/2011ITRS/Home2011.htm
    [2] Mohta N, Thompson S E. Mobility Enhancement—The Next Vector to ExtendMoore’s Law[J]. IEEE Circuits Syst. Mag.,2005,21(3):21-36.
    [3] Lee M L, Fitzgerald E A, Bulsara M T, et al. Strained Si, SiGe, and Ge channels forhigh-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys.,2005,97(1):1-27
    [4]Douglas J Paul. Si/SiGe heterostructures: from material and physics to devicesandcircuits [J]. Semiconductor Science and Technology. Sept.2004,19(10):75-108.
    [5] Jiun-Hsin Liao. Characterization of strained silicon[D]. Arizona:Arizona stateuniversity. May2006.
    [6] Hoyt J L, Nayfeh H M, Eguchi S, etal. Strained Si MOSFET technology[C]. SanFrancisco, CA, USA:Technical Digest Interational Electron Devices Meeting(IEDM),2002:23-26.
    [7] Sanuki T, Oishi A, Morimasa Y, etal.Scalability of strained silicon CMOSFET andhigh drive current enhancement in the40nm gate length technology[C],TechnicalDigest Interational Electron Devices Meeting (IEDM),2003:65-68
    [8] Sugii N, Hisamoto D, Washio K, etal. Performance enhancement of strained-SiMOSFETs fabricated on a chemical-mechanical-polished SiGe substrate[J]. IEEETrans. Electron Devices,2002,49(12):2237-2243
    [9] Oh, J., Lee, S.-H., Min, K.-S., et al. SiGe CMOS on (110) channel orientation withmobility boosters: Surface orientation, channel directions, and uniaxial strain[C].Austin: VLSI Technology (VLSIT),2010Symposium on Honolulu,2010:39-40.
    [10] L.J.Huang, J.O.Chu, D.F.Cananei, et al. SiGe-on-insulator prepared by waferbonding and layer transfer for high-performance field-efect transistors [J]. AppliedPhysics Letter,2009,78(9):1267-1269.
    [11] Al-Sadi M,Fregonese S,Maneux C, Modeling of a novel NPN SiGe HBT devicestructure using strain engineering technology in the collector region for enhancedelectrical performance [C].Talence:Bipolar/BiCMOS Circuit and TechnologyMeeting(BCTM),2010:216—219.
    [12] Hongyun Xie,Wanrong Zhang,Pei Shen,Impact of bias current and geometry onnoise performance of SiGe HBT low noise amplifier [C]. Beijing:Microwave andMillimeter Wave Technology(ICMMT),2010:492—495.
    [13] S S lyer, G L Patton, S I Delage. Silicon germanium base hetero-juncfon bipolartransistors by molecular beam epitaxy[A]. International Electron DevicesMeeting[C]. LosAngeles.USA,1987, V01.33:874-876.
    [15] M.Ugajin,Yasuo Kunii,Mamoru Kuwagaki,et al.SiGe Drift Base Bipolar Trasistorwith Self-Aligned Selective CVD-Tungsten Electrodes,IEEE TRANSACTION ONELECTRON DEVICE,1994,41(3):427-.)
    [16] P.A.Potyraj,K.J.Petrosky,K.D.Hobart ea tl.,A230-Watt S-Band SiGeHeterojunction Bipolar Transistor[J],TEEE Transaction on Microwave Theory andTechniques,1996,44(12):2392-2397.
    [17] K.Washio,E.Ohue,H.Shimamoto,et al.A0.2-μm180-GHz-fmax6.7-ps-ECLSOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave andhigh-speed digital applications [C],in IEDM Tech.Dig.,2000,p741-744.
    [18] J.-S. Rieh et al. SiGe HBTs with cut-off frequency of350GHz[C],TechnicalDigest-International Electron Devices Meeting,2002, p771-774.
    [19]辛启明、刘英坤、贾素梅.SiGe异质结晶体管技术的发展.半导体技术.2011,36(9):672-676.
    [20]新品快讯,电子发烧友网,http://www.elecfans.com/xinpian/ic/20110928218673.html,2011年09月28日.
    [21]新品快讯,电子发烧友网, http://www.elecfans.com/xinpian/ic/M675S02.html,2012年02月29日.
    [22]嵌入式设计.电子工程专辑.2012年05月07日,http://www.eet-china.com/ART_8800666377_617693_NT_38c1b41f.HTM.
    [23]截止频率达200GHz! IBM采用第4代SiGe技术生产芯片,http://smbpc.org/content.jsp?id=1939
    [24] K.Rim,J.L.Hoyt,J.F.Gibbons. Transconductance enhancement in deep submicronstrained Si n-MOSFETs[C]. International Electron Devices Meeting TechnicalDigest.1998,p707-710.
    [25] T.Mizuno,N.Sugiyama,H.Satake,et al.Symposium on VLSI technology digest oftechnical papers.2000,p210-211.
    [26] K. Rim, J. Chu, H. Chen, et al. Characteristics and device design of sub-100nmstrained Si N-and PMOSFETs[C]. Symposium on VLSI Technology Digest ofTechnical Papers.2002, p.98-99.
    [27] J. L. Hoyt, H. M. Nayfeh, S. Eguchi. Strained Silicon MOSFETtechnology[C],International Electron Devices Meeting Technical Digest. Dec.2002,p.23-26.
    [28] H. S. Yang, R. Malik, S. Narasimha, et al. Dual stress liner for high performancesub-45nm gate length SOI CMOS manufacturing[C]. International ElectronDevices Meeting Technical Digest. Dec.2004, p.1075-1078.
    [29] http://isde.vanderbilt.edu/Content/muri/2005MURI/Thompson_MURI.ppt
    [30] K.M.Tan,M. Zhu,W.W.Fang et al. A New Liner Stressor with Very High IntrinsicStress (>6GPa) and Low Permittivity Comprising Diamond-Like Carbon (DLC)for Strained P-Channel Transistors [A],2007International Electron DevicesMeeting Technical Digest[C],2007, p127-130.
    [31] http://www.qdit.com/DIY/cpu/Intel/2012/0421/46429.html
    [32] http://www.qdit.com/DIY/cpu/Intel/2012/0409/46237.html
    [34] hppt//www.csip.cn.IBM论证应变Ge技术.电子工程专辑.2004年12月15日.
    [35] O.Weber,Y.Bogumilowicz, T. Ernst et al.,IEEE IEDM Tech. Dig.(2005)
    [36] E Kasper, H J Herzog, and H Kibbel. A one-dimensional SiGe superlattice grownby UHV epitaxy[J]. Appl Phys Lett,1975.11, v8(3):199-205.
    [38] E A Fitzgerald, Xie Y H, Green ML, et al. Totally relaxed GeSi layers with lowthreading dislocation densities grownon on substrates[J]. Applied Physies Letters,1991,59:811-813.
    [39] G J Parker, P Ashburn, J M Bonar, et al.LPCVD SiGe FOR HETEROJUNCTIONBIF'OLAR TRANSISTORS[C],The Institution of Electrical Engineers. Printedand published by the IEE. Savoy Place, London WCPR OBL. UK,1995,pp2/1-2/5.
    [40] J.M.Hartmann,M.Burdin,G.Rolland,T.Billon,Growth kinetics of Si and SiGeon Si(100)、Si(110) and Si(111) surfaces[J],Journal of Crystal Growth,2006,294:288-295.
    [41] G. Abstreiter, I. S. Gergis, T. Wolf, et al. Strain-Induced Two-Dimensional ElectronGas in Selectively Doped Si/SixGe1-x Superlattices[J]. Physics ReviewLetter.1985,54(22):2441-2444.
    [42] Minjoo L. Lee, Arthur J. Pitera, and E. A. Fitzgerald,Growth of strained Si andstrained Ge heterostructures on relaxed Si1-x Gex by ultrahigh vacuum chemicalvapor deposition[J],J. Vac. Sci. Technol. B,2004,22(1):158-164.
    [43] Enrique Escobedo-Cousin,Sarah H.Olsen,Steve J. Bull,et al.Study of surfaceroughness and dislocation generation in strained Si layers grown on thinstrain-relaxed buffers for high performance MOSFETs,1-4244-0461-4/06/$20.00@2006IEEE. IEEE Xplore. Restrictions apply.
    [44]王敬,梁仁荣,徐阳等.用减压化学气相淀积技术制备应变硅材料.半导体学报.2006,27(增刊):179~182.
    [45] Keunwoo Kim, Ching-Te Chuang, Kern Rim, Performance assessment of scaledstrained-Si channel-on-insulator (SSOI) CMOS[J], Solid-State Electronics,2004,48(2):239-243.
    [46] L. J. Huang, J. O. Chu, D. F. Cananei, et al. SiGe-on-insulator prepared by waferbonding and layer transfer for high-performance field-effect transistors[J]. AppliedPhysics Letter.2001,78(9):1267-1269.
    [47] G. Taraschi, Z. Y. Cheng. Relaxed SiGe on insulator fabricated via wafer bondingand layer transfer: Etch-back and Smart-cut alternatives[C].Proceedings of theTenth International Symposium on Silicon-on-Insulator Technology and Devices.2001, p.27-32.
    [48] T.Tezuka,N.Sugiyama,S.I.Takagi.Fabrication of strained Si on an ultrathinSiGe-on-insulator virtual substrate with a high-Ge fraction[J].Applied PhysicsLetter.2001, Vol.79, p.1798-1800.
    [49] T. A. Langdo, A. Lochtefeld, A. Currie, et al. Preparation of novel SiGe-freestrained Si on insulator substrates[C]. IEEE International Silicon-on-InsulatorConference.2002, p.211-212.
    [50] H.P.Tang et al.,J.Crystal.Growth,116,1(1992)
    [51] B.S.Meyerson et al.,APPL.Phys.Lett.,53,2555(1998)
    [52] P.M.Garone et al.,APPL.Phys.Lett.,56,1275(1990)
    [53] D.J.Robbins et al.,APPL.Phys.,69,3729(1991)
    [54] J.M.Hartmann,M.Burdin,G.Rolland,et al.Growth kinetics of Si and SiGe on Si(100),Si(110) and Si(111) surfaces[J], J.Crystal.Growth,2006,294(2):288-295
    [55] A.A.Lovtsus,A.S.Segal,A.P.Sid’ko,et al.Kinetics of SiGe chemical vapordeposition from chloride precursors[J], Journal of Crystal Growth2006,287(2):446–449
    [56] J.M.Hartmann,Low temperature growth kinetics of high Ge content SiGe inreduced pressure-chemical vapor deposition[J],Journal of Crystal Growth,2007,305(1):113-121
    [57]李培咸、孙建诚、胡辉勇.光化学气相淀积SiGe Si材料的机制分析.光子学报.2002,31(2):293-296.
    [58]雷震霖. GexSi1-x/Si异质结材料的UHVCVD设备、工艺及生长特性研究[D],沈阳:东北大学,博士论文,1998,p228-32.
    [59]于卓、李代宗、成步文.UHVCVD外延生长SiGe Si表面反应动力学.半导体学报.2000,21(6):564-569
    [60] E Kasper, H J Herzog, and H Kibbel. A one-dimensional SiGe superlattice grownby UHV epitaxy[J]. Appl Phys Lett,1975.11, v8, n3, p199-205.
    [61] E A Fitzgerald, Xie Y H, Green ML, et al. Totally relaxed GeSi layers with lowthreading dislocation densities growon on substrates[J]. Applied Physies Letters,1991,59(7):811-813.
    [62] M T Currie, I B Samavedam, T A Langdo, et al. Controlling threading disloeationdensities in Ge on Si using graded SiGe layers and chemical-mechanicalPolishing[J]. APPlied Physies Letters,1998,72(14):1718-1720.
    [63] Luan Hsin-Chiao, R L Desmond, Kevin K.Lee, et al. High-quality Ge epilayers onSi with low threading-dislocation densities. Applied Physics Letters,1999,75(19):2909-2911.
    [64] Chen H, Guo L W, Cui Q, et al. Low‐temperature buffer layer for growth of alow‐dislocation‐density SiGe layer on Si by molecular‐beam epitaxy[J]. JAppl Phys,1996,79(2):1167-1169.
    [65] K K Linder, Zhang F C, J S Rieh, et al. Reduction of dislocation density inmismatched SiGe/Si using a low-temperature Si buffer layer[J]. Appl. Phys. Lett,June1997,70(24):3224-3226.
    [66] Lee S W, Chen P S, Tsai M J, et al. The growth of high-quality SiGe films withan intermediate Si layer[J]. Thin Solid Films,2004,447-480:302-305.
    [67] V.A.Shah, A.Dobbie, M.Myronov, et al. Reverse graded relaxed buffers for high Gecontent SiGe virtual substrates[J]. Applied Physies Letters,2008,93(19):2103.
    [68]杨鸿斌,樊永良. Si间隔层对利用低温Si缓冲层生长高弛豫SiGe层的影响.半导体学报,2006年,27(12):144-147
    [69] Martin M. Rieger and P. Vogl. Electronic-band parameters in strained Si1-xGexalloys on Si1-yGeySubstrates[J]. Physical Review B.1993,48(19):14276-14287.
    [70] Duglas J Paul. Silicon-germanium strained layer materials in microelectronics[J].Advanced Materials.1999,11(3):191-204.
    [71] Van Der Merwe, J.H. Erratum,Crystal Interfaces. Part II. FiniteOvergrowths[J].Journal of Applied Physics,1963,34(11):123-127.
    [72] E Kasper, H J Herzog. Elastic strain and misfit dislocation density in Si0.92Ge0.08films on silicon substrates[J]. Thin Solid Films,1977,44(3):357-370.
    [73] R.People,J.C.Bean. Calculation of critical layer thickness versus lattice mismatchfor GexSi1-x/Si strained-layer heterostructures[J]. Appl Phys lett,1985,47(31):322-324.
    [74]黄靖云,叶志镇,阙端麟. Si1-xGex/Si异质结构中热应力对临界厚度的影响[J].物理学报.1997,46(10):2010-2015.
    [75] J W Matthews. Defects associated with the accommodation of misfit betweencrystals[J]. Journal of Vacuum Science and Technology.1975,12(1):126-133.
    [76]刘恩科,朱秉升,罗晋生等.半导体物理学[M].第4版.北京:国防工业出版社,1997年6月.
    [77] K. Rim, R. Anderson and D. Boyd, et al. Strained Si CMOS (SS CMOS)technology: opportunities and challenges[J]. Solid-State Electronics.2003,47(7):1133-1139.
    [78]陈治明,王建农.半导体器件的材料物理学基础[M].第1版.北京:科学出版社,1999年5月.
    [79]卡斯珀(Erich Kasper)著,余金中译.硅锗的性质(Properties of Strained andRelaxed Silicon Germanium)[M].第1版.北京:国防工业出版社,2002年9月.pp.33-56.
    [80] Martin M. Rieger and P. Vogl. Electronic-band parameters in strained Si1-xGexalloys on Si1-yGeysubstrates. Physical Review B.1993,48(11):14276-14287.
    [81] C.克莱,E.西蒙著,屠海令等译.半导体锗材料与器件[M].北京:冶金工业出版社,2010,p326.
    [82] Nayak D K,Woo J C S,Park J S,et al.Enhancement-mode quantum-well GexSi1-xPMOS[J], Electron Device Letters,1991,15(1-4):19-22
    [83]为国(译).国际半导体技术发展路线图(ITRS)2009年版综述(3)[J].中国集成电路.2010,4(131):17
    [84] Song J J,Zhang H M, Hu H Y, et al.Determination of conduction band edgecharacteristics of strained Si/Si1-xGex[J], Chin. Phys.B,2007,16(12):3827-3831.
    [85]戴显英、杨程、张鹤鸣等,应变Ge/Si1-xGex价带色散模型,物理学报,2012,61(13):137104-1-137104-7.
    [86]戴显英、杨程、张鹤鸣等.应变Ge价带空穴有效质量的各向同性与各向异性,物理学报,2012,61(23)237103.
    [87] Minjoo L. Lee, Eugene A. Fitzgerald2003Appl. Phys. Lett.834202.
    [88]顾祖毅,田立林,富力文等.半导体物理学[M].北京:电子工业出版社.1995,
    [89]邓志杰、郑安生编著.半导体材料[M].北京:化学工业出版社,2004.7,p28-30
    [90]Nikanorov,S.P.,Burenkov,Yu.A.,Stepanov,A.V.,Elastic properties of silicon[J],FizikaTverdogo Tela,1971,13(10):3001-3004
    [91]万群.师昌绪主编.材料科学技术百科全书[M].上卷.北京:中国大百科全书出版社,1995.p485
    [92] J.H.Hu and I.L.Spain. Phases of silicon at high pressure.Solid StateCommun[J],1984,51(5):263-266.
    [93] C.J.Smithells,Ed. Metals Reference Handbook[M],London,England:Butterworths,1992.
    [94]关旭东编著.硅集成电路工艺基础.北京:北京大学出版社,2003.10.p345
    [95] KURT E.,Silicon as a Mechanical Material[J],PETERSEN,PROCEEDINGSOF THE IEEE,1982,70(5):420-457
    [1] J.M. Hartmann, Low temperature growth kinetics of high Ge content SiGe inreduced pressure-chemical vapor deposition[J], Journal of Crystal Growth,2007,305(1):113–121
    [2] J.M. Hartmann, M. Burdin, G. Rolland, et al.Growth kinetics of Si and SiGe on Si(100),Si(110) and Si(111) surfaces[J], Journal of Crystal Growth,2006,294(2):288–295.
    [3] Y. Bogumilowicz, J.M. Hartmann, G. Rolland, et al.SiGe high-temperature growthkinetics in reduced pressure-chemical vapor deposition[J], Journal of CrystalGrowth.2005,274(1-2)28–37
    [4] Young-Joo Song,Jung-Wook Lim,Jin-Young Kang,et al.High transconductancemodulation-doped SiGe pMOSFETs by RPCVD[J].Electronics Letters,2002,38(23):1479-1480.
    [5]戴显英、金国强、董洁琼等.锗硅/硅异质结材料的化学汽相淀积生长动力学模型[J].物理学报,2011,60(6):065101-1-065101-7.
    [6]金晓军、梁骏吾.GeSi CVD系统的流体力学和表面反应动力学模型[J].电子学报,1996,24(5),7-12.
    [7]吴望一.流体力学(上册)(M).北京:北京大学出版社,1982,p145-170
    [8]张鸣远,景思睿,李国君.高等工程流体力学.西安:西安交通大学出版社,2006,p246
    [9]林建忠、阮晓东、陈邦国等.流体力学.北京:清华大学出版社,2005,p75-96
    [10]翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学学报.2005,26(2):160-165.
    [11]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.p51-60
    [12]刘霞,葛新锋. FLUENT软件及其在我国的应用[J].能源研究与应用,2003,(2):36–38
    [13] FLUENT6.2User’S Guide[M].FLUENT Inc.,2005.
    [14] Yao Zhao-Hui,G. L. Yoder,C. T. Culbertson,et al.Numerical simulation ofdispersion generated by a180°turn in a microchannel[J].Chinese PhysicsB,2002,11(3):226-232.
    [15] Dipti Ranjan Mohapatra, Padmnabh Rai, Abha Misra, et al.Parameter window ofdiamond growth on GaN films by microwave plasma chemical vapor deposition[J].Diamond and Related Materials,2008,17(7):1775-1779.
    [16]吴浩扬、常炳国、朱长纯.遗传算法的一种特例—正交试验设计法.软件学报.2001(1):148-153
    [17]郝拉娣、于化东.正交试验设计表的使用分析[J].编辑学报.2005(5):334-335
    [18]王国富、王志忠.应用统计[M].长沙:中南大学出版社,2003.p33-36
    [1]刘恩科、朱秉升、罗晋升.半导体物理学(第6版).北京:电子工业出版社,2003.8,p7
    [2] Collin K.L.Mui,Growth and Functionalization of group-Ⅳ semiconductorsurfaces[D], A dissertation submitted to the department of graduate studies ofStanford University,2003,p169-173.
    [3] Kondo Y.,Amakusa T.,Iwatsuki M.,et al. Phase Transition of the Si(001)Surface Below100K[J],Surface Science2000,453(1-3):L318-L322.
    [4] Tagami, K.; Tsukada, M. Simulated Noncontact Atomic Force MicroscopyImages of Si(001) Surface with Silicon Tip[J]. Japanese Journal of AppliedPhysics Part1-Regular Papers Short Notes and Review Papers2000,39(10):6025-6028.
    [5] Yokoyama, T.; Takayanagi, K. Anomalous Flipping Motions of Buckled Dimerson the Si(001) Surface at5K[J]. Physical Review B2000,61(8):R5078-R5081.
    [6] Cai, J.; Wang, J. S. Reconstruction of Si(001): A Comparison Study of ManyBody Potential Calculations[J]. Physical Status Solidi B-Basic Research2001,223(3):773-778.
    [7] Fu, C. C.; Weissmann, M.; Saul, A. Molecular Dynamics Study of DimerFipping on Perfect and Defective Si(001) Surfaces[J]. Surface Science.2001,494(2):119-130.
    [8] Hata,H.; Yasuda,S.; Shigekawa,H. Reinterpretion of the Scanning TunnelingMicrocsopy Images of Si(001)-(2*1) Dimers[J].Physical Review B(CondensedMatte and Materials Physics).1999,60(11),8164-8170.
    [9] Kondo, Y.; Amakusa, T.; Iwatsuki, M.; et al.“Phase Transition of the Si(001)Surface Below100K”; Surface Science2000,453(1-3), L318-L322.
    [10] Shoemaker,J.; Burggraf,L.W.; Gordon.M.S. An Ab Initio Cluster Study of theStructure of the Structure of the Si(001)Surface[J]. Journal of ChemicalPhysics2000,112(6),2994-3005.
    [11] Healy,S.B.;Filippi,C.;Kartzer,P.;et al. Role of the Electronic Correlation in theSi(001) Reconstruction: A Quantum Monte Carlo Study[J].Physical ReviewLetters2001,87(1):016105.
    [12] Hofer, U.; Li, L. P.; Heinz, T. F.Desorption of Hydrogen from Si(100)-2x1atLow Coverages: The Influence of π-Bonded Dimers on the Kineics[J].Physical Review B-Condensed Matter1992,45(16):9485-9488.
    [13] DEvelyn. M. P.; Cohen, S. M.; Rouchouze, E.; et al.“Surface π-Bonding andthe Near1st Order Desorption Kinetics of Hydrogen from Ge(100)-2x1”[J];Journal of Chemical Physics1993,98(4):3560-3563.
    [14] Flowers, M. C.; Jonathan, N. B. H.; Liu, Y.; et al.“Temperature ProgrammedDesorption of Molecular Hydrogen from a Si(100)-2x1Surface: Theory andExperiment”[J]; Journal of Chemical Physics1993.99(9):7038-7048.
    [15] Bullock,E.L.; Gunnella, R.; Patthey,L.; et al.“Surface Core LevelPhptpeletron Diffraction from Si Dimers at the Si(001)-(2*1) Surface”[J];Physical Review Letters1995,74(14):2775-2759.
    [16] Uhrberg,R.I.G.; Landemark,E.; Chap,Y.C.“High Resolution Core LevelStudies of Silicon Surfces”; Journal of Electron Spectroscopy and RelatedPhenomenon1995,75,197-207.
    [17] DEvelyn, M. P.; Yang, Y. M. L.; Sutcu, L. F.“π-Bonded Dimers. PreferentialPairing, and1st Order Desorption Kinetics of Hydrogen on Si(100)-(2x1)”[J];Journal of Chemical Physics1992,96(1):852-855.
    [18] Radeke, M. R.; Carter, E. A.“A Dynamically and Kinetically ConsistentMechanism for H2Adsorption Desorption from Si(100)-2x1”[J]; PhysicalReview B-Condensed Matter1996,54(16):11803-11817.
    [19] Biedermann,A.;Knoesel,E.;Hu,Z.;et al.“Dissociative Adsorption of H2onSi(100)Induced by Atomic H”;Physical Review Letters1999,83(9):1810-1813.
    [20] Durr,M.;Raschke,M.B.;Pehlke,E.;et al.“Structure Sensitive Reaction Channels ofMolecular Hydrogen on Silicon Surfaces”;Physical Review Letters2001,86(1):123-126.
    [21] Brown,A.R.;Doren,D.J.“Dissociative Adsorption of Silane on the Si(100)-(21)Surface”[J]; Journal of Chemical Physics.1999,110(5):2643-2651.
    [22] Gates,S.M.;Kulkarni,S.K.“Kinetics of Surface Reactions in Very Low PressureChemical Vapor Deposition of Si from SiH4;Applied Physics Letters1991,58(25):2963-2965.
    [23]刘彬、卢荣.物理化学[M],武汉:华中科技大学,2008.2,p134-136.
    [24] Adolph Fick,Pagg.Ann.,vol.94,1855:1899
    [25]郭永怀.边界层理论讲义.合肥:中国科学技术大学出版社,2008.9.p40-47
    [26]重庆大学物理化学教研室编.物理化学.重庆:重庆大学出版社,2008.3,p103
    [27]傅献彩等.物理化学.南京:南京大学出版社,1990.p76
    [28]金晓军、梁骏吾.GeSi CVD系统的流体力学和表面反应动力学模型[J].电子学报,1996,24(5):7-12.
    [29] Gates S.M.,Kulkarni S.K.,Kinetics of surface reactions in very low-pressurechemical vapor deposition of Si from SiH4,Appl.Phys.Lett.1991,58(25):2963~2965.
    [30] D.J,Robbins,J.L.Glasper,A.G.Cullis etal. A model for heterogeneous growth ofSi1-xGex films from hydides.Appl.Phys,1991,69(6):3729-3732
    [31]吉林大学等校编.物理化学.北京:人民教育出版社,1979.
    [32] D.J.Robbins,J.L.Glasper,A.G.Cullis etal. A model for heterogeneous growth ofSi1-xGex films from hydides.Appl.Phys,1991,69(6):3729~3732
    [33] Andrew S.Grove. Industrial and Engineering Chemistry.1966,58(7)48.
    [34] Yong Zhang,Cheng Li,Kunhuang,Experimental evidence of oxidation of SiGealloys,Journal of Applied Physics,2009,106:063508
    [35]于卓、李代宗、成步文等.UHV/CVD外延生长SiGe/Si表面反应动力学.半导体学报.2000,21(6):564~569
    [36]王阳元、关旭东、马俊如.集成电路工艺基础.北京:北京大学出版社,1989. p256
    [37]叶志镇、吕建国、吕斌.半导体薄膜技术与物理.杭州:浙江大学出版社,2008.p81
    [38] J.M. Hartmann, Low temperature growth kinetics of high Ge content SiGe inreduced pressure-chemical vapor deposition[J], Journal of Crystal Growth,2007,305(1):113–121
    [39] T.I.Kamins, D.J.Meyer, Kinetics of silicon-germanium deposition byatmospheric-pressure chemical vapor deposition, Appl. Phys. Lett.1991,59(2):178-180.
    [40] J.M.Hartmann,M.Burdin,G.Rolland,et al.Growth kinetics of Si and SiGe on Si(100),Si(110) and Si(111) surfaces, J.Crystal.Growth,2006,294(2)288-295
    [41] D.J.Robbins et al.,growth and in situ ellipsometric analysis of Si1-xGex alloysdeposited by chemical beam epitaxy,Appl.Phys.Lett.69,3729(1991),p565-568
    [1]刘恩科、朱秉升、罗晋升.半导体物理学[M].北京:电子工业出版社.第6版,2003.8.p7
    [2] Cor Claeys, Eddy Simoe著.屠令海等译.半导体锗材料与器件[M].北京:冶金工业出版社,2010.4,p29
    [3]王亚男,陈树江,董希淳.位错理论及其应用[M].第一版.北京:冶金工业出版社,2007.p7-9
    [4] J.Godet, L.Pizzagalli and S.Brochard. Theoretical study of dislocation nucleationfrom simple surface defects insemiconductors. Phys.Rev.B.2004,70:054109-054117.
    [5] V.V.Bulatov, J.F.Justo, WeiCai, et al. Parameter-free Modelling of DislocationMotion: the Case of Silicon[J]. Philo.Mag.A.2001,81:1257-1281.
    [6]严群,冯庆芬.材料科学基础[M].第一版.北京:国防工业出版社,2009.p160-162
    [7] F.K.LeGoues, B.S.Meyerson, J.F.Morar, et al. Mechanism and conditions foranomalous strain relaxation in graded thin films and superlattices. J.Appl.Phys,1992,71(9):4230-4243.
    [8] Chen H, Guo L W, Cui Q, et al. Low‐temperature buffer layer for growth of alow‐dislocation‐density SiGe layer on Si by molecular‐beam epitaxy[J]. J ApplPhys,1996,79:1167-1169.
    [9] Peng C S, Zhao Z Y, Chen H, et al. Relaxed Ge0.9Si0.1alloy layers with lowthreading dislocation densities grown on low-temperature Si buffers.Appl.Phys.Lett.,1998,72(24):3160~3162
    [10]马通达,屠海令,成步文等.低温SiGe异质结构的热处理行为.第十四届全国化合物半导体、微波器件和光电器件学术会议论文集[C].广西北海,2006年11月.
    [11] H. Iwano, K.Yoshikawa, A.Kojima, et al. Novel method of strain-relaxed Si1-xGexgrowth on Si(100) by MBE. Applied Surface Science. July1996, Volumes100-101,Pages487-490.
    [12] D.M Follstaedt, S.M Myers, G.A Petersen. Cavity formation and impurity getteringin He-implanted Si. Journal of Electronic Materials. Jan.1996,25(1),157-170.
    [13] E. Kasper, K. Lyutovich, M.Bauer, and M. Oehme. New virtual substrate conceptfor vertical MOS transistors. Thin Solid Films,1998,336:319~322
    [14] S. Mantl, B. Hollander, R. Liedtke, et al. Strain relaxation of epitaxial SiGe layerson Si(100) improved by hydrogen implantation[J]. Nucl. Inst. Methods Phys. Res.B,1999,147:29-34
    [15] H.Trinkaus, B.Hollander, St.Rongen, et al. Strain relaxation mechanism forhydrogen-implanted Si1-xGex/Si(100) heterostructures. Appl Phys Lett. JUNE2000,76(24):3552-3554.
    [16] J.Cai, P.M.Mooney, S.H.Christiansen, et al. Strain relaxation and threadingdislocation density in helium-implanted and annealed Si1-xGex Si(100)heterostructures. Journal of applied physics,2004,95(10):5347-5351.
    [17] S.H.克里斯坦森、J.O.初、A.格里森等.通过离子注入和热退火获得的在Si或绝缘体上硅衬底上的弛豫SiGe层[P].中国发明专利.专利号:200380103517.3,公开日:2005年12月21日
    [18] B.Holl nder, D.Buca, M.M rschb cher, et al. Strain relaxation of pseudomorphicSi1xGex/Si(100) heterostructures after Si+ion implantation[J].Journal of appliedphysics.2004,96(3):1745-1747.
    [19]许向东,郭福隆,周卫,刘志弘,张兆健,李希有,张伟,钱佩信.离子注入诱导下制备薄的高弛豫SiGe[J].半导体学报2006,27(13)140~143
    [1]王敬,梁仁荣,徐阳等.用减压化学气相淀积技术制备应变硅材料[J].半导体学报.2006,27(增刊):179~182
    [2] J.M.Hartmann,Low temperature growth kinetics of high Ge content SiGe in reducedpressure-chemical vapor deposition[J],Journal of Crystal Growth,2007,305(1)113~121
    [3] J.M.Hartmann.2007Journal of Crystal Growth305113
    [4] T.I.Kamins, D.J.Meyer, Kinetics of silicon-germanium deposition byatmospheric-pressure chemical vapor deposition[J], Appl. Phys. Lett.1991,59(2):178-180
    [5] J.M.Hartmann,M.Burdin,G.Rolland,et al.Growth kinetics of Si and SiGe on Si(100),Si(110) and Si(111) surfaces[J], J.Crystal.Growth,2006,294(2)288-295.
    [6] F.K.Legoues, et al., Mechanism and conditions for anomalous strain relaxation ingraded thin films and superlattices[J].J. Appl. Phys.1992,71(9):4230-4239.
    [7] E.A.Fitzgerald et al.,J. Vac. Sci. and Tech.,B101870(1992)
    [8]徐世六.SiGe微电子技术[M].北京:国防工业出版社,2007.p77-78
    [9] F.pezzoli, E.Bonera,E.Grilliet al, Raman spectroscopy determination of compositionand strain in Si1-xGex/Si heterostructures. Materials Science in Semiconductorprocessing2008,11(5):281-284.
    [10] J.R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, Academic Press,San Diego,1994,p
    [11] Wang,Determination of Raman Phonon Strain Shift Coefcient of Strained Siliconand Strained SiGe[J]. Phys. Rev.2008,29(13):1562-1566.
    [12]钱劲.一种新型微流量计的设计、制备及力学分析.中科院硕士学位论文.2003.p45-51.
    [13] Anastassakis E, Cantarere A, Cardona M. Piezo-Raman measurements andanharmonic parameters in silicon and diamond[J]. Physical Review B,1990,41(11):7529-7535.
    [14] Brantley W A. Calculated elastic constants for stress problems associated withsemiconductor devices[J]. J. Appl. Phys.,1973,44:534-535
    [15] Anastassakis E, Pinczuk A, Burstein E, et al. Effect of static uniaxial stress on theRaman spectrum of silicon[J]. Solid State Communications,1970,8(2):133-138.
    [16]刘文西、黄孝瑛、陈玉如.材料结构电子显微分析.天津:天津大学出版社,1989.p26
    [17] W. Zhao, J. He, R. E. Belford, et al.Partially depleted SOI MOSFETs underuniaxial tensile strain[J]. IEEETrans. Electron Devices. Feb.2004,51(3):317–323.
    [18] Keunwoo Kim,Ching-Te Chuang,Kern Rim,Performance assessment of scaledstrained-Si channel-on-insulator (SSOI) CMOS,Solid-State Electronics,2004,48(2):239-243.
    [19] B. M. Haugerud, L. A. Bosworth,R. E. Belford,Mechanically Induced StrainEnhancement of Metal Oxide Semiconductor Field Effect Transistors[J]. ApplPhys2003,94(6):4102-4107.
    [20] H. S. Yang, R.Malik, S. Narasimha, et al.“Dual stress liner for higherformancesub-45nm gate length SOI CMOS manufacturing”[C], International ElectronDevices Meeting Technical Digest, Dec.2004, pp.1075-1078.
    [21] H. Miyata, T. Yamada, and D. K. Ferry. Electron transport properties of astrained-Si layer on a relaxed SiGe substrate by Monte Carlo simulation[J]. Appl.Phys. Lett.1993,62(21):2661–2663.
    [22]Goutam Kumar Dalapati, Sanatan Chattopadhyay, Kelvin S. K. Kwa, et al.Impactof Strained-Si Thickness and Ge Out-Diffusion on Gate Oxide Quality forStrained-Si Surface Channel n-MOSFETs[J].IEEE TRANSACTIONS ONELECTRON DEVICES,2006,53(5):1142-1152.
    [23] Kim K.,Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs[C],Technical Digest-International Electron Devices Meeting,1995,p517-520.
    [24] Rim, K.; Chu, J.; Chen, H.; et al.Characteristics and device design of sub-100nmstrained Si N and PMOSFETs[C].VLSI Tech. Dig.,2002, pp.98–99.
    [25] B. M. Haugerud, L. A. Bosworth, and R. E. Belford, Mechanically Induced StrainEnhancement of Metal Oxide Semiconductor Field Effect Transistors[J] J.ApplPhys2003,94(6):4102-4107.
    [26] Keunwoo Kim, Ching-Te Chuang, Kern Rim,Performance assessment of scaledstrained-Si channel-on-insulator (SSOI) CMOS[J].Solid-State Electronics.2004,48(2):239-243.
    [27] C. Himcinschi, I. Radu, F. Muster Uniaxially strained silicon by wafer bondingand layer transfer[J] Solid-state Electronics.2007,51(2):226-230.
    [28]李碧波,黄福敏.用显微拉曼扫描成像法测集成电路中CoSi2电极引起的应力[J].半导体学报.1998,19(4):299-303
    [29] De Wolf I.Stress Induced by CoSi2Grown on Polycrystalline Si Measured byMicro Raman Spectroscopy[J].Raman Spectros.,1999,30(5):877–883.
    [30]王光钦等.弹性力学.北京:中国铁道出版社,2008年8月,p18-21