乌梁素海上覆水体与表层沉积物污染特征及其污染物迁移转换规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自然演变和人为活动的双重作用,使得水环境发生了根本性的变化,水环境素质开始下降,打乱和破坏了水生态系统平衡,进而影响了人类的正常生活和生产。湖泊水环境也正遭受着外源输入和内源释放的侵害和污染,已渐渐失去了固有的功能和应有价值。
     本文针对内蒙古乌梁素海严重富营养化问题,在对其上覆水体和表层沉积物中污染物进行时空变异性剖析的基础上,进一步分析了不同环境因子作用下,上覆水体和沉积物界面间的物质迁移转换规律,建立了考虑沉积物中物质释放的水质数学模型,并对所建模型进行检验和适应性评价。得出如下主要结论:
     ⑴将地质统计学理论与地理信息系统相结合,对乌梁素海富营养化指标、有机污染指标、盐化污染指标、“水华”警示指标进行了时空分析和研究。结果表明,各项污染指标呈现出不同的分布规律和特征,通过实测指标与地表水环境质量标准对比,乌梁素海正遭受着富营养化、盐化、有机等复合污染。
     ⑵通过解析乌梁素海表层沉积物营养元素及重金属元素的空间分布特征。结果显示,表层底泥中总氮和总磷具有相似的空间分布特征,呈现出随水流方向由北到南递减的变化趋势,且在湖泊出口处形成局部高峰区;表层底泥中有机碳含量与水生植物时空分布有很强的相关性;表层底泥Cu、Cd、Pb、Zn、Hg、Cr重金属含量具有南北高,中间低的变异特征,且Cd元素平均含量超过全国土壤质量标准Ⅱ级。
     ⑶通过室内外不同环境因素条件下,上覆水体和表层沉积物中各项污染物质的同步试验和监测,利用回归分析方法,对pH、水温、溶解氧、氧化还原电位、表层沉积物有机质含量变化与沉积物中营养物质释放速率的相关性进行了分析。结果表明,碱性环境和高水温有利于表层沉积物中的营养盐向上覆水体中释放;溶解氧水平和氧化还原电位升高,将降低表层沉积物中营养物质的释放;表层沉积物中有机质含量的增加将提高上覆水体中总氮、氨态氮和总磷浓度;另外,表层沉积物氮磷含量与上覆水体中氮磷浓度呈现出互补的现象,且互补趋势冬季优于夏季;
     ⑷建立了考虑沉积物中营养盐释放的水质数学模型,WASP模型模拟结果揭示了湖泊上覆水体与沉积物间物质迁移转化过程。误差分析表明,相对误差在允许精度以内的模拟结果达到83.33%以上,所建模型具有较好的模拟效果。因此,揭示上覆水体与沉积物物质交换的水质数学模型具有一定的应用价值。
Due to the natural evolution and human activities, the composition and status of water environment has undergone fundamentally changes. As a result of this, wetland ecosystems have been affacted by means of contamination from both outer and inner sources.
     As the lake Wulangshuhai has been seriously entroficated, the spatial and temporal distribution of contaminants within its water body and uper-layer sediments were analyzed. Especially the interactions between the water body and uper-layer sediments by means of contaminant transport were modeled. The results showed that:
     (1) Combining with the geostatistics theory and GIS, the temporal and spatial distribution of the contaminants were analyzed, including eutrophication indexes, organic matter, and nutrient salts etc. The results showed that the contaminants represented different distribution characteristics and the lake Wuliangsu is at the status of eutrophication, salinity, and organic contamination.
     (2) The content and the spatial distribution of nutrient salts in the sediments indicated that the total nitrogen and total phosphorus have similar spatial distribution characteristics with a decrease in content with the flow direction. Organic carbon content in the mainly depends on the distribution and density of aquatic plants. Content of heavy metals like Cu, Cd, Pb, Zn, Hg, Cr in the sediments varied spatially, being higher in the northern and southern parts and lower in the center area. The average content of Cd is exceeded to GradeⅡof the national soil quality standards.
     (3) The field site monitoring and the lab experiment results showed that nutrient salts could release faster from the sediments into the water body at alkaline and higher temperature status, higher dissolved oxygen content and redox potential could reduce the release rate of nutrient salts; and higher organic matter content in the sediments could led to higher concentration of total nitrogen, ammonia nitrogen and total phosphorus in the water body. In one word, the total nitrogen and phosphorus within the sediments the water body were exchanged especially in the summer time.
     (4) WASP model represented the processes of contaminants transport between the sediments the water body. The results showed that the accuracy is greater than 83.33% between the modeled and measured results.
引文
1谢剑.应对水资源危机[M].北京:中信出版社,2009:30~35.
    2牧寒.内蒙古湖泊[M].内蒙古:内蒙古人民出版社,2003,1~30.
    3陈宏宇,杨贵生,邢莲莲,等.达里诺尔自然保护区鸟类区系组成及生态分布[J].内蒙古大学学报.2007,38(1):68~74.
    4李志明,安明,李岩平.达里湖浮游植物调查[J].内蒙古农业科技.2007,(7):210~212.
    5韩一平.达里湖渔业资源现状调查分析[J].水资源.2007,(1):45~46.
    6中国科学院水资源领域战略研究组,中国至2050年水资源领域科技发展路线图[M].北京:科学出版社,2009.
    7顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境, 2002, 18 (1): 42~45.
    8陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护, 2002, 21 (2):179~182·
    9刘兆孝,吴国平,涂建峰,等.日本主要湖泊富营养化状况及治理[J].水利水电快报,2007,28(11):5~11.
    10涂建峰,江小年等.欧洲湖泊富营养化治理战略研究[J].水利水电快报,2007,28(14):8~11.
    11涂建峰,郑丰.美国湖泊富营养化治理战略研究[J].水利水电快报,2007,28(14):5~8.
    12金相灿,稻森悠平,朴俊大.湖泊和湿地水环境生态修复技术与管理指南[M].北京:科学出版社,2007:40~75.
    13秦伯强.湖泊富营养化治理的技术对策[J].环境保护,2007,381(10):22~24.
    14 BENNDORF J,PUTZ K.Control of eutrophication of lakes and reservoirs by means of pre-dams-I,mode of operation and calculation of the nutrient elimination capacity[J].Wat.Res.,1987,21(7):829~838.
    15 BENNDORF J,PUTZ K,KRINITZ H,et al.Die Funktion dervorsperren zum schutz der talsperren vor cutrophierung[J].Wasserwirtschaft Wassertechnik,1975,25(1):19~25.
    16 UHLMANN D,BENNDROF J.The use of primary reservoirs to control eutrophication caused by nutrient inflows from non-point sources[J].Land Use Impacts on Lake and Reservoir Ecosystems,1982,94:152~188.
    17 BENNDORF J,PUTZ K.Control of eutrophication of lakes and reservoirs by means of pre-dams-II,Validation of the phosphate removal model and size optimization[J]. Wat.Res.,1987,21(7):838~847
    18边金钟,王建华,王洪起,等.于桥水库富营养化防治前置库对策可行性研究[J].城市环境与城市生态,1994,7(3):5~9.
    19张永春.前库-控制水库富营养化的生态学途径综述[J].水资源保护,1989,28(4):52~58.
    20张毅敏,张永春,左玉辉.前置库技术在太湖流域面源污染控制中的应用探讨[J].环境污染与防治,2003,25(6):342~344.
    21 COVENEY M F,STITES D L,LOWE E F,et al.Nutrient removal from eutrophic lake water by wetland filtration[J].Ecol.Eng.,2002(19):141~159.
    22何蓉.表面流人工湿地处理生活污水的研究[J].生态环境,2004,l3(2):180~181.
    23李剑波.强化垂直流-水平流组合人工湿地处理生活污水研究[D].上海:同济大学,2008.
    24詹鹏.梯田式人工湿地处理生活污水处理研究[D].长沙:湖南大学,2007.
    25肖恩荣.膜生物反应器-人工湿地复合系统净化工艺研究[D].北京:中国科学院研究生院,2007.
    26沈耀良.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999.
    27 GRIFFTH I M,LLOYD P J.Mobile oxygenation in the Thames estuary[J].Effluent and Treatment Journal,1985(5):450.
    28顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境,2002,18(1):42~45.
    29陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2002:196.
    30濮培民,王国祥,胡春华,等.底泥疏浚能控制湖泊富营养化吗[J].湖泊科学,2000,12(3):269~279.
    31金相灿等.沉积物污染化学[M].北京:中国环境科学出版社,1992,1.
    32 Blom G,Winkels H.J. Modelling sediment accumulation and dispersion of contaminants in Lake IJsselmeer (The Netherlands)[J].Wat Sci Tech,1998,37(6-7):17~24.
    33 van Weering Tj. C. E, Hall I. R, de Stigter H. C.et al. Recent sediments, sediment accumulation and carbon burial at Goban Spur, N.W. European Continental Margin (47°–50°N) [J].Progress In Oceanography, 1998,42(1-4):5~35.
    34 Tuikka A.I, Schmitt C, H?ss S,et al. Toxicity assessment of sediments from three European river basins using a sediment contact test battery[J]. Ecotoxicology and Environmental Safety, 2011,74(1):123~131.
    35 Luiza Placidina da Luz,Pedro JoséSanches Filho,Eloisa Elena Hasse de Sousa,et al.Evaluation of surface sediment contamination by polycyclic aromatic hydrocarbons in colony Z3-(Patos Lagoon, Brazil) [J].Progress In Oceanography, 2010,96(1):161~166.
    36 Abolfazl Naji,Ahmad Ismail,Abdul Rahim Ismail.Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia[J].Microchemical Journal, 2010,95(2):285~292.
    37 Jayakody Arachchige SUMITH, Preeda PARKPIAN, Napaporn LEADPRATHOM.Dredging influenced sediment toxicity of endosulfan and lindane on black tiger shrimp (Penaeus monodon Fabricius) in Chantaburi River estuary in Thailand[J].International Journal of Sediment Research, 2009,24(4):455~464.
    38 A.V. Hallare, T. Kosmehl, T. Schulze,et al. Assessing contamination levels of LagunaLake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos[J]. Science of The Total Environment,2005,347(1-3):254~271.
    39 Robert Gilbert, Joseph R. Desloges, Scott F. Lamoureux,et al.The geomorphic and paleoenvironmental record in the sediments of Atlin Lake, northern British Columbia[J]. Geomorphology,2006,79(1-2):130~142.
    40 A.P. Karageorgis, H. Kaberi, N.B. Price,et al.Chemical composition of short sediment cores from Thermaikos Gulf (Eastern Mediterranean): Sediment accumulation rates, trawling and winnowing effects[J].Continental Shelf Research,2005,25(19-20):2456~2475.
    41 Christopher K.Sommerfield.On sediment accumulation rates and stratigraphic completeness: Lessons from Holocene ocean margins[J].Continental Shelf Research,2006,26(17-18):2225~2240.
    42 John S. Crockett, Charles A. Nittrouer, Andrea S. Ogston,et al. Chapter 5 Variable Styles of Sediment Accumulation Impacting Strata Formation on a Clinoform: Gulf of Papua, Papua New Guinea[J].Developments in Earth and Environmental Sciences,2008,9:177~204.
    43 Lim D.I,Choi J.Y,Jung H.S,et al.Ahn Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas [J].Progress In Oceanography,2007,73(2):145~159.
    44 Alongi D.M,Pfitzner J,Trott L.A, et al. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China [J].Estuarine, Coastal and Shelf Science, 2005,63(4):605~618.
    45 Christopher K. Sommerfield, Homa J. Lee. Magnitude and variability of Holocene sediment accumulation in Santa Monica Bay, California [J].Marine Environmental Research, 2003,56(1-2):151~176.
    46 Kazumasa Oguri, Eiji Matsumoto, Masatoshi Yamada, et al. Sediment accumulation rates and budgets of depositing particles of the East China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography,2003,50(2):513~528.
    47 Alongi D. M, Sasekumar A, Chong V. C,et al.Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia [J].Marine Geology,2004,208(2-4):383~402.
    48 Tara A. Kniskern, Steven A. Kuehl, Courtney K. Harris, et al. Sediment accumulation patterns and fine-scale strata formation on the Waiapu River shelf, New Zealand [J].Marine Geology,2010,270(1-4):188~201.
    49 Amy M.P. Oen, Morten Schaanning, Anders Ruus,et al.Predicting low biota to sedimentaccumulation factors of PAHs by using infinite-sink and equilibrium extraction methods as well as BC-inclusive modeling [J].Chemosphere,2006,64(8):1412~1420.
    50 Greig S.M, Sear D.A, Carling P.A. The impact of fine sediment accumulation on the survival of incubating salmon progeny: Implications for sediment management[J].Science of The Total Environment,2005,344(1-3):241~258.
    51曲久辉.我国水体复合污染与控制[J].科学对社会的影响,2000,1:36~39.
    52马梅,童中华,王怀瑾,等.乐安江水和沉积物样品的生物毒性评估[J].环境化学,1997,16 (2):167~171.
    53袁旭音,陈骏,陶于祥,等.太湖北部底泥中氮、磷的空间变化和环境意义[J].地球化学,2002,31 (4):321~328.
    54范成新,杨元龙,张路.太湖底泥及其间隙水中氮、磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359~366.
    55李文朝,陈开宁,吴庆龙,等.东太湖表面沉积物的磷饱和度初步研究[J].湖泊科学,1998,10(3):49~54.
    56孙顺才,伍贻范.太湖形成演变与现代沉积作用[J].中国科学(B辑),1987,16(12):1329~1339.
    57李荣刚,夏源陵,吴安之,等.江苏太湖地区水污染物及其向水体的排放量[J].湖泊科学,2000,12(2):147~153.
    58刘凌,崔广柏,王建中.太湖底泥氮污染分布规律及生态风险[J].水利学报,2005,36(8):900~904.
    59王平,任学蓉,靳燕,等.宁夏沙湖底泥营养盐特征分析[J].宁夏工程技术,2008,7(1):5~8.
    60俞林伟,谭镇,钟萍,等.广州市流花湖表层底泥磷的形态与生物可利用性[J].城市环境与城市生态,2006,19(2):14~16.
    61俞林伟,谭镇,钟萍,等.广州流花湖底泥磷的垂直变化特征[J].生态环境,2007,16(5):1358~1363.
    62王文华,王淑琴,徐维并,等.北京昆明湖底泥中有机物的表征[J].环境科学学报,1995,15(2):178~185.
    63汪艳雯,岳钦艳,刘庆,等.山东省南四湖底泥中磷的形态分布特征[J].中国环境科学,2009,29(2):125~129.
    64杨丽原,沈吉,刘恩峰,等.南四湖现代沉积物中营养元素分布特征[J].湖泊科学, 2007,19(4):390~396.
    65刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学, 2007,28(6):1377~1383.
    66杨丽原,王晓军,刘恩峰.南四湖表层沉积物营养元素分布特征[J].海洋湖沼通报, 2007,(2):40~44.
    67周来,冯启言,王华,等.南四湖表层底泥磷的化学形态及其释放规律[J].环境科学与技术, 2007,30(6);37~40.
    68方志青,李存雄,张明时,等.百花湖、阿哈水库底泥及营养盐蓄积量的估算[J].贵州师范大学学报(自然科学版), 2009,27(4);30~33.
    69王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002, 14(4): 301~309.
    70王雨春,万国江,王仕禄,等.红枫湖、百花湖沉积物中磷的存在形态研究[J].矿物学报,2000, 20(3): 273~278.
    71王永华,刘振宇,刘伟,等.巢湖合肥区底泥污染物分布评价与相关特征研究[J].北京大学学报(自然科学版),2003, 39(4): 501~506.
    72王永华,钱少猛,徐南妮,等.巢湖东区底泥污染物分布特征及评价[J].环境科学研究,2004, 17(6): 22~26.
    73孙庆业,马秀玲,阳贵德,等.巢湖周围池塘氮、磷和有机质研究[J].环境科学,2010,31(7): 1510~1515.
    74桑稳姣,程建军,姜应和.武汉墨水湖底泥中总氮、总磷污染特征分析[J].中国给水排水,2008,24(5): 45~47.
    75陈椽,张明时,杨加文,等.红枫湖水库底泥的氮磷蓄积量及分布特征[J].安徽农业科学,2008,36(35): 15650~15652.
    76赵锁志,孔凡吉,赵军,等.内蒙古乌梁素海底泥总氮空间分布特征[J].现代地质,2009,23(1): 83~86.
    77姜慧琴,李畅游,史小红,等.乌梁素海沉积物总磷分布及其影响因素研究[J].节水灌溉,2010,6: 39~41.
    78赵胜男,李畅游,史小红,等.乌梁素海沉积物中有机质与营养元素分布特征研究[J].中国农村水利水电,2010,5: 58~61.
    79 Kjell Johansson, Arne Andersson, Tord Andersson.Regional accumulation pattern of heavy metals in lake sediments and forest soils in Sweden [J].Science of The Total Environment,1995,160-161:373~380.
    80 Ren-Ying LI, Hao YANG, Zhi-Gao ZHOU, et al.Fractionation of Heavy Metals in Sediments from Dianchi Lake[J].Pedosphere,2007,17(2):265~272.
    81 Xin Hu, Chao Wang, Limin Zou.Characteristics of heavy metals and Pb isotopic signatures in sediment cores collected from typical urban shallow lakes in Nanjing[J].Journal of Environmental Management,2011,92(3):742~748.
    82 A. Ikem, S. Adisa.Runoff effect on eutrophic lake water quality and heavy metal distribution in recent littoral sediment[J].Chemosphere, 2011,82(2):259~267.
    83 Brian Rippey, Neil Rose, Handong Yang,et al. An assessment of toxicity in profundallake sediment due to deposition of heavy metals and persistent organic pollutants from the atmosphere[J].Environment International,2008,34(3):345~356.
    84 Wenzhong Tang, Baoqing Shan, Hong Zhang,et al. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China[J].Journal of Hazardous Materials,2010,176(1-3):945~951.
    85 Linda Birch, Kurt W. Hanselmann, Reinhard Bachofen. Heavy metal conservation in Lake Cadagno sediments: Historical records of anthropogenic emissions in a meromictic alpine lake[J]. Water Research,1996,30(3):679~687.
    86 Zhifeng Yang, Ying Wang, Zhenyao Shen,et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J].Journal of Hazardous Materials,2009,166(2-3):1186~1194.
    87 Seralathan Kamala-Kannan, B. Prabhu Dass Batvari, Kui Jae Lee,et al. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India[J].Chemosphere,2008,71(7):1233~1240.
    88 K. Chandra Sekhar, N. S. Chary, C. T. Kamala,et al.Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish[J].Environment International,2004,29(7):1001~1008.
    89 Junhong Bai, Baoshan Cui, Bin Chen,et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland [J].Ecological Modelling,2011,222(2):301~306.
    90 Alam M. G. M, Tanaka A, Stagnitti G F,et al. Observations on the Effects of Caged Carp Culture on Water and Sediment Metal Concentrations in Lake Kasumigaura, Japan [J]. Ecotoxicology and Environmental Safety,2001,48(1):107~115.
    91 Samecka-Cymerman A, Kempers A. J.Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification[J]. The Science of The Total Environment ,2001,281(1-3):87~98.
    92 John Poté, Laurence Haller, Jean-Luc Loizeau,et al. Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the Bay of Vidy, Lake Geneva, Switzerland[J].Bioresource Technology,2008,99(15):7122~7131.
    93 Hong Lien Nguyen, Martine Leermakers, Marc Elskens,et al.Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton[J]. Science of The Total Environment,2005,341(1-3):211~226.
    94 Henry K.T. Wong, Jerome O. Nriagu, Robert D. Coker. Atmospheric input of heavy metals chronicled in lake sediments of the Algonquin Provincial Park, Ontario, Canada [J].Chemical Geology,1984,44(1-3):187~201.
    95 Outridge P.M, Rausch N,Percival J.B,et al. Comparison of mercury and zinc profiles in peat and lake sediment archives with historical changes in emissions from the Flin Flon metal smelter, Manitoba, Canada[J].Science of The Total Environment,2011,409(3):548~563.
    96 Manyin Zhang, Lijuan Cui, Lianxi Sheng,et al.Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China[J]. Ecological Engineering,2009,35(4):563~569.
    97 Mika A. K?hk?nen, Mari Pantsar-Kallio, Pentti K. G. Manninen.Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with pca in two boreal lakes in Southern Finland[J].Chemosphere,1997,35(11):2645~2656.
    98 Bernd Kober, Martin Wessels, Andreas Bollh?fer,et al.Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere[J]. Geochimica et Cosmochimica Acta,1999,63(9):1293~1303.
    99 S. Vaalgamaa, D.J. Conley. Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea[J]. Estuarine, Coastal and Shelf Science,2008,76(1):45~56.
    100 Norio Matsumoto, Hiroaki Uemoto, Hiroshi Saiki.Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use[J].Water Research,2007,41(12):2541~2550.
    101程南宁,李巍,冉光兴,等.浙江东钱湖底泥污染物分布特征与评价[J].湖泊科学,2007,19(1):58~62.
    102孙胜龙,丁蕴铮.长春南湖底泥磷、氮和重金属元素环境地球化学行为研究[J].环境科学研究,1999,12(4):37~41.
    103杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属和营养元素的多元分析[J].中国环境科学,2003,23(2):206~209.
    104杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003,15(3):252~256.
    105陈春华,万昆.武汉东湖底泥中Pb、Cd、Cu、Fe垂直分布研究[J].江汉大学学报(自然科学版),2006,34(3):27~29.
    106弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732~736.
    107胡利娜,刘小真,周文斌,等.鄱阳湖水域DW采样点底泥重金属垂直污染分析[J].环境科学与技术,2009, 32(6):108~111.
    108王莉红,汤福隆,胡岭.南湖水体中铜锰锌镐的迁移和积累特性[J].上海环境科学,1999, 18(1):44~46.
    109张立,袁旭音,邓旭.南京玄武湖底泥重金属形态与环境意义[J].湖泊科学,2007, 19(1):63~69.
    110刘红磊,尹澄清,唐运平.太湖梅梁湾岸边带底泥中重金属的形态与分布[J].中国环境科学,2010, 30(3):389~394.
    111任建东,任学蓉,靳燕,等.沙湖底泥中重金属特性分析[J].宁夏工程技术,2008, 7(3):224~227.
    112赵锁志,孔凡吉,王喜宽,等.内蒙古乌梁素海底泥中重金属污染的分布特征[J].现代地质,2009, 23(1):103~107.
    113赵锁志,王喜宽,郑萍,等.乌梁素海沉积物重金属潜在生态风险评价[J].水文地质工程地质,2008, 3:118~121.
    114王晓,韩宝平,张显龙,等.徐州市北郊工业区河流底泥重金属污染特征[J].污染防治技术,2003, 16(4):54~57.
    115胡斌,周晴,段昌群,等.昆明市盘龙江底泥重金属污染研究初探[J].云南大学学报(自然科学版),2006,28(2):166~172.
    116张曼胤,崔丽娟,盛连喜,等.衡水湖湿地底泥重金属污染及潜在生态风险评价[J].湿地科学,2007,5(4):362~369.
    117周立旻,郑祥民,殷效玲.苏州河上海段底泥重金属的污染特征[J].城市环境与城市生态,2008,21(2):1~5.
    118宋宪强,雷恒毅,余光伟,等.重污染感潮河道底泥重金属污染评价及释放规律研究[J].环境科学学报,2008,28(11):2258~2268.
    119严长安,崔小丽,王建,等.扬州市城区地表水底泥重金属污染现状与风险评价[J].环境污染与防治,2009,31(8):50~54.
    120宁建凤,邹献中,杨少海,等.广东大中型水库底泥重金属含量特征及潜在生态风险评价[J].生态学报,2009,29(11):6059~6067.
    121邵学新,吴明,蒋科毅,等.西溪国家湿地公园底泥重金属污染风险评价[J].林业科学研究,2009,22(6):801~806.
    122陈如海,詹良通,陈云敏,等.西溪湿地底泥重金属竖向分布规律[J].浙江大学学报(农业与生命科学版),2010,36(5):578~584.
    123滑丽萍,华珞,高娟,等.中国湖泊底泥的重金属污染评价研究[J].土壤,2006, 38(4):366~373.
    124黎秉铭,万国江,江成忠.等.滇池、洱海水及沉积物中重金属元素行为[J].环境科学,1995,16(2):50~52.
    125袁惠民,陈文生.红枫湖沉积物中主要重金属潜在生态危害性评价[J].贵州环保科技,1997,3(3):39~43.
    126胡勤海,胡志强,叶兆杰.西湖沉积物中元素分布特征研究[J].环境污染与防治,1996,18(1):8~10.
    127戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71~74.
    128王宁,朱颜明.松花湖水源地重金属非点源污染调查[J].中国环境科学,2000,20(5):419~421.
    129王晓君,刘玉青,佘中盛.镜泊湖沉积物中重金属的研究[J].环境科学丛刊,1990,11(1):46~51.
    130吉磊,朱育新,吴瑞金,等.阳澄湖近代沉积物的古湖泊学研究[J].湖泊科学,1997,9(1):22~28.
    131陈敬安,万国江,黄荣贵.洱海沉积物重金属地球化学相及其污染历史研究[J].地质地球化学,1998,26(2):1~8.
    132吕兰军.鄱阳湖水及其沉积物中的重金属调查[J].上海环境科学,1994,13(5):17~26.
    133杨丹敏,陈春华,王焰新.武汉东湖沉积物中金属元素垂直分布研究[J].安全与环境工程,2004,11(2):17~18.
    134朱敏,王国祥,王建,等.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报(工程技术版)2004,4(2):66~69.
    135庄云龙,张沪春.重金属在淀山湖沉积物上的吸附研究[J].安全与环境学报,2003,3(1):37~
    39.
    136张泉荣,吴朝明.梅梁湖底泥重金属污染评价方法探讨[J].环境水利,2003,(9):32~33.
    137张于平,瞿文川.太湖沉积物中重金属的测定及环境意义[J].岩矿测试,2001,20(1):34~36.
    138杨卓,李贵宝,王殿武,等.白洋淀底泥化学性质在芦苇生境下的变化[J].中国环境科学,2005,25(4):450~454.
    139刘伟,徐南妮,刘振宇.巢湖清淤合肥项目区域污染底泥调查研究[J].环境导报,2000(2):30~31.
    140殷效彩,杨永亮,乌大年,等.山东荣城湾月湖沉积物底泥重金属研究[J].青岛大学学报,1999,12(4):75~79.
    141邓书平,毕德纯,孙晓怡.松花湖及入湖河流的重金属污染调查分析[J].辽宁城乡环境科技,2002,22(4):28~30.
    142贾振邦,安凯,赵智杰,等.北京大学未名湖沉积物中主要重金属250年以来的变化[J].环境化学,2003,22(1):93~94.
    143洪祖喜,何品晶,邵立明.水体受污染底泥原地处理技术[J].环境保护,2002,10: 15~17.
    144洪祖喜,何品晶.受污染底泥易地处理处置技术[J].上海环境科学,2002,22(4):233~236.
    145王海龙,常学秀,王焕校.我国富营养化湖泊底泥污染治理技术展望[J].楚雄师范学院学报,2006,21(3):41~46.
    146柳惠青.湖泊污染内源治理中的环保疏浚[J].水运工程, 2000, 322(11): 21~27.
    147喻龙,龙江平,李建军,等.生物修复技术研究进展及在滨海湿地中的应用[J].海洋科学进展,2002, 20 (4):99~108.
    148夏立江,李楠,沈德中,等.原位生物修复治理汞害的机制及作用[J].环境科学进展,1998,6(3): 48~52.
    149金相灿,荆一凤,刘文生,等.湖泊污染底泥疏浚工程技术—滇池草海底泥疏挖及处置[J].环境科学研究,1999, 12 (5):9~12.
    150程英,裴宗平.湖泊污染特征及修复技术[J].现代农业科技,2008, 2:217~218.
    151曹晓静,张航.地表水质模型研究综述[J].水利与建筑工程学报,2006, 4(4):18~22.
    152田炜,王平,谢湉,等.地表水质模型应用研究现状与趋势[J].现代农业科技,2008, 3:192~195.
    153彭琴,牟新利,张丽莹,等.二维水质模型及应用研究进展[J].化学工程与装备,2010,3:123~125.
    154曹永中,周孝德,吴秋平,等.河流水质模型研究概述[J].水利科技与经济,2008,3:197~200.
    155李君,徐俊红,曹永梅.河流水质数学模型的研究进展及发展趋势[J].科技经济市场,2007,9:35~36.
    156廖招权,刘雷,蔡哲.水质数学模型的发展概况[J].江西化工,2005,1:42~45.
    157万金保,李媛媛.湖泊水质模型研究进展[J].长江流域资源与环境,2007,16(6):805~809.
    158邓义祥,富国,于涛.水质模型科学性内涵的探讨[J].环境科学管理,2008,33(2):29~31.
    159徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次[J].上海环境科学,2003,22(2):79~85.
    160姜云超,南忠仁.水质数学模型的研究进展及存在的问题[J].兰州大学学报(自然科学版) ,2008,44(5):7~11.
    161 Vollenweider R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication Men Ist Ital Idrobiol,1976, 33(2): 53~83.
    162 SnodgrassW. J., Klapwijk A. Model for lake-bay exchange flow[J].J Great Lakes Res, 1984 11(5): 43~52.
    163 Malmaeus J.M.,Hakanson L A dynamic model to predict suspended particulate matter in lakes[J]. Ecological Modelling 2003, 167(3): 247~262.
    164 Malmaeus J.M.,Hakanson L. Development of a lake eutrophication model[J].Ecological Modelling,2004, 171 (1):35~63.
    165 Schelshe C. L. Assessment of nutrient effects and nutrient limitation in Lake Okeechobee[J].Wat Res, 1989, 25(6):1119~1130.
    166 James R. Thomas, Victor J, Bierman Jr. A preliminary modeling analysis of water quality in Lake Okeechobee, Florida Calibration results[J].Wat Res, 1995, 29(12): 2755~2766.
    167 Rossi G., Premazzi G. Delay in lake recovery caused by internal loading[J].Wat Res, 1991, 25(3): 567~575.
    168 CarpenterS., BrockW.,Hanson P. Ecological and social dynamics in simple models of ecosystem management[J].Conserv.Ecol,1999, 3(2): 4~23.
    169 Janssen M.A., Carpenter S.R.Managing the resilience of lake: A multi-agent modeling approach[J].Consrev. Ecol, 1999, 3(2): 15~31.
    170 Srinivasu P. D. N. Regime shifts in eutrophied lakes: A mathematical study[J].Ecological Modelling, 2004, 197(2):115~130.
    171 Chen XinJian, ASCE M., Sheng Y. Peter, et al Three-dimensional modeling of sediment and phosphorus dynamics in Lake Okeechobee, Florida: Spring 1989 Simulation[J].Journal of Environmental Engineering, 2005, 131(1): 359~374.
    172 Yang M. D, Sykes R. M, Merry C. J. Estimation of algal biological parameters using water quality modeling and SPOT satellite data[J]. Ecological Modelling,2000, 125(1):1~13.
    173 Gregory J. Pelletier, Steven C. Chapra, Hua Tao.QUAL2Kw– A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration [J]. Environmental Modelling & Software,2006, 21(3):419~425.
    174 Roy Brouwer, Chris De Blois.Integrated modelling of risk and uncertainty underlying the cost and effectiveness of water quality measures[J].Environmental Modelling & Software,2008, 23(7):922~937.
    175 Philippe Maillard, Nádia Ant?nia Pinheiro Santos. A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed– Brazil[J].Journal of Environmental Management,2008, 86(1):158~170.
    176 Eun Hye Na, Seok Soon Park. A hydrodynamic and water quality modeling study of spatial and temporal patterns of phytoplankton growth in a stratified lake with buoyant incoming flow[J]. Ecological Modelling,2006, 199(3):298~314.
    177 Andreas L. Horn, Francisco J. Rueda, Georg H?rmann,et al. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands––an overview on current concepts, deficits, and future tasks[J].Physics and Chemistry of the Earth, 2004, 29(11-12):725~737.
    178 Diogo P.A, Fonseca M, Coelho P.S, et al.Reservoir phosphorous sources evaluationand water quality modeling in a transboundary watershed[J]. Desalination, 2008, 226(1-3):200~214.
    179 C. Santhi, R. Srinivasan, J.G. Arnold, et al.A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas[J].Environmental Modelling & Software, 2006, 21(8):1141~1157.
    180 Kim N. Irvine, Mary F. Perrelli, Greg McCorkhill,et al. Sampling and Modeling Approaches to Assess Water Quality Impacts of Combined Sewer Overflows—The Importance of a Watershed Perspective[J].Journal of Great Lakes Research, 2005, 31(1):105~115.
    181 Hamm V, Collon-Drouaillet P, Fabriol R. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): A semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model[J].Journal of Contaminant Hydrology, 2008, 96(1-4):97~112.
    182 William W. Bowerman, John Carey, David Carpenter, et al. Is It Time For A Great Lakes Ecosystem Management Agreement Separate from the Great Lakes Water Quality Agreement? [J].Journal of Great Lakes Research,1999, 25(2):237~238.
    183 Peter Schippers, Hendrika van de Weerd, Jeroen de Klein,et al.Impacts of agricultural phosphorus use in catchments on shallow lake water quality: About buffers, time delays and equilibria[J].Science of The Total Environment,2006, 369(1-3):280~294.
    184 Sabine Thiemann, Hermann Kaufmann.Lake water quality monitoring using hyperspectral airborne data—a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany[J].Remote Sensing of Environment,2002, 81(2-3):228~237.
    185 Robert A. Zielinski, William N. Herkelrath, James K. Otton.Composition of pore water in lake sediments, research site“B”, Osage County, Oklahoma:Implications for lake water quality and benthic organisms[J].Applied Geochemistry,2007,22(10):2177~2192.
    186 Hany Hassan, Keisuke Hanaki, Tomonori Matsuo.A modeling approach to simulate impact of climate change in lake water quality: Phytoplankton growth rate assessment [J]. Water Science and Technology,1998,37(2): 177~185.
    187徐祖信,尹海龙.黄浦江二维水质数学模型研究[J].水动力学研究与进展,2003,18(3):261~265.
    188黄明海,齐鄂荣,吴剑.遗传梯度法在水质数学模型参数估值的应用[J].环境科学学报,2002,22(3):315~319.
    189张昌兵,熊朝坤,等.水质大涡模拟数学模型研究[J].水科学进展,2004,15(4):431~43.
    190张青,杜禹,等.干旱区湖泊水质预测的数学模型[J].数学的实践与认识,2003,33(12):4~8.
    191梁常德,龙天渝.蓄水城区河段水质数学模型建立的探讨[J].水资源与水工程学报,2006,17(3):62~67.
    192郝一平.长江水质预测数学模型与检验[J].河南机电高等专科学校学报,2006,14(5):32~34.
    193宋丽艳,张志旭.松花江水质评价数学模型[J].佳木斯大学学报,2007,25(1):122~123.
    194陈玉松,胡开林,等. ACF32处理西坝河水BOD5的一维水质数学模型研究[J].昆明理工大学学报,2006,31(3): 54~57.
    195邓光毅,王加友,张红霞.长江水质评价和预测的数学模型[J].内江师范学院学报,2006,21:181~184.
    196方正,马莉莉,袁建平.水箱水质变化数学模型及计算机仿真研究[J].武汉大学学报,2005,38(5):99~103.
    197阮景荣,蔡庆华,刘建康.武汉东湖的磷-浮游植物动态模型[J].水生生物学报, 1988,12(4):289~307.
    198宋永昌,王云,戚仁海.淀山湖富营养化及其防治研究[M].上海:华东师范大学出版社,1991,157~180.
    199刘元波,陈伟平.太湖梅梁湾藻类生态模拟与藻类水华治理对策分析[J].湖泊科学,1998, 10(4): 53~59.
    200刘玉生,唐宗武,等.滇池富营养化生态动力学模型及其应用[J].环境科学研究, 1991,4(6):1~8.
    201胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究—1.风生流和风涌增减水的三维数值模拟[J].湖泊科学, 1998,10(4):17~25.
    202胡维平,秦伯强,濮培民.太湖水动力学三维数值试验研究—3.马山围垦对太湖风生流的影响[J].湖泊科学, 2000,12(4):335~342.
    203李一平,逢勇,丁玲.太湖富营养化控制机理模拟[J].环境科学与技术,2004,27(3):1~3.
    204李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展,2005,16(6) 777~783.
    205郭永彬,王焰新.汉江中下游水质模拟与预测-QUAL2K模型的应用[J].安全与环境工程,2003,10(1):4~7.
    206 Cerco C F.Phytoplankton kinetics in the Chesapeake Bay Eutrophication Model.Water Quality and Ecosystems Modeling, 2000,1:5~49.
    207江霜英,王雨,张海平,等.上海市竹园第一污水处理厂升级改造工程对长江口水体环境的影响[J].环境科学研究,2008,21(1):159~167.
    208周贤宾,吴建,詹中英等. EFDC模型在饮用水源保护区划分中的应用研究-以杭嘉湖地区某水厂为例[J].环境科学导刊,2009,28(2):30~32.
    209李瑞杰,诸裕良,郑金海.虎门太平水道航道整治工程潮流数模计算[J].水运工程,2003,350(3):38~42.
    210左书华.Delft3D在鳌江口外平阳咀海域流场模拟中的应用[J].水文,2007,27(6):55~58.
    211 Erichsen, A.C and Rasch, P.S. Two-and Three-dimensional Model System Predicting the Water Quality of Tomorrow. DHI Water and Environment, 2002, 165~184.
    212 Lahet F, Ouillon S. A Three-component model of ocean colour and its application in the Ebro River Mouth Area [J]. Remote Sensing of Environment, 2000, 72:181~190.
    213 Brivio P A, Giardino C. Validation of Satellite data for quality assurance in lake monitoring applications [J]. The Science of the Total Environment, 2001, 268:3~18.
    214 Dekker. Analytical algorithms for lake water TSM estimation for retrospective analyses for TM and SPOT sensor data [J]. INT. J. Remote Sensing, 2002, 23(1):15~35.
    215 Richard L.Miller and Brent A. McKee. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J].Remote Sensing of Environment, 2004, 93:259~266.
    216刘堂友,匡定波,等.湖泊藻类叶绿素a和悬浮物浓度的高光谱定量遥感模型研究[J].红外与毫米波学报,2004,23(1):11~15.
    217尹球,巩彩兰,匡定波,等.湖泊水质卫星遥感方法及其应用[J].红外与毫米波学报,2005,24(3):198~202.
    218童小华,谢欢,等.基于多光谱遥感的水质监测处理方法与分析[J].同济大学学报(自然科学版),2007,35(5):675~680.
    219 Fernandez G.P, Chescheir G.M et al. DRAINMOD-GIS: A lumped parameter watershed scale drainage and water quality model [J].Agricultural Water management, 2006, 81:77~97.
    220贾海峰,程声通,杜文涛.GIS与地表水水质模型WASP5的集成[J].清华大学学报(自然科学版),2001,41:125~128.
    221郑泽梅,夏斌,张俊岭.GIS与水质模型集成研究与实践[J].环境科学与技术,2005,28:10~11.
    222 Liu C J, Brantigan R. Using differential GPS for forest traverse surveys. Can. J. Forest. Res, 1995, 25, 1795~1805.
    223蒋建虎,张振江,基于GPRS和GPS的移动水质监测系统设计[J].自动化技术与应用2006,25(8):66~68.
    224李畅游,于瑞宏,高瑞忠,等.基于遗传算法的乌梁素海水环境的投影寻踪评价[J].内蒙古农业大学学报,2003,24(4):1~6.
    225李畅游,刘廷玺,高瑞忠等.乌梁素海富营养化主控因子年季变化分析及综合评价[J].水文,2004,24(3):14~24.
    226于瑞宏,刘廷玺,李畅游等.干旱区草型湖泊悬浮固体浓度及水深的遥感与分析[J].水利学报,2005,36(7):853~862.
    227李畅游,武国正,李卫平等.乌梁素海浮游植物调查与营养状况评价[J].农业环境科学学报,2007.26:283~287.
    228李畅游,任春涛,武国正等.基于MATLAB实现的乌梁素海水质等级的模糊模式识别评价[J].农业环境科学学报, 2007,26(6):2299~2304.
    229任春涛,李畅游,全占军,等,基于GIS的乌梁素海水体富营养化状况的模糊模式识别[J].环境科学研究, 2007,20(3):68~74.
    230李畅游,史小红.干旱半干旱地区湖泊二维水动力学模型[J].水利学报, 2007,38(12):1482~1488.
    231武国正,李畅游,张生.基于主成分聚类综合分析法的湖泊富营养化评价[J].环境污染与防治,2008(6):1~8.
    232武国正,李畅游,周龙伟,等.乌梁素海浮游动物与底栖动物调查及水质评价[J].环境科学研究, 2008,21(3):76~81.
    233李卫平,李畅游,史小红等.内蒙古乌梁素海氮、磷营养元素分布特征及地球化学环境分析[J].资源调查与环境,2008,29(2):131~138.
    234李兴,李畅游,李卫平等.内蒙古乌梁素海不同形态氮的时空分析[J].湖泊科学,2009,21(6):885~890.
    235李兴,李畅游,王勇等.挺水植物对湖泊水质数值模拟过程的影响[J].环境科学,2010, 31(12):2890~2895.
    236尚士友,杜建民.草型湖泊富营养化适度控制技术的研究[J].内蒙古农牧学院学报,1995, 16(2):87~90.
    237乌云塔娜,尚士友.乌梁素海总磷控制模型的研究[J].内蒙古农业大学学报,2002,23(4):81~83.
    238尚士友,杜健民,李旭英等.乌梁素海富营养化适度控制的研究[J].内蒙古大学学报(自然科学版),2003,34(5):588~592.
    239尚士友,杜健民.草型富营养化湖泊生态恢复工程技术的研究[J].生态学杂志,2003,22(6):57~62.
    240王丽敏.水草收割工程对乌梁素海氮元素转移过程的研究[D].内蒙古:内蒙古农业大学, 2004:1~33.
    241孙惠民,何江,吕昌伟等.乌梁素海沉积物中有机质和全氮含量分布特征[J].应用生态学报,2006, 17(4):620~624.
    242孙惠民.乌梁素海富营养化及其机制研究[D].内蒙古:内蒙古大学, 2006:1~75.
    243段晓男,王效科,欧阳志云等.乌梁素海野生芦苇群落生物量及影响因子分析[J].植物生态学报,2004,28(2):246~251.
    244段晓男,王效科,冯兆忠等.乌梁素海野生芦苇光合和蒸腾特性研究[J].干旱区地理,2004,27(4): 637~641.
    245王效科,赵同谦,欧阳志云.乌梁素海保护的生态需水量评估[J].生态学报,2004,24(10): 2124~2129.
    246杨贵生,邢莲莲,颜重威等.乌梁素海湿地鸟类新记录[J].内蒙古大学学报(自然科学版),1999, 30(6):739~741.
    247赵军.乌梁素海芦苇资源的生产现状与展望[J].内蒙古草业,2001,2:47~48.
    248李亚威.大型植物过量生长型的富营养化湖泊-乌梁素海[J].内蒙古环境保护,2002,14(2):3~6.
    249陶黎,叶俊峰,李晓霞等.乌梁素海鱼类种群变化的研究[J].内蒙古环境保护,2002,14(3): 16~17.
    250美英.乌梁素海综合整治项目污染物消减措施的环境经济效益分析[D].内蒙古:内蒙古大学,2005.
    251刘瑞民,王学军.湖泊水质参数空间优化估算的原理与方法[J].中国环境科学,2001,21(2):177~179.
    252孙洪泉.地质统计学及其应用[M].徐州:中国矿业大学出版社,1990:96~125.
    253王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988:8~211.
    254 Arthur J. Horowitz.Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes [J]. Science of The Total Environment, 2008, 400(1-3):315~343.
    255 M. Maanan, B. Zourarah, C. Carruesco,et al. The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast) [J]. Journal of African Earth Sciences, 2004, 39(3-5): 473~483.
    256 P.S. Harikumar, U.P. Nasir. Ecotoxicological impact assessment of heavy metals in core sediments of a tropical estuary [J]. Ecotoxicology and Environmental Safety, 2010, 73(7):1742~1747.
    257 E.P. Nobi, E. Dilipan, T. Thangaradjou, et al. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India [J]. Estuarine, Coastal and Shelf Science, 2010, 87 (2):253~264.
    258 Vladimir Dauvalter, Sigurd Rognerud.Heavy metal pollution in sediments of the Pasvik River drainage [J].Chemosphere, 2001, 42(1):9~18.
    259罗潋葱,秦伯强,朱广伟.太湖底泥蓄积量和可悬浮量的计算[J].海洋与湖沼, 2004,35(6):491~496.
    260杨卓,王殿武,李贵宝等.白洋淀底泥重金属污染现状调查及评价研究[J].河北农业大学学报,2005,28(5):20~26.
    261李兴.内蒙古乌梁素海水质动态数值模拟研究[博士学位论文].呼和浩特:内蒙古农业大学,2009.
    262李兴,李畅游,代文婕等.基于灰色-随机风险率方法的湖泊水质分析[J].环境工程,2009,27(4):117~119.
    263隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102~105.
    264徐晓锋,杨浩,吕俊杰.湖泊底泥氮营养释放特征研究[J].中国农学通报,2006,22(10):411~413.
    265张智,刘亚丽,段秀举.湖泊底泥磷释放影响因素显著性试验分析[J].植物资源与环境学报,2006,15(2):16~19.
    266孙小静,秦伯强,朱广伟.持续水动力作用下湖泊底泥胶体态氮、磷的释放[J].环境科学,2007,28(6):1123~1129.
    267商卫纯,潘培丰,蒋海滨等.城市浅水型湖泊底泥污染物释放过程模拟试验研究[J].环境污染与防治,2007,29(8):602~604.
    268李磊,王慧,张锡辉等.不同底泥系统的湖泊内源释磷规律研究[J].中国给水排水,2007,23(17):76~80.
    269肖文胜,杨开,郭建林.环境因子对湖泊底泥释磷的影响研究[J].中国给水排水,2009,25(3):50~53.
    270龚春生,范成新.不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析[J].湖泊科学,2010,22(3):430~436.
    271汪礼礽.环境数学模型[M].上海:华东师范大学出版社,1997:3~4.
    272彭泽洲,杨天行,梁秀娟,等.水环境数学模型及其应用[M].北京:化学工业出版社,2007:1~2.
    273于顺东,尤学一.WASP水质模型检验及参数敏感度分析[J].水资源与水工程学报,2007,18(6):41~44.
    274万金保,李媛媛.湖泊水质模型研究进展[J].长江流域资源与环境,2007,16(6):805~809.
    275王旭东,刘素玲,张树深,等.白洋淀水域WASP富营养化模型改进研究[J].环境科学与技术,2009,32(10):19~24.
    276刘兰岚,张永红.WASP水质模型在辽河干流污染减排模拟中的应用[J].环境科学与管理,2010,35(5):160~163.