象山港潮及其余流的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
象山港作为浙江省最大的水产养殖基地,其海洋环境状况受到大家的普遍重视,而对环流结构及动力机制的清晰认识是研究该海域环境问题的基础。象山港周围被低山丘陵所环绕,河流源近流短,故而风和径流对海湾环流的贡献微弱。因此,属于强潮海湾的象山港,潮致余流是该海域环流的主要分量。然而受制于人们对潮致余流的认知水平,目前拉格朗日和欧拉时均意义的余流概念并存。为了探究何种时均意义下的潮致余流才能表征象山港的输运结构,本文利用数值模型分别模拟了该海域的拉格朗日和欧拉余流结构。通过与该海域盐度分布的对比肯定了拉格朗日潮致余流在象山港的输运作用,不仅为海湾环境保护提供了参考,具有切实的应用意义,同时也丰富和完善了人们对潮致余流的认识,具有重要的科学意义。
     为增进对象山港水动力场的了解,更为保证模型底摩擦参数化的精确性,研究组先后四次在象山港进行原位观测,取得了潮位、潮流资料。实测资料显示,象山港潮是半日潮波,且具有两个明显特征:其一潮位不对称性质沿海湾发生反转,由湾口的涨潮历时短变为湾顶的涨潮历时长;其二尽管内湾潮波变形剧烈,但涨、落潮流的峰值却大致相当,且涨潮流存在一大一小两个峰值而落潮流只有一个峰值。基于实测资料建立起的一维潮波动力方程显示象山港潮波主要为压强梯度力项和局地加速度项平衡,压强梯度力是驱动潮流形成单、双峰结构的主要原因。利用实测资料,本文分别通过潮波动力方程和湍流边界层理论得到了底拖曳系数,量值为0.81×10-3和0.17×10-3,皆小于东中国海其他海域的研究结果,这可能是该海域布满细颗粒沉积物的结果。尽管两种方法得到的底拖曳系处于同一量级,但其具体量值有明显差别,究其原因是因为后者仅代表界面阻力,而前者还包含海域形状阻力的贡献。象山港岸线曲折,底形复杂,数值模型须充分考虑海湾形状阻力的作用。
     以实测结果为模型底应力参数化方案的参考,以OTPS预报的水位数据为开边界条件,本文建立起高分辨率的象山港FVCOM模型。通过与实测资料以及前人结果的对比,模型很好的再现了象山港潮波的主要特征,在潮位、潮流模拟方面具有相当的精度,可以用来研究该海域的潮不对称机制以及潮致余流场结构。
     本文首先利用该模型讨论了引起象山港潮不对称的各个非线性机制具体作用。数值结果显示引起象山港潮不对称的非线性机制可以分为具有相反作用的两类:一类是浅水非线性和对流非线性,它们容易造成涨潮历时短的不对称;另一类是潮周期内海湾宽度的变化,它则容易造成涨潮历时长的不对称。浅水非线性以及对流非线性在湾口处占主导地位,而在内湾处,潮滩所引起的海湾宽度的变化则更重要,从而造成潮不对称性质沿海湾的反转。这两类非线性机制产生的倍潮异位相,其效果可相互抵消。底摩擦的非线性作用对象山港的潮不对称贡献不大,其耗散作用则可使涨潮历时缩短。
     再次,本文利用该模型讨论了象山港的潮致余流输运结构。模式分别采用粒子追踪方法和潮流定点周期平均的方式得到了象山港拉格朗日和欧拉潮致余流结构,二者存在显著不同。象山港外湾拉格朗日余流场可大致分为东西两支,这两支余流贯通南北,连接湾外南北海域。欧拉余流场则以“多涡”结构为主,南北海域不能通过余流相连通。欧拉余流在牛鼻水道断面流向多次交错,而拉格朗日余流则比较规律,呈现出东侧入流西侧出流的结构,与实测盐度断面相吻合,说明拉格朗日余流才是造成象山港盐度分布的基本动力机制。而且断面统计的流量净通量显示拉格朗日余流可以保证物质守恒性而欧拉余流则不能。故而拉格朗日余流才能真正代表潮致余流在象山港的输运作用。
     象山港外湾拉格朗日余流结构与地形有密切关系,在牛鼻水道为东侧深沟入流西侧深沟出流的结构,而在佛渡水道则为“深入浅出”的结构。非线性机制中的对流项对形成此种环流结构贡献最大,而二次底摩擦、浅水非线性以及海湾宽度变化所引入的非线性则对此结构影响不大。底摩擦的耗散作用对环流结构也有明显影响,较强的底摩擦可促进牛鼻水道两岸的水交换。
As the biggest aquaculture base in Zhejiang province, Xiangshan Bay drawsmuch attention for its protection of marine environment. Hence it is necessary toidentify the circulation pattern in the bay, which is supposed to be the basis of marineenvironment issues. The wind is weak in the bay and the rivers flowing into the bayare rather short, both of which contribute little to the overall circulation pattern. Thetidal residual current must be the dominant dynamic factor in the bay circulation sincethe tides are very strong and the coasts and topography in the bay are complex.However, resiticted by our knowledge of tidal residual current, people still use twodistinct methods to filte the tidal currents and to get the residual current, which are theLagrangian Residual Current (LRC) and the Eulerian Residual Current (ERC),respectively. This thesis aims to identify whether the LRC or the ERC should beregarded as the subtidal transport current in the bay through comparison betweenthem and the observed salinity distribution. This work is believed to benefit not onlythe marine environment protection in the bay, but also our understanding about tidalresidual current.
     The method used in this thesis is mostly numerical model. To guarantee theprecision of the bottom friction parameterization in the model and to advance ourunderstanding about the dynamics of Xiangshan Bay, the research group did fourtimes field observations in the bay. The data reveals that the dominating componentsof tides in the bay are semi-diurnal with two distinc characters. One is the reverse oftidal elevation asymmetry along the bay, the other one is that the peak of floodingcurrent could match that of the ebbing current, even though the tidal elevation ishighly asymmetric. Furthermore, there are one tiny and one big peaks during floodwhile only one during ebb. With those in-situ measurements, a one-dimensional tidalwave equation was established, in which the main balance is between the pressure gradient force and the local inertial term. The pressure gradient, which presents threepeaks during one tidal period, is the main reason for the different numbers of currentspeaks during flood and ebb.
     Based on the observation data, the author calculated the bottom drag coefficientaccording to the tidal dynamical balance equation and the turbulent boundary layertheory, which are0.81×10-3and0.17×10-3, respectively. Both of them are smallercompared to other reports in East China Sea, which results from the fine-sediment inthe bay. Although the two coefficients are in the same order of the magnitude, theformer one, which includes the form drag, is almost5times larger than the latter one.The form drag resulting from the complex topography must be fully considered whensimulates tides in Xiangshan Bay.
     With the observation results to improve the parameterization of the bottomfriction, and the tidal elevation data generated by OTPS as the driving force, thehigh-resolution Xiangshan Bay FVCOM model was established. The model did areasonal job in reproducing the observed tidal elevation and currents, which can beused in the study of tidal asymmetry and tidal residual currents in Xiangshan Bay.
     Firstly, this thesis discussed the specific role of each nonlinear mechanism whichis responsible for the tidal asymmetry in the bay. The model results suggest that thenonlinear mechanisms can be divided into two different categories, one includes theshallow water nonlinarity and the nonlinear advection, which prefer shorter durationof the rising tide, the other one is the time-varying width, which favors longerduration of the rising tide. The time-varying depth and nonlinear advection dominatearound the bay mouth, resulting in asymmetry of shorter duration of the rising tide.However, the time-varying width caused by large mudflat is the main nonlinearmechanism in the inner bay, which makes the tidal elevation asymmetry invert alongthe bay. The overtide M4generated by the two catagories are out of phase, whichcould counteract each other. The nonlinear bottom friction contributes little to thetidal asymmetry in the bay, while its dissipation effect could make the duration of therising tide shorter.
     Secondly, this thesis tried to identify the pattern of the tidal residual current in thebay. With particle tracking method and periodical average at fixed location, the modelsimulated the LRC and the ERC, respectively. The former one presents muchdifference with the latter one. The LRC splits into two branches, both of which canconnect the north and south parts of the sea outside of Xiangshan Bay. The eastbranch starts from the east bank of Niubi Channel, turns to northeast at the northwestside of Liuheng Island, and flows out of the bay along the east bank of Fodu Channel.The west branch flows into the bay along the bank of Fodu Channel, turns direction atthe mouth of Xiangshan Channel, and flows out of the bay at the west side of NiubiChannel. However, the ERC is characterized by multiple eddies, which cannotconnect the north and south parts of the sea outside of Xiangshan Bay directly.Furthermore, the direction of ERC at section A3-A5is irregular, while the LRCpresents much more consistent structure with the observed salinity distribution, whichflows into the bay along the east side of Niubi Channel and flows out along the west.Therefore, it is the LRC which can represent mass transportation at subtidal frequencyin Xiangshan Bay and the LRC can keep the mass conservation while the ERCcannot.
     The overall pattern of LRC is highly correlated with the bottom topography. InNiubi Channel, the LRC flows in and out of the bay along the two deep channelslocated on the two sides of channels, while directs out in the deeper areas and streamsin on the adjacent shoals in the Fodu Channel. The nonlinear advection contributesmost to this pattern of the LRC, while nonlinear bottom friction, shallow waternonlinearity and time-varying width have little influce. The bottom friction could alsoaffect the LRC pattern due to its dissipation effect, which may promote the exchangeof sea water between the two sides of Niubi Channel.
引文
[1] Abbott, M. R. Boundary layer effects in estuaries. Journal of Marine Research,1960,18:83-100.
    [2] Bian, C., Jiang, W., Song, D. Terrigenous transportation to the Okinawa Trough and theinfluence of typhoons on suspended sediment concentration. Continental Shelf Research,2010,30(10-11):1189-1199.
    [3] Boon, J. D., and Byrne, R. J. On basin hypsometry and the morphodynamic response ofcoastal inlet systems. Marine Geology,1981,40:27~48.
    [4] Breton, M, and Salomon, J. C. A2D long term advection-dispersion model for the Channeland Southern North Sea Part A: Validation through comparison with artificial radionuclides.Journal of Marine Research,1995,6:495-513.
    [5] Burchard, H., and Schuttelaars, H. M. Analysis of Tidal Straining as Driver for EstuarineCirculation in Well-Mixed Estuaries. Journal of Physical Oceanography,2012,42:261-271.
    [6] Campbell, A. R., Simpson, J. H., and Allen, G. L. The Dynamical Balance of Flow in theMenai Strait. Estuarine, Coastal and Shelf Science,1998,46:449-455.
    [7] Cerco, C. F., and Cole, T. Three-dimensional eutrophication model of Chesapeake Bay.Journal of Environmental Engineering,1993,119:1106-1125.
    [8] Cerco, C. F. Simulation of long-term trends in Chesapeake Bay Eutrophication. Journal ofEnvironmental Engineering,1995a,121:298-310.
    [9] Cerco, C. F. Response of Chesapeake Bay to nutrient load reductions. Journal ofEnvironmental Engineering,1995b,121:549-557.
    [10] Chen, C. S., Liu, H. D., and Beardsley, R. C. An Unstructured Grid, Finite-Volume,Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean andEstuaries. Journal of Atmospheric and Oceanic Technology,2003,20:159-186.
    [11] Chen, C. S., Beardsley, R. C., and Cowles, G. An unstructured grid, finite-volume coastalocean model-FVCOM user manual,2nd ed. Technique report. New Bedford: School forMarine Science and Technology University of Mass.–Dartmouth,2006.318pp.
    [12] Chen, C. S., Beardsley, R. C., and Cowles, G. An unstructured grid, finite-volume coastalocean model (FVCOM) system. Oceanography,2006b,19(1):78-89.
    [13] Chen, C. S., Huang, H. S., Beardsley, R. C., Liu, H. D., Xu, Q. C., Cowles, G. A finitevolume numerical approach for coastal ocean circulation studies: Comparisons with finitedifference models. Journal of Geophysical Research,2007,112:C03018.
    [14] Chen, C. S., Malanotte-Rizzoli, P., Wei, J., Beardsley, R. C., Lai, Z, Xue, P., Lyu, S., Xu, Q.,Qi, J., Cowles, G. Application and comparison of Kalman filters for coastal ocean problems:An experiment with FVCOM. Journal of Geophysical Research,2009,114:C05011.
    [15] Chen, X. Y., Wang, X. H., and Guo, J. S. Seasonal variability of the sea surface salinity inthe East China Sea during1990–2002. Journal of Geophysical Research,2012,111:C05008.
    [16] Choi, B., Kim, K., and Eum, H. Digital bathymetric and topographic data for neighboringseas of Korea. Journal of Korean Society and Coastal Ocean Engineering,2002,14:41-50(in Korean with English abstract).
    [17] Davies, A. M., and Gerritsen, H. An intercomparison of three-dimensional tidalhydrodynamic models of the Irish Sea. Tellus A,1994,46(2):200-221.
    [18] Davies, A M, Lawrence J. A three-dimensional model of the M4tide in the Irish Sea: Theimportance of open boundary conditions and influence of wind. Journal GeophysicalResearch,1994,99(C8):16197-16227.
    [19] Davies, A. M., Xing, J. An intercomparison and validation of a range of turbulence closureschemes used in three dimensional tidal models. Coastal and Estuarine Studies,1995,47:71-95.
    [20] Delhez, E. J. M. On the residual advection of passive constituents. Journal of MarineSystems,1996,8:147-169.
    [21] Dewey, R. K., and Crawford, G. B. Bottom stress estimates from vertical dissipation rateprofiles on the continental shelf. Journal of physical oceanography,1988,18(8):1167-1177.
    [22] de Swart, H. E., de Jonge, V. N., and Vosbeek, M. Application of the Tidal Random WalkModel to Calculate Water Dispersion Coefficients in the Ems Estuary. Estuarine, Coastaland Shelf Science,1997,45:123-133.
    [23] Dortch, M. S, Chapman, R. S, Abt, S. R. Application of three-dimensional lagrangianresidual transport. Journal of Hydraulic Engineering,1992:118:831~848.
    [24] Dick, E. Introduction to fnite-volume techniques in computational fuid dynamics. In:Wendt, J.F., eds. Computational Fluid Dynamics. Berlin: Springer-Verlag,1994.271-297.
    [25] Ding, Y, Yu, H. M., Bao, X. W., Kuang, L., Wang, C. X., and Wang, W. J. Numerical studyof the barotropic responses to a rapidly moving typhoon in the East China Sea. Oceandynamics,2011,61:1237-1259.
    [26] Ding, Y., Bao, X. W., Yu, H. M., and Kuang, L. A numerical study of the barotropic tidesand tidal energy distribution in the Indonesian seas with the assimilated finite volumecoastal ocean model. Ocean dynamics,2012a,62:515-532.
    [27] Ding, Y., Bao, X. W., Shi, M. C. Characteristics of coastal trapped waves along the northerncoast of the South China Sea during year1990. Ocean dynamics,2012b,62:1259-1285.
    [28] Fagherazzi, S., Hannion, M., D'Odorico, P. Geomorphic structure of tidal hydrodynamics insalt marsh creeks. Water Resource Research,2008,44: W02419.
    [29] Feng, S. Z., Xi, P., and Zhang, S. The baroclinic residual circulation in shallow seas.Chinese Journal of Oceanology and Limnology,1984,2:49-60.
    [30] Feng, S. Z., Cheng, R. T., and Xi, P. On Tide-Induced Lagrangian Residual Current andResidual Transport1. Lagrangian Residual Current. Water Resources Research,1986a,22:1623-1634.
    [31] Feng, S. Z., Cheng, R. T., and Xi, P. On Tide-Induced Lagrangian Residual Current andResidual Transport2. Residual Transport with Application in South San Francisco Bay.Water Resources Research,1986b,22,1635:1646.
    [32] Feng, S. Z. A three-dimensional weakly nonlinear model of tide-induced Lagrangianresidual current and mass-transport, with an application to the Bohai Sea. In: Nihoul, J. C. J.and Jamart, B. M. eds. Three-Dimensional models of Marine and Estuarine Dynamics,Elsevier Oceanography Series,45. Elsevier,1987.471-488.
    [33] Feng, S. Z.,1990: On the Lagrangian residual velocity and the mass-transport in amulti-frequency oscillatory system. Residual currents and long-term transport, Coastal andEstuarine Studies38, R. T. Cheng Ed., Springer-Verlag,34-48.
    [34] Feng, S. Z., and Lu, Y. Y. A turbulent closure model of coastal circulation. Chinese ScienceBulletin,1993,38:1737-1741.
    [35] Feng, S. Z., and Wu, D. X. A inter-tidal transport equation coupled with turbulent K-emodel in a tidal and quasi-steady current system. Chinese Science Bulletin,1995,40:136-139.
    [36] Ferrel, W. Tidal Researches. Washington, DC: U.S. Coast and Geodetic Survey,1874.
    [37] Fischer, H. B., List, E. J., Koh, R., Imberger, J., and Brooks, N. H. Mixing in inland andcoastal waters. New York: Academic Press,1979.350-361.
    [38] Friedrichs, C. T., Aubrey, D. G. Tidal propagation in strongly convergent channels. Journalof. Geophysical. Research,1994,99(C2):3321-3336.
    [39] Friedrichs, C. T., Madsen, O. S. Nonlinear Diffusion of the Tidal Signal in FrictionallyDominated Embayments. Journal of Geophysical Research,1992,97(C4):5637-5650.
    [40] Galperin, B., Kantha, L. H., Hassid, S., and Rosati, A. A quasi-equilibrium turbulent energymodel for geophysical fows. Journal of Atmosphere Science,1988,45:55-62.
    [41] Gao, S., Xie, Q., and Feng, Y. Fine grained sediment transport and sorting by tidal exchangein Xiangshan Bay, Zhejiang, China. Estuarine, Coastal and Shelf Science,1990,31:397-409.
    [42] Guo, X. Y., Yanagi, T. Three-Dimensional Structure of Tidal Current in the East China Seaand the Yellow Sea. Journal of Oceanography,1998,54:651-668.
    [43] Hansen, D. V., and Rattray, M. Gravitational circulation in straits and estuaries. Journal ofMarine Research,1965,23:104-122.
    [44] Heaps, N. S. Linearized vertically-integrated equations for residual circulation in coastalseas. Deutsche Hydrographische Zeitschrift,1978,31:147-169.
    [44] Hoitink, A. J. F., Hoekstra, P., van Maren, D. S. Flow asymmetry associated withastronomical tides: Implications for the residual transport of sediment. Journal ofGeophysical Research,2003,108(C10):3315.
    [46] Howarth, M. J., Souza, A. J. Reynolds stress observations in continental shelf seas. DeepSea Research Part II: Topical Studies in Oceanography,2005,52(9-10):1075-1086.
    [47] Huang, H., Chen, C, Blanton, J. O., Andrade, F. A. A numerical study of tidal asymmetry inOkatee Creek, South Carolina. Estuarine, Coastal and Shelf Science,2008,78(1):190-202.
    [48] Hunt, J. N. Oscillations in a viscous liquid with an application to tidal motion. Tellus,1961,13:79-84.
    [49] Ianniello, J. P. Tidally induced residual currents in estuaries of constant breadth and depth.Journal of Marine Research,1977,35:755-786.
    [50] Ianniello, J. P. Tidally Induced Residual Currents in Estuaries of Variable Breadth andDepth. Journal of Physical Oceanography,1979,9:962-974.
    [51] Ianniello, J. P. Comments on tidally induced residual currents in estuaries: dynamics andnear-bottom flow characteriscs. Journal of Physical Oceanography,1981,11:126-134.
    [52] Jay, D. A. Green's Law Revisited: Tidal Long-Wave Propagation in Channels With StrongTopography. Journal of. Geophysical Research,1991,96(C11):20585-20598.
    [53] Jay, D. A., and Smith, J. D. Residual Circulation in Shallow Estuaries1. Highly Stratified,Narrow Estuaries. Journal of Geophysical Research,1990a,95:711–731.
    [54] Jay, D. A., and Smith, J. D. Residual Circulation in Shallow Estuaries2. Weakly Stratifiedand Partially Mixed, Narrow Estuaries. Journal of Geophysical Research,1990b,95:733–748.
    [55] Jiang, W. S., Feng, S. Z. Analytical Solution for the Tidally Induced Lagrangian ResidualCurrent in a Narrow Bay. Ocean Dynamics,2011,61:588-643.
    [56] Jiang, W. S., and Sun, W. X. Three dimensional tide-induced circulation model on atriangular mesh. International Journal For Numerical Methods In Fluids,2002,38:555-566.
    [57] Ju, L., Jiang, W. S., and Feng, S. Z. A Lagrangian Mean Theory on Coastal Sea Circulationwith Inter-tidal Transports II Numerical Experiments. Acta Oceanologica Sinica,2009,28(1):1-10.
    [58] Kabbaj, A., and Le Provost, C. Nonlinear tidal waves in channels: a perturbation methodadapted to the quadratic bottom friction. Tellus,1980,32:143-163.
    [59] Kang, J. W., and Jun, K. S. Flood and ebb dominance in estuaries in Korea. Estuarine,Coastal and Shelf Science,2003,56(1):187-196.
    [60] Kirincich, A. R., Lentz, S. J., Gerbi, G. P. Calculating Reynolds Stresses from ADCPMeasurements in the Presence of Surface Gravity Waves Using the Cospectra-Fit Method.Journal of Atmospheric and Oceanic Technology,2009,27(5):889―907.
    [61] Kranenburg, C. A time scale for long-term salt intrusion in well-mixed estuaries. Journal ofPhysical Oceanography,1986,16(7):1329–1331.
    [62] Kresis, H. Some remarks about nonlinear oscillations in tidal channels. Tellus,1957,9:53-68.
    [63] Lanzoni, S., and Seminara, G. On tide propagation in convergent estuaries. Journal ofGeophysical Research,1998,103(C13):30793-30812.
    [64] LeBlond, P. H. On tidal propagation in shallow rivers, Journal of Geophysical Research,1978,83:4717-4721.
    [65] Le Provost, C., and Fornerino, M. Tidal spectroscopy of the English Channel with anumerical model. Jounal of Physical Oceanography,1985,15:1009-1031.
    [66] Leonov, D., and Kawase, M. Sill dynamics and fjord deep water renewal: Idealizedmodeling study. Continental Shelf Research,2009,29:221-233.
    [67] Li, C., and O'Donnell, J. Tidally driven residual circulation in shallow estuaries with lateraldepth variation. Journal of Geophysical Research,1997,102:27915-27929.
    [68] Li, C., and O'Donnell, J. The effect of channel length on the residual circulation in tidallydominated channels. Journal of Physical Oceanography,2005,35:1826-1840.
    [69] Li, C., Chen, C., Guadagnoli, D., and Georgiou, I. Y. Geometry-induced residual eddies inestuaries with curved channels: Observations and modeling studies. Journal of GeophysicalResearch,2008,113:C01005.
    [70] Liu, G. L., Liu, Z., Gao, H. W., Gao, Z. X., Feng, S. Z. Simulation of the lagrangiantide-induced residual velocity in a tide-dominated coastal system: a case study of JiaozhouBay, China. Ocean Dynamics,2012,62:1443~1456.
    [71] Liu, H., Wu, C. Y., Xu, W. M., and Wu, J. X. Contrasts between estuarine and river systemsin near-bed turbulent flows in the Zhujiang (Pearl River) Estuary, China. Estuarine, Coastaland Shelf Science,2009,83:591-601.
    [72] Longuet-Higgins, M. S. Mass transport in water waves. Philosophical Transactions of theRoyal Society A,1953,245:535-581.
    [73] Longuet-Higgins, M. S. On the transport of mass by time-varying ocean currents. Deep SeaResearch,1969,16:431–447.
    [74] Loder, J. W., Shen, Y., and Ridderinkhof, H. Characterization of three-dimensionallagrangian circulation associated with tidal rectification over a submarine bank. Journal ofPhysical Oceanography,1997,27(8):1729–1742.
    [75] Lohrmann, A., Hackett, B., and Roed, L. P. High resolution measurements of turbulence,velocity, and stress using a pulse-to-pulse coherent sonar. Journal of Atmospheric andOceanic Technology,1990,7(1):19-37.
    [76] Lozovatsky, L., Liu, Z. Y., Wei, H., Fernando, H. J. S. Tides and mixing in the northwesternEast China Sea Part Ⅰ: Rotating and reversing tidal fows. Continental Shelf Research,2008a,28:318-337.
    [77] Lozovatsky, L., Liu, Z. Y., Wei, H., Fernando, H. J. S. Tides and mixing in the northwesternEast China Sea Part Ⅱ: Near-bottom turbulence. Continental Shelf Research,2008b,28:338-350.
    [78] Lu, X. Q., and Zhang, J. C. Numerical study on spatially varying bottom friction coefficientof a2D tidal model with adjoint method. Continental Shelf Research,2006,26:1905-1923.
    [79] Lu, Y. Y., and Lueck, R. G. Using a broadband ADCP in a tidal channel. Part I: Mean flowand shear. Journal of Atmospheric and Oceanic Technology,1999,16(11):1556-1567.
    [80] MacCready, P. Estuarine Adjustment to Changes in River Flow and Tidal Mixing. Journalof Physical Oceanography,1999,29:708–726.
    [81] MacCready, P. Estuarine adjustment. Journal of Physical Oceanography,2007,37:2133–2145.
    [82] Mellor, G. L., and Yamada, T. Development of a turbulence closure model for geophysicalfluid problems. Review of Geophysics,1982,20:851-875.
    [83] Munk, W. H., Zetler, B., and Groves, G. W. Tidal Cusps. Geophysical Journal,1965,10(2):211-219.
    [84] Nicolle, A., and Karpytchev, M. Evidence for spatially variable friction from tidalamplification and asymmetry in the Pertuis Breton (France). Continental Shelf Research,2007,27:2346-2356.
    [85] Nidzieko, N. J. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides. Journalof Geophysical Research,2010,115(C8):C8006.
    [86] Nidzieko, N. J., and Ralston, D. K. Tidal asymmetry and velocity skew over tidal flats andshallow channels within a macrotidal river delta. Journal of Geophysical Research,2012,117:C03001.
    [87] Nihoul, I. C. J., and Ronday, F. C. The influence of the tidal stress on the residualcirculation. Tellus,1975,27:484-489.
    [88] Parker, B. B. The relative importance of the various nonlinear mechanisms in a wide rangeof tidal interactions (review). In: Parker, B. B. eds. Tidal Hydrodynamics. New York: Wiley,1991,237~238.
    [89] Pritchard, D. W. A study of the salt balance in a coastal plain estuary. Journal of MarineResearch,1954,13:133–144.
    [90] Proudman, J. Dynamical Oceanography. New York: Methuen,1953.309-310.
    [91] Ranasinghe, R., and Pattiaratchi, C. Tidal inlet velocity asymmetry in diurnal regimes.Continental Shelf Research,2000,20(17):2347-2366.
    [92] Ramming, H., and Kowalik, Z. Numerical modeling of marine hydrodynamics.Amsterdam/Oxford/New York: Elservier,1980.368pp.
    [93] Ridderinkhof, H., and Zimmerman, J. T. F. Chaotic stirring in a tidal system. Science,1992,258:1107-1111.
    [94] Ridderinkhof, H., and Loder, J. W. Lagrangian characterization of circulation oversubmarine banks with application to the outer gulf of maine. Journal of PhysicalOceanography,1994,24:1184–1200.
    [95] Ridderinkhof, H. Lagrangian flows in complex Eulerian tidal current fields. In: Davies, A.,and Lynch, D. R., eds. Quantitative skill assessment for coastal ocean models. AmericanGeophysical Union,1995,31-48.
    [96] Rippeth, T. P., Williams, E., Simpson, J. H. Reynolds stress and turbulent energy productionin a tidal Channel. Journal of Physical Oceanography,2002,32(4):1242-1251.
    [97] Robinson, I. S. Tidally induced residual flow. In: Johns, B. eds. Physical Oceanography ofCoastal and Shelf Seas. Amsterndam: Elsevier,1983,321-356.
    [98] Rosman, J. H., Hench, J. L., Koseff, J. R., and Monismith, S. G. Extracting reynolds stressesfrom acoustic doppler current profiler measurements in wave-dominated environments.Journal of Atmospheric and Oceanic Technology,2008,25(2):286-306.
    [99] Scully, M. E., Geyer, W. R., and Lerczak, J. A. The influence of lateral advection on theresidual estuarine circulation: a numerical modeling study of the Hudson River Estuary.Journal of Physical Oceanography,2009,39:107-124.
    [100] Sheng, J. Y., and Wang, L. Numerical study of tidal circulation and nonlinear dynamics inLunenburg Bay, Nova Scotia. Journal of Geophysical Research,2004,109:C10018.
    [101] Shetye, S. R., and Gouviea, A. D. On the role of geometry of cross-section in generatingflood-dominance in shallow estuaries. Estuarine, Coastal and Shelf Science,1992,35:113-126.
    [102] Simpson, J. H., Fisher, N, R, and Wiles, P. Reynolds stress and TKE production in anestuary with a tidal bore. Estuarine, Coastal and Shelf Science,2004,60:619-627.
    [103] Song, D. H., Wang, X. H., Kiss, A. E., and Bao, X. W. The contribution to tidal asymmetryby different combinations of tidal constituents. Journal of Geophysical Research,2011,116:C12007.
    [104] Speer, P. E., and Aubrey, D. G. A study of non-linear tidal propagation in shallowinlet/estuarine systems Part II: Theory. Estuarine, Coastal and Shelf Science,1985,21(2):207-224.
    [105] Spitz, Y. H., and Klinck, J. M. Estimate of bottom and surface stress during a spring-neaptide cycle by dynamical assimilation of tide gauge observations in the Chesapeake Bay.Journal of Geophysical Research,1998,103:12761-12782.
    [106] Stacey, M. T., Monismith, S. G., and Burau, J. R. Measurements of Reynolds stress profilesin unstratified tidal flow. Journal of Physical Oceanography,1999,29(8):1950-1970.
    [107] Sun, W. X., Xi, P. G., and Song, L. N. Numerical calculation of the three-dimensionaltide-induced lagrangian residual circulation in the Bohai Sea. Journal of Ocean Universityof Qingdao,1989,19:27-36.
    [108] Tee, K. T. Tide-induced residual current-A two-dimensional nonlinear numerical tidalmodel. Journal of Marine Research,1976,34:603-628.
    [109] Wang, Z. B., Jeuken, M. C. J. L., Gerritsen, H., de Vriend, H. J., Kornman, B. A.Morphology and asymmetry of the vertical tide in the Westerschelde estuary. ContinentalShelf Research,2002,22(17):2599-2609.
    [110] Winant, C. D., and de Velasco, G. G. Tidal dynamics and residual circulation in awell-mixed inverse estuary. Journal of Physical Oceanography,2003,33:1365–1379.
    [111] Winant C D. Three-dimensional tidal flow in an elongated, rotating basin. Journal ofPhysical Oceanography,2008,37(9):2345-2362.
    [112] Wei, H., Hainbucher, D., Pohlmann, T., Feng, S., and Suendermann, J. Tidal-inducedlagrangian and eulerian mean circulation in the Bohai Sea. Journal of Marine Systems,2004a,44:141-151.
    [113] Wei, H., Sun, J., Moll, A., and Zhao, L. Phytoplankton dynamics in the BohaiSea-observations and modelling. Journal of Marine Systems,2004b,44:233-251.
    [114] Wright, L. D., Wiseman, W. J., Yang, Z. S., Bornhold, B. D., Keller, C. H., Prior, D. B., andSuhayda, J. N. Processes of marine dispersal and deposition of suspended silts off themodern mouth of the Huanghe (Yellow River). Continental Shelf Research,1990,10:1-40.
    [115] Xu, P., Mao, X. Y., Jiang, W. S. A numerical study of tidal asymmetry: Preferableasymmetry of nonlinear mechanisms in Xiangshan Bay, East China Sea. Journal of OceanUniversity of China,2013(accepted).
    [116] Yanagi, T. Fundamental study on the tidal residual circulation-I. Journal of theOceanographical Society of Japan,1976,32:199-208.
    [117] Yanagi, T. Fundamental study on the tidal residual circulation-II. Journal of theOceanographical Society of Japan,1978,34:67-72.
    [118] Yasuda, Hidekazu. Horizontal circulations caused by the bottom oscillatory boundary layerin a bay with a sloping bed. Journal of the Oceanographical Society of Japan,1984,40:124-134.
    [119] Young, T. A theory of tides. Nicholson’s Journal,1813,35:145-149.
    [120] Zimmerman, J. T. F. On the Euler-Lagrange transformation and the stokes' drift in thepresence of oscillatory and residual currents. Deep Sea Research,1979,26A:505-520.
    [121] Zimmerman, J. T. F. The tidal whirlpool: A review of horizontal dispersion by tidal andresidual currents. Netherlands Journal of Sea Research,1986,20:133-154.
    [122] Zheng, L. Y., Chen, C. S., Liu, H. D. A modeling study of the Satilla River Estuary, Georgia.I:Flooding-drying process and water exchange over the salt marsh-estuary-shelf complex.Estuaries,2003,26:651-669.
    [123]蔡伟章,陈耕心,丁锦仁.象山港潮汐潮流特征及成因探讨.海洋通报,1985,4(3):8-11.
    [124]蔡燕红,项有堂.象山港海水养殖功能区环境质量评价.海洋通报,2002,21:91-95.
    [125]曹欣中,唐龙妹,张月秀.象山港水文特征及纳污能力分析.东海海洋,1995,13(1):10-19.
    [126]陈耕心,许卫忆.乐清湾动力特征及对潮滩沉积作用的影响.东海海洋,1992,10(1):1-9.
    [127]陈伟,苏纪兰.狭窄海湾潮交换的分段模式: Ⅰ模式的建立.海洋环境科学,1999a,18(2):59-65.
    [128]陈伟.狭窄海湾潮交换的分段模式: Ⅱ在象山港的应用.海洋环境科学,1999b,18(3):7-10.
    [129]陈伟,王小华.象山港盐度锋面及其动力成因.东海海洋,1998,16:1-9.
    [130]董礼先,苏纪兰.象山港潮波响应和变形研究: Ⅰ观测和分析.海洋学报,1999a,21(1):1-10.
    [131]董礼先,苏纪兰.象山港潮波响应和变形研究:Ⅱ象山港潮波数值研究.海洋学报,1999b,21(2):1-8.
    [132]董礼先,苏纪兰,王丽娅.象山港潮波响应和变形研究:Ⅲ潮滩位置和平流效应对M4分潮的作用.海洋学报,1999c,21(3):1-6.
    [133]董礼先,苏纪兰.象山港水交换数值研究:Ⅰ对流—扩散型的水交换模式.海洋与湖沼,1999d,30(4):410-415.
    [134]董礼先,苏纪兰.象山港水交换数值研究:Ⅱ模型应用和水交换研究.海洋与湖沼,1999e,30(5),465-470.
    [135]董礼先,苏纪兰.象山港盐度分布和水体混合:Ⅰ盐度分布和环流结构.海洋与湖沼,2000a,31(2):151-158.
    [136]董礼先,苏纪兰.象山港盐度分布和水体混合: Ⅱ混合分析.海洋与湖沼,2000b,31(3):465-471.
    [137]方国洪.潮汐摩擦的非线性效应(Ⅰ).海洋与湖沼,1980,11:98-108.
    [138]高抒,谢钦春,冯应俊.浙江象山港潮汐汊道细颗料物质的沉积作用.海洋学报,1990,12:463-469.
    [139]谷颖,项有堂.象山港海域富营养化与赤潮的关系.海洋环境科学,2002,21:67-69.
    [140]刘欢,吴超羽,许炜铭,杨日魁.珠江河口底边界层湍流特征量研究.海洋工程,2009,27(1):62-76.
    [141]刘志宇,魏皓.黄海潮流底边界层内湍动能耗散率与底应力的估计.自然科学进展,2007,17:362-369.
    [142]刘志宇.强潮驱陆架海中的湍流与混合:[博士学位论文].青岛:中国海洋大学,2009.
    [143]江文胜,汪景庸,赵建中,王辉.渤海湾环流的一次观测和分析.青岛海洋大学学报,1997,27(1):23-32.
    [144]江文胜,吴德星,高会旺.渤海夏季底层环流的观测与模拟.青岛海洋大学学报,2002,32(4),511-518.
    [145]毛新燕.渤海盐度的拉格朗日潮际输运数值研究:[博士学位论文].青岛:中国海洋大学,2009.
    [146]唐永明,孙文心,冯士筰.三维浅海流体动力学模型的流速分解法.海洋学报,1990,12(2):148-158.
    [147]王辉,郑连远.渤海三维污染物迁移轨迹的数值计算.青岛海洋大学学报,1992,22(3):1-10.
    [148]王辉,苏志清,冯士筰,孙文心.渤海三维风生—热盐—潮致Lagrange余流数值计算.海洋学报,1993,15(1):9-21.
    [149]王悦,林霄沛.地形变化下渤海湾M2分潮潮致余流的相应变化及其对污染物输运的影响.中国海洋大学学报,2006,36(1):1-6.
    [150]杨宗严.浅海环流与物质输运过程的理论与数值方法研究:[博士学位论文].青岛:青岛海洋大学,1992.
    [151]杨宗严.河口及浅海环境中细颗粒悬浮泥沙长期输运过程研究.海洋技术,1993a,12(1):13-19.
    [152]杨宗严.河口垂向拉格朗日余流研究.青岛海洋大学学报,1993b,23(4):1-14.
    [153]徐鹏,刘志宇,毛新燕,江文胜.强潮狭长海湾中垂直涡黏性系数与底拖曳系数的估计.中国海洋大学学报,2013(待刊).
    [154]中国海湾志第五分册.北京:海洋出版社,1992.
    [155]张燕,张越美,孙英兰,张学庆.宁波—舟山海域环境容量研究:Ⅰ三维潮流数值模拟.海洋环境科学,2005,24(3):60-63.
    [156]郑连远.三维潮致拉格朗日余流的数值计算及其在渤海中的应用.青岛海洋大学学报,1992,22(1):39-49.
    [157]张丽旭,马越.象山港赤潮监控区水质状况的动态变化.海洋环境科学,2004,23:25-28.
    [158]张丽旭,任松,蒋晓山.象山港海域N、P污染特征及潜在性富营养化程度评价.海洋环境科学,2005,24:68-71.
    [159]张丽旭,蒋晓山,蔡燕红,李志恩.近4年来象山港赤潮监控区水质状况综合评价.海洋湖沼通报,2007,4:98-103.
    [160]张丽旭,蒋晓山,蔡燕红.象山港海水中营养盐分布与富营养化特征分析.海洋环境科学,2008,27:488-491.
    [161]朱建荣,沈焕庭.长江冲淡水扩散机制.上海:华东师范大学出版社,1997.168-222.
    [162]朱军政.象山港三维潮流特性的数值模拟.水力发电学报,28(3):145-151.