玻化微珠保温混凝土试验及建筑抗震、能耗分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国建筑节能、墙体改革等相关政策的推行,开发有效的建筑节能围护材料成为土木工程领域首要任务之一。在此背景下,太原理工大学进行了玻化微珠保温混凝土试验研究(太原市城建科研计划项目(并建管字(2006)210号,并财城(2006)263号))。玻化微珠保温混凝土是一种既具有一般混凝土的物理力学性能,又具有保温性能,绿色、环保的高效益生态建筑材料。本文对玻化微珠保温混凝土的抗压强度和保温性能进行了试验研究,并基于试验数据的基础上模拟分析了玻化微珠保温混凝土建筑的抗震性能和能耗情况。
     在正交设计理论的指导下,课题组测定了玻化微珠保温混凝土试件抗压强度和导热系数,并对试验数据进行了分析。
     应用ANSYS大型分析软件,分析和对比了玻化微珠保温混凝土和普通混凝土剪力墙结构的抗震性能。
     应用DeST-h软件,建立了一栋六层单元住宅楼模型。模拟和对比了围护结构分别为玻化微珠钢筋混凝土和普通钢筋混凝土时,空调季、采暖季及全年的单个房间、单个系统和整栋建筑的能耗情况。
     由上述分析内容得出以下结论:
     1、玻化微珠保温混凝土导热系数随着玻化微珠掺量的加大迅速下降,当接近粘土砖的导热系数时,抗压强度高于粘土砖,基本达到试验预期效果,验证了玻化微珠保温混凝土在工程上的可用性。
     2、得出了影响玻化微珠保温混凝土抗压强度和导热系数的主次因素,和玻化微珠掺量与导热系数关系的回归直线方程。
     3、玻化微珠保温混凝土剪力墙结构的自振周期比对应的同阶普通混凝土剪力墙结构自振周期大,在反应谱作用下,玻化微珠保温混凝土剪力墙结构最大弹性层间位移角远小于规范规定的位移角限值,层剪力要比对应的普通混凝土剪力墙结构层剪力小。玻化微珠保温混凝土剪力墙结构不仅完全能够满足抗震规范要求,而且有比普通混凝土更好的抗震性能。
     4、围护结构为玻化微珠钢筋混凝土的建筑热能消耗比对应的围护结构为普通钢筋混凝土的建筑在整个采暖季、整个空调季和全年均有大幅度的降低。
     本文的分析验证了玻化微珠保温混凝土是一种结构兼保温新型的节能建材,同时也为本课题的深入研究乃至玻化微珠保温混凝土将来的推广和应用提供了宝贵的参考数据。
     对玻化微珠保温混凝土的试验研究在全国尚属首次,目前“玻化微珠保温混凝土”己获得国家知识产权局发明专利授权(专利号:ZL200610012726.2)。
With the policies implementing of energy-saving construction and wall-reform in China, developing effective energy-saving construction materials have become one of emergencies in civil engineering field. As a high efficiency ecological building material with physical and mechanical properties of traditional concrete and better thermal-insulating ability, thermal insulation glazed hollow bead concrete was researched in Taiyuan University of Technology ( project of city construction scientific research list in taiyuan). In this paper, the compressive strength and thermal conductivity of thermal insulation glazed hollow bead concrete were studied and the anti-seismic performance and energy consumption of thermal insulation glazed hollow bead concrete building were analyzed on the basis of the simulation analysis of test data.
     Under the guidance of orthogonal experiment theory, the compressive strength and thermal conductivity of test block of thermal insulation glazed hollow bead reinforced concrete was determined and the data were also analyzed.
     Utilized the software of ANSYS, the anti-seismic performance of thermal insulation glazed hollow bead reinforced concrete was compared with that of reinforced concrete.
     Using the model of six-storey residential unit established by the software of DeST-h, the energy consumption of a single room, a single system and a entire building of thermal insulation glazed hollow bead ferroconcrete structure in air-conditioned quarter, heating quarter and a whole year was analyzed and compared with that of reinforced concrete structure.
     The conclusions drawn out from the analysis listed above are as follow:
     First, the thermal conductivity of thermal insulation glazed hollow bead concrete was decreased rapidly with the increase of the usage of glazed hollow bead. When the thermal conductivity of thermal insulation glazed hollow bead concrete closes to clay brick's, the compressive strength of thermal insulation glazed hollow bead concrete was higher than that of clay brick and the expectant effect was basically achieved. The applicability of thermal insulation glazed hollow bead concrete availability in engineering was also proved.
     Second, the principal and subordinate factors impacting compressive strength and thermal conductivity were gained. Meanwhile, the regression equation between the thermal conductivity and the usage of glazed hollow bead was drawn out.
     Third, the natural vibration period of thermal insulation glazed hollow bead concrete shear wall structure was larger than ordinary concrete shear wall structure. In the case of response spectrum, elastic interbedding displacement was very small; the shear is smaller than ordinary concrete shear wall structure. Thermal insulation glazed hollow bead concrete shear wall structure not only completely meet the requirements of anti-seismic criterion , but also better than ordinary concrete.
     Fourth, the energy consumption has a greatly fall in air-conditioned quarter, heating quarter and a whole year of thermal insulation glazed hollow bead reinforced concrete structures compared with that of reinforced concrete structures.
     As a new energy conservation building materials with good structural and thermal insulation performance, the feasibility of thermal insulation glazed hollow bead concrete was confirmed in this paper which was provided a valuable reference for a in-depth study and application in the future.
     At present, the thermal insulation glazed hollow bead concrete which was firstly study here over all the country was granted a national invention patent.( Patent No :ZL200610012726.2)
引文
[1]刘华锋,严寒地区农村住宅围护结构节能构造优选及其评价系统,[学位论文],哈尔滨,哈尔滨建筑大学硕士学位论文,2000
    [2]山西省建设厅,民用建筑节能适用手册,太原,2006
    [3]陈东佐,贾保林,建筑节能与可持续发展[J],科技情报开发与经济,2002,12(1):72-73
    [4]王鹏举,轻骨料免拆墙模复合剪力墙结构体系的施工技术研究及技术经济分析,[学位论文],太原,太原理工大学,2007
    [5]杨善勤,加气混凝土产品面临机遇和挑战[J],墙材革新与建筑节能,2004(3):21-22
    [6]杨善勤,民用建筑节能设计手册[M],北京,中国建筑工业出版社,1997,8
    [7]王立久,我国建筑材料发展中的几个问题[J],混凝土,2000(2):3-6
    [8]张良纯,绿色多功能建筑体系技术—纳土塔建筑体系[J],上海建材,2005(3):20-21
    [9]龙冬晚,鲍光玉,外墙保温隔热技术与材料[J],中外建筑,2006(5):193-194
    [10]贾哲,姜波,程光旭等,建筑节能材料简述[J],建筑节能,2007(6):32-35
    [11]范桂细,泡沫混凝土的生产与应用技术[J],广东建材,2005(9):21-22
    [12]张传镁,甘伟,刘起华等,轻珠混凝土及其在屋面保温隔热工程中的应用[J],新型建筑材料,2005,(8),61-63
    [13]范锦忠,陶粒混凝土墙材的节能优势[J],新型墙材,2005(6):26-29
    [14]朱家振,浇注墙体、复合墙板[J],墙材革新与建筑节能,2001(1):34-35
    [15]王立久,中国新型墙体材料发展趋势[J],国外建材科技,2003(2):45-46
    [16]张泽平,王亚杰,李珠等,玻化微珠保温砂浆系统技术经济分析[J],建筑经济(专刊),2007(7):57-60
    [17]张泽平,董彦莉,李珠,玻化微珠保温混凝土正交试验研究[J],混凝土,2007(12):42-44
    [18]张泽平,李珠,董彦莉,建筑工程保温节能墙体的发展现状与展望[J],工程力学,2007(增刊Ⅱ):121-128
    [19]蔡正泳,王足献,正交设计在混凝土中的应用[J],北京,中国建筑工业出版社,1985(1):1-144
    [20]张学学,李桂馥,热工基础,北京,高等教育出版社,2000(9),169-211
    [21]郑祥华,张亚静,王瑞春,绝热板导热系数测定方法的改进[J],耐火材料,1996,30(5):287-290
    [22]张燎原,建筑物外墙热湿传递过程的数值模拟,[硕士学位论文],北京,北京交通大学,2006.12
    [23]崔勇,提高有机相变贮能材料导热系数的应用研究,[硕士学位论文],天津,河北工业大学,2004.3
    [24]金孝杰,张丽敏,加气砼导热系数测试方法的讨论[J],住宅科技,1996(10):31-32
    [25]郝丽宏,双平板式导热系数测定仪的研制,[硕士学位论文],天津,天津大学,2004.1
    [26]丁威,龚洛书,周运灿,JGJ-2002,J215-2002,轻骨料混凝土技术规程[S],北京,中国建筑工业出版社,2002.9
    [27]李珠,张泽平,刘元珍等,DBJ04-250-2007,晋建标字106-2007,玻化微珠保温砂浆应用技术规程[S],太原,山西科技出版社,2007
    [28]李珠,张泽平,刘元珍等,建筑节能的重要性及一项新技术[J],工程力学,2006,23(增刊Ⅱ):167-184
    [29]裴成霞,轻骨料混凝土免拆保温墙模复合剪力墙体系的设计、试验和结构抗震动力分析,[学位论文],太原,太原理工大学,2006
    [30]GB 50176-93,民用建筑热工设计规范[S],北京,1993.10
    [31]PB.Shing J.LNoland and E.Klamerus,Inelastic Behavour of ConcreteMasonry Shear walls,ASCE,1989.6
    [32]ANSYS.INC.Element Reference,1998
    [33]郭华,高层建筑结构有限元分析,[学位论文],太原理工大学,2001
    [34]郭秀华,中国国家大剧院结构抗震动力分析,[学位论文],太原理工大学,2001
    [35]Cliick J.,Elasto-plastic Analysis of Coupled Shear Walls,Journal of the Structural Division,1973
    [36]Pekau C.A.,Elasto-plasticAnalysis of Shear Walls.Engineering Structure,1981,V(3)
    [37]G Ayala,叶献国,Analytjcal Evaluation of the Structural Seismic Damage of Reinforced Concrete Frames,第7届加拿大地震工程大会论文集,加拿大,1995,389-396
    [38]William Weaver,Jr.Paul R.Johnston,Structural Dynamics by Finite Elements,Prentice-Hall,Englewood Cliffs,New Jersey,1987,144-154
    [39]郭继武编,建筑抗震设计,高等教育出版社,1999,44-48
    [40]张明,九华山回香阁万佛塔结构动力分析,[学位论文],太原理工大学,2005
    [41]江亿,建筑环境系统模拟分析方法—DeST[M],北京,中国建筑工业出版社,2006.1,4-54
    [42]Jiang Yi,State space method for analysis of the thermal behavior of rooms and calculation of air conditioning load,ASHRAE transactions,1981,Vol.88,122-132
    [43]Yah Da,Yingxin Zhu.Case Study:YBS Building Simulation Using DeST.IEAANEX 40 Workshop in Kyoto Japan,April,2003.
    [44]Jiang Y.State-Space method for analysis of the thermal behavior of room and calculation of air conditioning load.ASHRAE Trans,1982,88(2):122-132
    [45]徐正忠,王亚勇,王迪民等,GB 50011-2001,建筑抗震设计规范[S],北京,中国建筑工业出版社,2001.7
    [46]李明顺,徐有邻,白生翔等,GB 50010-2002,混凝土结构设计规范[S],北京,中国建筑工业出版社,2002.2
    [47]王立雄,建筑节能[M],北京,中国建筑工业出版社,2004.5,24-27
    [48]张泽平,樊丽军,李珠,玻化微珠保温混凝土初探[J],混凝土,2007(11),
    [49]吴彻平,居住建筑围护结构节能分析与工程实践,[硕士学位论文],重庆,重庆大学,2005.5
    [50]Solar Energy Laboratory,University of Wisconsin-Madison.TRNSYS Reference Manual,2000
    [51]Song Pan,Da Yan,Yingxin Zhu,Yi Jiang,Nobuo Nakahara.Comparison of Various Simulation Programs as the Commissioning Tool:Part-5 VAV System Simulation using DeST.日本空卫学会年会,2003.9
    [42]孙萍,节能住宅建筑能耗模拟研究,[硕士学位论文],北京,北京工业大学,2005.546-48
    [52]JGJ26-95,民用建筑节能设计标准[S],北京,1995.7