Kit信号通路调控新生小鼠结肠Cajal间质细胞发育和增殖的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cajal细胞(Interstitial cells of Cajal, ICCs)是一种特殊的间质细胞,以细胞网络的形式分布于整个胃肠道。它能自发性产生电慢波、整合并放大胆碱能和硝基能神经递质的传递,同时也是胃肠道张力感受器,在调节胃肠道平滑肌运动中具有重要作用。近年临床研究发现ICCs与一些新生儿胃肠运动功能障碍性疾病:如婴儿肥厚性幽门狭窄(Infantile hypert- rophic pyloric stenosis, IHPS)、先天性巨结肠(Hirschsprung’s disease, HD)、新生儿假性肠梗阻(neonatal pseudo-obstruction)及胃肠术后一过性肠麻痹等密切相关。尽管上述疾病的发病机制目前仍不十分清楚,但是均有相似的病理改变,即消化管壁内ICCs不同程度的减少,甚至缺如,同时ICCs彼此间及其与平滑肌细胞间不能形成完整的细胞网络,说明ICCs发育过程的延迟或异常可能是胃肠运动障碍性疾病的重要原因。因此,探讨新生小鼠消化管壁内ICCs的发育规律,将对阐明胃肠运动功能障碍性疾病的发病机制提供实验基础,并为治疗提供一定的指导作用。
     结肠壁内的ICCs根据分布的位置而分为四个不同的亚群:1)分布在肌间神经丛周围的ICCs(ICC-MY);2)环形平滑肌和纵形平滑肌内的ICCs(ICC-IM);3)浆膜下ICCs(ICC-SS)和4)粘膜下层靠近环肌面的ICCs(ICC-SM)。不同亚群的ICCs的功能存在差别,如ICC-SM是结肠的起搏细胞,ICC-IM介导兴奋性和抑制性神经递质的传递,而ICC-SS可能具有感受张力变化的作用。而且不同亚群的ICCs的发育过程也存在较大差异。因此,首先了解新生小鼠结肠不同亚群ICCs的发育过程是十分必要的。此外,在我们前期的实验结果显示,小鼠小肠ICCs从出生到成年细胞数量增加了近30倍,而且增加的细胞可能是由胰岛素样生长因子受体1(insulin-like growth factor 1 receptor, IGF-1R)阳性的ICCs前体细胞的增殖而来。那么结肠内的ICCs是否有增殖?是否也存在前体细胞?也是我们关注的问题。
     ICCs持续表达由原癌基因c-kit编码的III型受体酪氨酸激酶受体Kit蛋白,它能够与平滑肌细胞Sl基因编码的干细胞因子(stem cell factor,SCF)结合,对ICCs的发育、存活、增殖和表型维持有重要的调控作用。在c-Kit突变的W/W~V小鼠、W/W~ S大鼠,或者Sl基因突变的Sl/Sl~d小鼠动物模型中;或者在胚胎晚期或生后早期,用Kit中和性抗体或Kit受体阻断剂阻断Kit受体功能;以及在体外培养体系中加入Kit中和性抗体或去除外源性SCF,都将导致胃肠壁内ICCs发育受阻,其数量明显减少,细胞网络被破坏,并伴有胃潴留、反流性食道炎、十二指肠内容物逆流等胃肠功能障碍的症状。我们前期对成年小鼠和豚鼠研究表明: Kit信号通路对小肠壁内ICCs的存活和自主节律性运动都具有重要作用。近年来的研究认为,出生后小鼠胃肠壁内同样存在ICCs前体细胞,但是不具有产生慢波的能力。在病理因素导致ICCs数量减少时,这些前体细胞在胰岛素(insulin)/胰岛素生长因子-I(insulin growth factor,IGF-I)信号和Kit/SCF信号的共同作用下,大量增殖再分化为成熟的,能产生自发性电活动的ICCs。那么Kit信号是否对结肠各亚型ICCs的发育和存活是否具有调控作用?各亚型ICCs的反应是否相同?Kit信号通路和IGF-1R信号通路对ICCs的增殖有何调控作用?这些问题也是我们关注的问题。
     本实验分为以下三个部分:
     第一部分:新生小鼠结肠ICCs的发育
     通过Kit蛋白免疫荧光染色特异性标记结肠ICCs,阐明不同部位不同亚型的结肠ICCs在生后(P0)到成年(P56)的过程中,细胞位置、形态、密度和总数的变化。主要结果如下:
     1. ICC-MY,ICC-IM,ICC-SS是出生0天即形成,ICC-SM是生后6天才出现于近端结肠,提示不同亚型的ICCs的发育过程有一定的时间差异。
     2. ICC-SM在P6出现于近端结肠,P8才见于远端结肠,提示同一亚型的ICCs在结肠不同部位的发育,存在时间顺序性。且ICC-MY在近端结肠的发育早于中间段,远端结肠的发育最晚。提示结肠ICCs是从头端向尾端的方向发育成熟的。
     3.出生后,随着结肠的长度、直径及表面积不断增加,各亚型ICCs的总数均不断增加。
     上述结果表明新生小鼠结肠ICCs逐渐发育成熟且数量不断增加,各亚型ICCs的发育存在一定的时间和空间顺序性,表现为结肠靠近头端的ICCs先发育,而各亚群中ICC-SM发育最迟。
     第二部分:新生小鼠结肠ICCs的增殖特点
     本研究通过BrdU标记和追踪增殖细胞,并结合抗核增殖抗原Ki67标记以及多重免疫荧光染色的实验方法,探讨出生后结肠ICCs的增殖潜能和规律。主要结果如下:
     1. ICC-MY,ICC-IM和ICC-SS具有增殖能力,在新生早期最旺盛,但随年龄的增长,增殖能力逐渐降低。
     2.新生小鼠结肠中存在Kit~+/IGF-IR~+/Ki67~+细胞,这些ICCs前体细胞,可能是增殖ICCs的主要来源。
     3. ICC-SM具有与其他亚群ICCs不同的增殖模式,其数目的增加可能是由Kit~-的前体细胞增殖随后开始表达Kit蛋白并分化为成熟的ICCs。
     上述结果表明结肠成体ICC-IM,ICC-MY,ICC-SS均具有增殖的潜能,在结肠生后发育过程中大量增加的细胞,可能是来源于Kit~+/IGF-IR~+前体细胞。Kit阳性的ICC-SM不具有增殖能力,其数量的增加的过程可能是Kit~-的前体细胞增殖后再分化为Kit~+的ICC。
     第三部分:Kit信号通路对新生小鼠结肠ICCs发育和增殖的调控
     利用Imatinib灌胃构建Kit信号通路被抑制的动物模型,BrdU腹腔注射,结合多重免疫荧光组织化学,激光共聚焦显微镜,western印迹的研究方法,探讨Kit信号通路和IGF-IR信号通路对小肠和结肠ICCs存活和增殖的调控机制,以及ICCs增殖的模式。主要结果如下:
     1. Imatinib能够有效在体抑制Kit信号通路的激活。
     2. Kit信号通路抑制后,除ICC-SM外的各亚群ICCs细胞数量明显减少,细胞网络不完整,说明Kit信号通路参与调节新生期小鼠肠道ICCs的存活,但是ICC-SM对该信号不敏感。
     3.阻断Kit信号通路,Kit~+ICCs和/或前体细胞的增殖完全停止,而抑制IGF-IR信号通路,增殖ICCs的细胞数量减少,证明ICCs的增殖依赖于Kit信号通路,而IGF-1R对ICCs增殖也具有一定的调控作用。
     4.停止Imatinib处理后,ICCs细胞数量迅速恢复正常,而增殖的Kit~+ICCs的数量较少且出现较晚。提示Kit阴性的ICCs前体细胞的增殖可能是大量增加的ICCs来源之一。
     上述结果表明新生期小鼠结肠的存活、增殖都依赖于Kit信号通路。当某些病理因素导致ICCs丢失时,Kit阴性的ICCs前体细胞可大量增殖分化为成熟的ICCs,维持肠道正常的生理功能。IGF-IR信号通路参与调节ICCs的增殖。
     综上所述,本研究初步证明出生后随结肠结构的不断完善ICCs亦可进一步发育。新生小鼠结肠ICCs具有增殖能力,且随年龄的增长逐渐降低消失。而增殖ICCs的主要来源可能是Kit~+/CD44~+/CD34~+/IGF-IR~+的ICCs前体细胞。Kit信号通路对ICCs的存活和增殖具有重要的调控作用,但是ICC-SM对Kit信号通路不敏感。
Interstitial cells of Cajal (ICCs) are a kind of speical interstial cells, and distribute throughout the entire gastrointestinal tract. They play a very important role in the regulation of gastrointestinal(GI) motility by generating and propagating spontaneous electric slow-wave activity and mediating nitrergic and cholinergic neurotransmission. ICCs can also mediate responses to stretch and serve as mechanosensors. Recent clinical studies have indicated that ICCs are associated with many GI motility disorders such as Infantile hypert- rophic pyloric stenosis(IHPS), Hirschsprung’s disease(HD), neonatal pseudo-obstruction and temporary post-operational entero-paralysis. Although the etiological factor and pathogenesis of these diseases have not been kown, they all showed up reduction of ICCs in numbers and impaired of the cell network, which indicated that the prolonged or abnormal of development of ICCs must be one of the reasons for GI motility dysfunctions. Clarification of the development of ICCs will help us to understand the etiology and pathophysiology of disorders characterized by a deficiency of ICCs, and provides us with new insight into the treatment of relevant disease.
     ICC in the colon of adult animals are divided into four subtypes according to their distinct locations and morphologic features: 1) At the level of Auerbach’s plexus (ICC-MY) ; 2) At the border between circular muscle layer and submucosa (ICC-SM); 3) Within the longitudinal and circular smooth muscle layers (ICC-IM) and 4) In the connective tissue beneath serosa (ICC-SS). Different subtype of ICCs has different function and developmental process, for instance ICC-SM are pacemaker cells but ICC-SS act as mechanosensors of the colon, so it is necessary to understand the developmental process of all subtypes of ICCs. Moreover, our previous study has indicated that the number of ICCs in mouse small intestine increased 30 folds from newborns to adults, and these increased cells might derived from proliferation of insulin-like growth factor 1 receptor(IGF-1R)positive ICCs. Whether proliferation is also involved in the colon? Are there being local progenitors? Both are our concerned questions.
     ICCs express typeⅢtyrosine kinase receptor Kit protein, the gene product of c-kit proto-oncogene. Stem cell factor(SCF)is the natural ligand for Kit protein, which can activate the receptor and then regulates the development, survival, proliferation and phenotypic maintained of ICCs. Development of ICCs will be affected under conditions of c-kit mutation in the W/W~V mice and W/W~ S rats models and Sl/Sl~d mice models harbored Sl mutant; or neutralization antibody ACK2 and inhibitor of Kit receptor block Kit signaling in late embryo stage and early neonatal stage; or add neutralization antibody ACK2 and remove exogenous SCF from the cultural system. The number of ICCs decrease sharply and accompany with a set of symptoms of GI motility dysfunction such as gastric retention, reflux esophagitis, regurgitation of duodemun content. Our recent studies on mice and Guinea-pigs have also indicated that Kit signaling palyed an important role in survival and motor function maintained of mature ICCs. Recently, researchers have found that there are ICCs progenitors without ability of generating spontaneous electric slow-wave in postnatal mouse GI. When the number of ICCs decreased under some pathological factors, insulin/IGF-IR signaling and Kit/SCF signaling would stimulate proliferate of these progenitors and differentiate into mature ICCs. Whether Kit signaling can regulate the development and survival of different subtype of colonic ICCs? Response of these ICCs? How to regulate the proliferation of ICCs by Kit /SCF signaling and insulin/IGF-IR signaling? It is eager to elucidate these questions.
     This investigation is divided into three parts:
     Part 1: Development of neonatal mouse colon.
     In order to investigate the alterations of distribution, morphology and cell numbers of ICC in each segment of mouse colon over the period extending from neonatal (P0) to adult life (P56), immunofluorescent staining of Kit protein was utilized. The results are as followings:
     1. ICC-MY were prominent at birth while ICC-IM and ICC-SS began to appear, and ICC-SM emerged at P6, indicated that time difference was existed between ICCs subtypes during the developmental process.
     2. ICC-SM emerged at P6 in the proximal colon and subsequently in the distal colon at P8, and ICC in the oral end of colon revealed a better development in morphology and a higher density than that in the anal side. Which indicated that a proximal to distal and transural gradient of ICC distribution in the postnatal development of colon.
     3. The estimated total cell numbers of ICCs increased from birth to adulthood along with the lengthening and extending of mouse colon.
     Part 2: The proliferation of ICCs in neonatal mouse colon.
     BrdU incorporation and anti-Ki67 multi-immunofluorescent staining were utilized to investigate the proliferative potential and characteristics of ICCs in postnatal mouse colon. The results are as followings:
     1. ICC-MY, ICC-IM and ICC-SS had proliferative potential, and presented an age-dependent characteristics.
     2. There were some Kit/IGF-IR/Ki67 multi-labeled ICCs progenitors in neonatal mouse colon, which might be the source of increased ICCs.
     3. The proliferative characteristics of ICC-SM is different from other subtypes, the increased of estimated total cell numbers might rely on proliferation of Kit negative progenitors and subsequently differentiate into mature ICCs.
     Part 3: Kit signaling regulates the development and proliferation of ICCs in neonatal mouse colon.
     Mice with Imatinib administration or PPP intraperitoneal injection were used as animal models, immunofluorescent staining and Western blot methods were utilized to investigate the alteration of survival and proliferation of colonic ICCs at neonatal stage after blockade of Kit signaling and IGF-I signaling. Further realized the proliferative mode of postnatal mouse colon. The results are as followings:
     1. Imatinib was a potent inhibitor of Kit signaling in vivo.
     2. Each subtype of ICCs except ICC-SM reduced in numbers and incompleted of cell network after blockade of Kit signaling, indicated that Kit signaling was essential for survival of neonatal ICCs except ICC-SM.
     3. The proliferation of Kit positive ICCs or/and progenitors was inhibited completely by blocking Kit signaling. However, only a half of proliferative ICCs were disappeared after blockade of IGF-IR signaling. Which demonstrated that proliferation of ICCs depent on Kit signaling but was regulated by IGF-IR signaling in part.
     4. Number of ICCs could recover up to normal rapidly but few of proliferative Kit positive ICCs emerged at later stage followed the withdrawal of Imatinib. So we presumed that Kit negative progenitors might be one of the sources of increased ICCs.
     The third part revealed that Kit signaling played a key role in survival and proliferation of ICCs in neonatal mouse colon. Kit negative progenitors could be expanded substantially when reduction of Kit positive ICCs under some pathology factors in order to maintain the normal physiology function of GI. IGF-IR signaling participated in regulating proliferation of ICCs.
     To sum up, this study demonstrated that the further development of ICCs along with the constant improvement of colonic structure from newborn to adult. Proliferative potential of ICC-MY, ICC-IM and ICC-SS characterized by age-dependence. Primary source of proliferative ICCs might be Kit~+/CD44~+/CD34~+/IGF-IR~+ multi-positive progenitors. Kit singnaling regulated survival and proliferation of ICCs except for ICC-SM.
引文
1. Chang, I. Y., Glasgow, N. J., Takayama, I., Horiguchi, K., Sanders, K. M., and Ward, S. M., Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction, J.Physiol 536 (2001) 555-568.
    2. He, C. L., Soffer, E. E., Ferris, C. D., Walsh, R. M., Szurszewski, J. H., and Farrugia, G., Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes, Gastroenterology 121 (2001) 427-434.
    3. He, C. L., Burgart, L., Wang, L., Pemberton, J., Young-Fadok, T., Szurszewski, J., and Farrugia, G., Decreased interstitial cell of cajal volume in patients with slow-transit constipation, Gastroenterology 118 (2000) 14-21.
    4. Young, H. M., Ciampoli, D., Southwell, B. R., and Newgreen, D. F., Origin of interstitial cells of Cajal in the mouse intestine, Dev.Biol. 180 (1996) 97-107.
    5. Young, H. M., Embryological origin of interstitial cells of Cajal, Microsc.Res.Tech. 47 (1999) 303-308.
    6. Wu, J. J., Rothman, T. P., and Gershon, M. D., Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand, J.Neurosci.Res. 59 (2000) 384-401.
    7. Kunisada, T., Yoshida, H., Yamazaki, H., Miyamoto, A., Hemmi, H., Nishimura, E., Shultz, L. D., Nishikawa, S., and Hayashi, S., Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors, Development 125 (1998) 2915-2923.
    8. Liu, L. W., Thuneberg, L., and Huizinga, J. D., Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine, Dev.Dyn. 213 (1998) 271-282.
    9. Faussone-Pellegrini, M. S., Cytodifferentiation of the interstitial cells of Cajal of mouse colonic circular muscle layer. An EM study from fetal to adult life, Acta Anat.(Basel) 128 (1987) 98-109.
    10. Vanderwinden, J. M., Rumessen, J. J., Bernex, F., Schiffmann, S. N., and Panthier, J. J.,Distribution and ultrastructure of interstitial cells of Cajal in the mouse colon, using antibodies to Kit and Kit(W-lacZ) mice, Cell Tissue Res. 302 (2000) 155-170.
    11. Alberti, E., Mikkelsen, H. B., Larsen, J. O., and Jimenez, M., Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat, Neurogastroenterol.Motil. 17 (2005) 133-147.
    12. Christensen, J., Rick, G. A., and Lowe, L. S., Distributions of interstitial cells of Cajal in stomach and colon of cat, dog, ferret, opossum, rat, guinea pig and rabbit, J.Auton.Nerv.Syst. 37 (1992) 47-56.
    13. Han, J., Shen, W. H., Jiang, Y. Z., Yu, B., He, Y. T., Li, N., and Mei, F., Distribution, development and proliferation of interstitial cells of Cajal in murine colon: an immunohistochemical study from neonatal to adult life, Histochem.Cell Biol. 133 (2010) 163-175.
    14. Ward, S. M. and Sanders, K. M., Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks, Am.J.Physiol Gastrointest.Liver Physiol 281 (2001) G602-G611.
    15. Berezin, I., Huizinga, J. D., and Daniel, E. E., Interstitial cells of Cajal in the canine colon: a special communication network at the inner border of the circular muscle, J.Comp Neurol. 273 (1988) 42-51.
    16. Okishio, Y., Takeuchi, T., Fujita, A., Suenaga, K., Fujinami, K., Munakata, S., Takewaki, T., and Hata, F., Ascending contraction and descending relaxation in the distal colon of mice lacking interstitial cells of Cajal, J.Smooth Muscle Res. 41 (2005) 163-174.
    17. Serio, R., Barajas-Lopez, C., Daniel, E. E., Berezin, I., and Huizinga, J. D., Slow-wave activity in colon: role of network of submucosal interstitial cells of Cajal, Am.J.Physiol 260 (1991) G636-G645.
    18. Burns, A. J., Lomax, A. E., Torihashi, S., Sanders, K. M., and Ward, S. M., Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach, Proc.Natl.Acad.Sci.U.S.A 93 (1996) 12008-12013.
    19. Sanders, K. M., A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract, Gastroenterology 111 (1996) 492-515.
    20. Ward, S. M., Interstitial cells of Cajal in enteric neurotransmission, Gut 47 Suppl 4 (2000) iv40-iv43.
    21. Aranishi, H., Kunisawa, Y., and Komuro, T., Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon, Cell Tissue Res. 335 (2009) 323-329.
    22. Berezin, I., Huizinga, J. D., and Daniel, E. E., Structural characterization of interstitial cells of Cajal in myenteric plexus and muscle layers of canine colon, Can.J.Physiol Pharmacol. 68 (1990) 1419-1431.
    23. Yoneda, S., Fukui, H., and Takaki, M., Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon, Neurogastroenterol.Motil. 16 (2004) 621-627.
    24. Ando, A., Martin, T. R., and Galli, S. J., Effects of chronic treatment with the c-kit ligand, stem cell factor, on immunoglobulin E-dependent anaphylaxis in mice. Genetically mast cell-deficient Sl/Sld mice acquire anaphylactic responsiveness, but the congenic normal mice do not exhibit augmented responses, J.Clin.Invest 92 (1993) 1639-1649.
    25. Mikkelsen, H. B., Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions, J.Cell Mol.Med.(2010) .
    26. Fu, M., Tam, P. K., Sham, M. H., and Lui, V. C., Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study, Anat.Embryol.(Berl) 208 (2004) 33-41.
    27. Matsuura, R., Kogo, H., Ogaeri, T., Miwa, T., Kuwahara, M., Kanai, Y., Nakagawa, T., Kuroiwa, A., Fujimoto, T., and Torihashi, S., Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cells, Stem Cells 24 (2006) 624-630.
    28. Ward, S. M. and Torihashi, S., Morphological changes during ontogeny of the canineproximal colon, Cell Tissue Res. 282 (1995) 93-108.
    29. Ward, S. M., Harney, S. C., Bayguinov, J. R., McLaren, G. J., and Sanders, K. M., Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis, J.Physiol 505 ( Pt 1) (1997) 241-258.
    30. Fintl, C., Pearson, G. T., Ricketts, S. W., Mayhew, I. G., and Hudson, N. P., The development and distribution of the interstitial cells of Cajal in the intestine of the equine fetus and neonate, J.Anat. 205 (2004) 35-44.
    31. Song, G., David, G., Hirst, S., Sanders, K. M., and Ward, S. M., Regional variation in ICC distribution, pacemaking activity and neural responses in the longitudinal muscle of the murine stomach, J.Physiol 564 (2005) 523-540.
    32. Langton, P., Ward, S. M., Carl, A., Norell, M. A., and Sanders, K. M., Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon, Proc.Natl.Acad.Sci.U.S.A 86 (1989) 7280-7284.
    33. Faussone-Pellegrini, M. S., Pantalone, D., and Cortesini, C., Smooth muscle cells, interstitial cells of Cajal and myenteric plexus interrelationships in the human colon, Acta Anat.(Basel) 139 (1990) 31-44.
    34. Liu, L. W., Farraway, L., Berezin, I., and Huizinga, J. D., Interstitial cells of Cajal: mediators of communication between circular and longitudinal muscle layers of canine colon, Cell Tissue Res. 294 (1998) 69-79.
    35. Liu, L. W. and Huizinga, J. D., Electrical coupling of circular muscle to longitudinal muscle and interstitial cells of Cajal in canine colon, J.Physiol 470 (1993) 445-461.
    36. Liu, L. W., Daniel, E. E., and Huizinga, J. D., Excitability of canine colon circular muscle disconnected from the network of interstitial cells of Cajal, Can.J.Physiol Pharmacol. 70 (1992) 289-295.
    37. Nakahara, M., Isozaki, K., Vanderwinden, J. M., Shinomura, Y., Kitamura, Y., Hirota, S., and Matsuzawa, Y., Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor, Life Sci. 70 (2002) 2367-2376.
    38. Maeda, H., Yamagata, A., Nishikawa, S., Yoshinaga, K., Kobayashi, S., Nishi, K., andNishikawa, S., Requirement of c-kit for development of intestinal pacemaker system, Development 116 (1992) 369-375.
    39. Torihashi, S., Ward, S. M., Nishikawa, S., Nishi, K., Kobayashi, S., and Sanders, K. M., c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract, Cell Tissue Res. 280 (1995) 97-111.
    40. Ward, S. M., Burns, A. J., Torihashi, S., Harney, S. C., and Sanders, K. M., Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants, Am.J.Physiol 269 (1995) C1577-C1585.
    41. Beckett, E. A., Ro, S., Bayguinov, Y., Sanders, K. M., and Ward, S. M., Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract, Dev.Dyn. 236 (2007) 60-72.
    1. Kito, Y., Ward, S. M., and Sanders, K. M., Pacemaker potentials generated by interstitial cells of Cajal in the murine intestine, Am.J.Physiol Cell Physiol 288 (2005) C710-C720.
    2. Liu, L. W., Thuneberg, L., and Huizinga, J. D., Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine, Dev.Dyn. 213 (1998) 271-282.
    3. Sanders, K. M., Koh, S. D., and Ward, S. M., Interstitial cells of cajal as pacemakers in the gastrointestinal tract, Annu.Rev.Physiol 68 (2006) 307-343.
    4. Beckett, E. A., Horiguchi, K., Khoyi, M., Sanders, K. M., and Ward, S. M., Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice, J.Physiol 543 (2002) 871-887.
    5. Iino, S. and Horiguchi, K., Interstitial cells of cajal are involved in neurotransmission in the gastrointestinal tract, Acta Histochem.Cytochem. 39 (2006) 145-153.
    6. Ward, S. M., Beckett, E. A., Wang, X., Baker, F., Khoyi, M., and Sanders, K. M., Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons, J.Neurosci. 20 (2000) 1393-1403.
    7. He, C. L., Soffer, E. E., Ferris, C. D., Walsh, R. M., Szurszewski, J. H., and Farrugia, G., Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes, Gastroenterology 121 (2001) 427-434.
    8. He, C. L., Burgart, L., Wang, L., Pemberton, J., Young-Fadok, T., Szurszewski, J., and Farrugia, G., Decreased interstitial cell of cajal volume in patients with slow-transit constipation, Gastroenterology 118 (2000) 14-21.
    9. Chang, I. Y., Glasgow, N. J., Takayama, I., Horiguchi, K., Sanders, K. M., and Ward, S. M., Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction, J.Physiol 536 (2001) 555-568.
    10. Fu, M., Tam, P. K., Sham, M. H., and Lui, V. C., Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study, Anat.Embryol.(Berl) 208 (2004) 33-41.
    11. Matsuura, R., Kogo, H., Ogaeri, T., Miwa, T., Kuwahara, M., Kanai, Y., Nakagawa, T.,Kuroiwa, A., Fujimoto, T., and Torihashi, S., Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cells, Stem Cells 24 (2006) 624-630.
    12. Maeda, H., Yamagata, A., Nishikawa, S., Yoshinaga, K., Kobayashi, S., Nishi, K., and Nishikawa, S., Requirement of c-kit for development of intestinal pacemaker system, Development 116 (1992) 369-375.
    13. Torihashi, S., Ward, S. M., Nishikawa, S., Nishi, K., Kobayashi, S., and Sanders, K. M., c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract, Cell Tissue Res. 280 (1995) 97-111.
    14. Ward, S. M., Burns, A. J., Torihashi, S., Harney, S. C., and Sanders, K. M., Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants, Am.J.Physiol 269 (1995) C1577-C1585.
    15. Beckett, E. A., Ro, S., Bayguinov, Y., Sanders, K. M., and Ward, S. M., Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract, Dev.Dyn. 236 (2007) 60-72.
    16. Chronic intestinal pseudo-obstruction/Neuronal dysplasia, Eur.J.Pediatr. 158 (1999) B946-B947.
    17. Der, T., Bercik, P., Donnelly, G., Jackson, T., Berezin, I., Collins, S. M., and Huizinga, J. D., Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine, Gastroenterology 119 (2000) 1590-1599.
    18. Lorincz, A., Redelman, D., Horvath, V. J., Bardsley, M. R., Chen, H., and Ordog, T., Progenitors of interstitial cells of cajal in the postnatal murine stomach, Gastroenterology 134 (2008) 1083-1093.
    19. Mei, F., Zhu, J., Guo, S., Zhou, D. S., Han, J., Yu, B., Li, S. F., Jiang, Z. Y., and Xiong, C. J., An age-dependent proliferation is involved in the postnatal development of interstitial cells of Cajal in the small intestine of mice, Histochem.Cell Biol. 131 (2009) 43-53.
    20. Ohta, Y. and Ichimura, K., Proliferation markers, proliferating cell nuclear antigen, Ki67, 5-bromo-2'-deoxyuridine, and cyclin D1 in mouse olfactory epithelium, Ann.Otol.Rhinol.Laryngol. 109 (2000) 1046-1048.
    21. Nakahara, M., Isozaki, K., Vanderwinden, J. M., Shinomura, Y., Kitamura, Y., Hirota,S., and Matsuzawa, Y., Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor, Life Sci. 70 (2002) 2367-2376.
    22. Wouters, M. M., Gibbons, S. J., Roeder, J. L., Distad, M., Ou, Y., Strege, P. R., Szurszewski, J. H., and Farrugia, G., Exogenous Serotonin Regulates Proliferation of Interstitial Cells of Cajal in Mouse Jejunum Through 5-HT(2B) Receptors, Gastroenterology 133 (2007) 897-906.
    23. Amthor, H., Christ, B., and Patel, K., A molecular mechanism enabling continuous embryonic muscle growth - a balance between proliferation and differentiation, Development 126 (1999) 1041-1053.
    24. Mei, F., Yu, B., Ma, H., Zhang, H. J., and Zhou, D. S., Interstitial cells of Cajal could regenerate and restore their normal distribution after disrupted by intestinal transection and anastomosis in the adult guinea pigs, Virchows Arch. 449 (2006) 348-357.
    25. Mei, F., Han, J., Huang, Y., Jiang, Z. Y., Xiong, C. J., and Zhou, D. S., Plasticity of interstitial cells of cajal: a study in the small intestine of adult Guinea pigs, Anat.Rec.(Hoboken.) 292 (2009) 985-993.
    26. Kluppel, M., Huizinga, J. D., Malysz, J., and Bernstein, A., Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine, Dev.Dyn. 211 (1998) 60-71.
    27. Lecoin, L., Gabella, G., and Le Douarin, N., Origin of the c-kit-positive interstitial cells in the avian bowel, Development 122 (1996) 725-733.
    28. Young, H. M., Embryological origin of interstitial cells of Cajal, Microsc.Res.Tech. 47 (1999) 303-308.
    29. Young, H. M., Ciampoli, D., Southwell, B. R., and Newgreen, D. F., Origin of interstitial cells of Cajal in the mouse intestine, Dev.Biol. 180 (1996) 97-107.
    30. Song, G., David, G., Hirst, S., Sanders, K. M., and Ward, S. M., Regional variation in ICC distribution, pacemaking activity and neural responses in the longitudinal muscle of the murine stomach, J.Physiol 564 (2005) 523-540.
    31. Rumessen, J. J., Peters, S., and Thuneberg, L., Light- and electron microscopical studies of interstitial cells of Cajal and muscle cells at the submucosal border of human colon, Lab Invest 68 (1993) 481-495.
    32. Nahar, N. S., Torihashi, S., Iino, S., Senda, T., Chowdhury, J. U., and Kobayashi, S., Special smooth muscle cells along the submucosal surface of the guinea pig colon with reference to its spontaneous contractions, Cell Tissue Res. 293 (1998) 143-154.
    33. Yoneda, S., Fukui, H., and Takaki, M., Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon, Neurogastroenterol.Motil. 16 (2004) 621-627.
    34. Faussone-Pellegrini, M. S., Cytodifferentiation of the interstitial cells of Cajal of mouse colonic circular muscle layer. An EM study from fetal to adult life, Acta Anat.(Basel) 128 (1987) 98-109.
    35. Torihashi, S., Nishi, K., Tokutomi, Y., Nishi, T., Ward, S., and Sanders, K. M., Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype, Gastroenterology 117 (1999) 140-148.
    1. Kito, Y., Ward, S. M., and Sanders, K. M., Pacemaker potentials generated by interstitial cells of Cajal in the murine intestine, Am.J.Physiol Cell Physiol 288 (2005) C710-C720.
    2. Rumessen, J. J. and Thuneberg, L., Pacemaker cells in the gastrointestinal tract: interstitial cells of Cajal, Scand.J.Gastroenterol.Suppl 216 (1996) 82-94.
    3. Sanders, K. M., Koh, S. D., and Ward, S. M., Interstitial cells of cajal as pacemakers in the gastrointestinal tract, Annu.Rev.Physiol 68 (2006) 307-343.
    4. Thomsen, L., Robinson, T. L., Lee, J. C., Farraway, L. A., Hughes, M. J., Andrews, D. W., and Huizinga, J. D., Interstitial cells of Cajal generate a rhythmic pacemaker current, Nat.Med. 4 (1998) 848-851.
    5. Burns, A. J., Lomax, A. E., Torihashi, S., Sanders, K. M., and Ward, S. M., Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach, Proc.Natl. Acad.Sci.U.S.A 93 (1996) 12008-12013.
    6. Iino, S. and Horiguchi, K., Interstitial cells of cajal are involved in neurotransmission in the gastrointestinal tract, Acta Histochem.Cytochem. 39 (2006) 145-153.
    7. Ward, S. M., Beckett, E. A., Wang, X., Baker, F., Khoyi, M., and Sanders, K. M., Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons, J.Neurosci. 20 (2000) 1393-1403.
    8. Ward, S. M., Interstitial cells of Cajal in enteric neurotransmission, Gut 47 Suppl 4 (2000) iv40-iv43.
    9. He, C. L., Soffer, E. E., Ferris, C. D., Walsh, R. M., Szurszewski, J. H., and Farrugia, G., Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes, Gastroenterology 121 (2001) 427-434.
    10. Horvath, V. J., Vittal, H., and Ordog, T., Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach, Diabetes 54 (2005) 1528-1533.
    11. Chang, I. Y., Glasgow, N. J., Takayama, I., Horiguchi, K., Sanders, K. M., and Ward, S. M., Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction, J.Physiol 536 (2001) 555-568.
    12. Di, N. G., Stanghellini, V., Cucchiara, S., Barbara, G., Pasquinelli, G., Santini, D., Felicani, C., Grazi, G., Pinna, A. D., Cogliandro, R., Cremon, C., Gori, A., Corinaldesi, R., Sanders, K. M., and De, G. R., Enteric neuropathology of congenital intestinal obstruction: A case report, World J.Gastroenterol. 12 (2006) 5229-5233.
    13. Mei, F., Yu, B., Ma, H., Zhang, H. J., and Zhou, D. S., Interstitial cells of Cajal could regenerate and restore their normal distribution after disrupted by intestinal transection and anastomosis in the adult guinea pigs, Virchows Arch. 449 (2006) 348-357.
    14. Mei, F., Guo, S., He, Y. T., Zhu, J., Zhou, D. S., Niu, J. Q., Wang, H. Z., and Tian, Y. P., Apoptosis of interstitial cells of Cajal, smooth muscle cells, and enteric neurons induced by intestinal ischemia and reperfusion injury in adult guinea pigs, Virchows Arch. 454 (2009) 401-409.
    15. Ashman, L. K., The biology of stem cell factor and its receptor C-kit, Int.J.Biochem.Cell Biol. 31 (1999) 1037-1051.
    16. Blechman, J. M., Lev, S., Brizzi, M. F., Leitner, O., Pegoraro, L., Givol, D., and Yarden, Y., Soluble c-kit proteins and antireceptor monoclonal antibodies confine the binding site of the stem cell factor, J.Biol.Chem. 268 (1993) 4399-4406.
    17. Burns, A. J., Herbert, T. M., Ward, S. M., and Sanders, K. M., Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry, Cell Tissue Res. 290 (1997) 11-20.
    18. Beckett, E. A., Ro, S., Bayguinov, Y., Sanders, K. M., and Ward, S. M., Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract, Dev.Dyn. 236 (2007) 60-72.
    19. Alberti, E., Mikkelsen, H. B., Larsen, J. O., and Jimenez, M., Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat, Neurogastroenterol.Motil. 17 (2005) 133-147.
    20. Beckett, E. A., Horiguchi, K., Khoyi, M., Sanders, K. M., and Ward, S. M., Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice, J.Physiol 543 (2002) 871-887.
    21. Bennett, D. C., Trayner, I. D., Piao, X., Easty, D. J., Kluppel, M., Alexander, W. S., Wagner, E. F., and Bernstein, A., recessive spotting: a linked locus that interacts with W/Kit but is not allelic, Genes Cells 3 (1998) 235-244.
    22. Bernex, F., De Sepulveda, P., Kress, C., Elbaz, C., Delouis, C., and Panthier, J. J., Spatial and temporal patterns of c-kit-expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos, Development 122 (1996) 3023-3033.
    23. Daigo, Y., Takayama, I., Ward, S. M., Sanders, K. M., and Fujino, M. A., Isolation of novel mouse genes that were differentially expressed in W/W(V) mouse fundus, J.Gastroenterol. 39 (2004) 238-241.
    24. Daigo, Y., Takayama, I., Ward, S. M., Sanders, K. M., and Fujino, M. A., Novel human and mouse genes encoding a shank-interacting protein and its upregulation in gastric fundus of W/WV mouse, J.Gastroenterol.Hepatol. 18 (2003) 712-718.
    25. McCloskey, K. D., Anderson, U. A., Davidson, R. A., Bayguinov, Y. R., Sanders, K. M., and Ward, S. M., Comparison of mechanical and electrical activity and interstitial cells of Cajal in urinary bladders from wild-type and W/Wv mice, Br.J.Pharmacol. 156 (2009) 273-283.
    26. Nakama, A., Hirota, S., Okazaki, T., Nagano, K., Kawano, S., Hori, M., and Kitamura, Y., Disturbed pyloric motility in Ws/Ws mutant rats due to deficiency of c-kit-expressing interstitial cells of Cajal, Pathol.Int. 48 (1998) 843-849.
    27. Ordog, T., Baldo, M., Danko, R., and Sanders, K. M., Plasticity of electrical pacemaking by interstitial cells of Cajal and gastric dysrhythmias in W/W mutant mice, Gastroenterology 123 (2002) 2028-2040.
    28. Shimojima, N., Nakaki, T., Morikawa, Y., Hoshino, K., and Kitajima, M., Imatinib blocks spontaneous mechanical activities in the adult mouse small intestine: possible inhibition of c-Kit signaling, Pharmacology 74 (2005) 95-99.
    29. Nakahara, M., Isozaki, K., Vanderwinden, J. M., Shinomura, Y., Kitamura, Y., Hirota, S., and Matsuzawa, Y., Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor, Life Sci. 70 (2002) 2367-2376.
    30. Manley, P. W., Cowan-Jacob, S. W., Buchdunger, E., Fabbro, D., Fendrich, G., Furet, P., Meyer, T., and Zimmermann, J., Imatinib: a selective tyrosine kinase inhibitor, Eur.J.Cancer 38 Suppl 5 (2002) S19-S27.
    31. Popescu, L. M., Vidulescu, C., Curici, A., Caravia, L., Simionescu, A. A., Ciontea, S. M., and Simion, S., Imatinib inhibits spontaneous rhythmic contractions of humanuterus and intestine, Eur.J.Pharmacol. 546 (2006) 177-181.
    32. Mei, F., Han, J., Huang, Y., Jiang, Z. Y., Xiong, C. J., and Zhou, D. S., Plasticity of interstitial cells of cajal: a study in the small intestine of adult Guinea pigs, Anat.Rec.(Hoboken.) 292 (2009) 985-993.
    33. Liu, L. W. and Huizinga, J. D., Canine colonic circular muscle generates action potentials without the pacemaker component, Can.J.Physiol Pharmacol. 72 (1994) 70-81.
    34. Sanders, K. M., Publicover, N. G., and Ward, S. M., Involvement of interstitial cells of Cajal in pacemaker activity of canine colon, J.Smooth Muscle Res. 27 (1991) 1-11.
    35. Yoneda, S., Fukui, H., and Takaki, M., Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon, Neurogastroenterol.Motil. 16 (2004) 621-627.
    36. Liu, L. W., Thuneberg, L., and Huizinga, J. D., Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine, Dev.Dyn. 213 (1998) 271-282.
    37. Aranishi, H., Kunisawa, Y., and Komuro, T., Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon, Cell Tissue Res. 335 (2009)
    323-329.
    38. Rumessen, J. J., Peters, S., and Thuneberg, L., Light- and electron microscopical studies of interstitial cells of Cajal and muscle cells at the submucosal border of human colon, Lab Invest 68 (1993) 481-495.
    39. Berezin, I., Huizinga, J. D., and Daniel, E. E., Interstitial cells of Cajal in the canine colon: a special communication network at the inner border of the circular muscle, J.Comp Neurol. 273 (1988) 42-51.
    40. Vanderwinden, J. M., Rumessen, J. J., Bernex, F., Schiffmann, S. N., and Panthier, J. J., Distribution and ultrastructure of interstitial cells of Cajal in the mouse colon, using antibodies to Kit and Kit(W-lacZ) mice, Cell Tissue Res. 302 (2000) 155-170.
    41. Torihashi, S., Nishi, K., Tokutomi, Y., Nishi, T., Ward, S., and Sanders, K. M., Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype, Gastroenterology 117 (1999) 140-148.
    42. Torihashi, S., Ward, S. M., and Sanders, K. M., Development of c-Kit-positive cells andthe onset of electrical rhythmicity in murine small intestine, Gastroenterology 112 (1997) 144-155.
    43. Gomez-Pinilla, P. J., Gibbons, S. J., Bardsley, M. R., Lorincz, A., Pozo, M. J., Pasricha, P. J., de Rijn, M. V., West, R. B., Sarr, M. G., Kendrick, M. L., Cima, R. R., Dozois, E. J., Larson, D. W., Ordog, T., and Farrugia, G., Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract, Am.J.Physiol Gastrointest.Liver Physiol 296 (2009) G1370-G1381.
    44. Maeda, H., Yamagata, A., Nishikawa, S., Yoshinaga, K., Kobayashi, S., Nishi, K., and Nishikawa, S., Requirement of c-kit for development of intestinal pacemaker system, Development 116 (1992) 369-375.
    45. Mikkelsen, H. B., Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions, J.Cell Mol.Med.(2010) .
    46. Karlsson, L., Lindahl, P., Heath, J. K., and Betsholtz, C., Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis, Development 127 (2000) 3457-3466.
    47. Kluppel, M., Huizinga, J. D., Malysz, J., and Bernstein, A., Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine, Dev.Dyn. 211 (1998) 60-71.
    48. Berezin, I., Huizinga, J. D., and Daniel, E. E., Structural characterization of interstitial cells of Cajal in myenteric plexus and muscle layers of canine colon, Can.J.Physiol Pharmacol. 68 (1990) 1419-1431.
    49. Okishio, Y., Takeuchi, T., Fujita, A., Suenaga, K., Fujinami, K., Munakata, S., Takewaki, T., and Hata, F., Ascending contraction and descending relaxation in the distal colon of mice lacking interstitial cells of Cajal, J.Smooth Muscle Res. 41 (2005) 163-174.
    50. Serio, R., Barajas-Lopez, C., Daniel, E. E., Berezin, I., and Huizinga, J. D., Slow-wave activity in colon: role of network of submucosal interstitial cells of Cajal, Am.J.Physiol 260 (1991) G636-G645.
    51. Mikkelsen, H. B., Malysz, J., Huizinga, J. D., and Thuneberg, L., Action potentialgeneration, Kit receptor immunohistochemistry and morphology of steel-Dickie (Sl/Sld) mutant mouse small intestine, Neurogastroenterol.Motil. 10 (1998) 11-26.
    52. Isozaki, K., Hirota, S., Nakama, A., Miyagawa, J., Shinomura, Y., Xu, Z., Nomura, S., and Kitamura, Y., Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats, Gastroenterology 109 (1995) 456-464.
    53. Torihashi, S., Ward, S. M., Nishikawa, S., Nishi, K., Kobayashi, S., and Sanders, K. M., c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract, Cell Tissue Res. 280 (1995) 97-111.
    54. Yu, B., Han, J., He, Y. T., Guo, S., Li, S. F., and Mei, F., Immunohistochemical study of CD44 immunopositive cells in the muscular layers of the gastrointestinal tract in adult guinea pigs and mice, Acta Histochem. 111 (2009) 382-390.
    55. Lorincz, A., Redelman, D., Horvath, V. J., Bardsley, M. R., Chen, H., and Ordog, T., Progenitors of interstitial cells of cajal in the postnatal murine stomach, Gastroenterology 134 (2008) 1083-1093.
    56. Ordog, T., Interstitial cells of Cajal in diabetic gastroenteropathy, Neurogastroenterol. Motil. 20 (2008) 8-18.
    1. Huizinga, J. D., Berezin, I., Chorneyko, K., Thuneberg, L., Sircar, K., Hewlett, B. R., and Riddell, R. H., Interstitial cells of Cajal: pacemaker cells?, Am.J.Pathol. 153 (1998) 2008-2011.
    2. Kito, Y., Ward, S. M., and Sanders, K. M., Pacemaker potentials generated by interstitial cells of Cajal in the murine intestine, Am.J.Physiol Cell Physiol 288 (2005) C710-C720.
    3. Rumessen, J. J. and Thuneberg, L., Pacemaker cells in the gastrointestinal tract: interstitial cells of Cajal, Scand.J.Gastroenterol.Suppl 216 (1996) 82-94.
    4. Thomsen, L., Robinson, T. L., Lee, J. C., Farraway, L. A., Hughes, M. J., Andrews, D. W., and Huizinga, J. D., Interstitial cells of Cajal generate a rhythmic pacemaker current, Nat.Med. 4 (1998) 848-851.
    5. Burns, A. J., Lomax, A. E., Torihashi, S., Sanders, K. M., and Ward, S. M., Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach, Proc.Natl.Acad.Sci.U.S.A 93 (1996) 12008-12013.
    6. Iino, S. and Horiguchi, K., Interstitial cells of cajal are involved in neurotransmission in the gastrointestinal tract, Acta Histochem.Cytochem. 39 (2006) 145-153.
    7. Ward, S. M., Morris, G., Reese, L., Wang, X. Y., and Sanders, K. M., Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters, Gastroenterology 115 (1998) 314-329.
    8. Ward, S. M. and Sanders, K. M., Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract, J.Physiol 576 (2006) 675-682.
    9. Ward, S. M., McLaren, G. J., and Sanders, K. M., Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine, J.Physiol 573 (2006) 147-159.
    10. Wedel, T., Spiegler, J., Soellner, S., Roblick, U. J., Schiedeck, T. H., Bruch, H. P., and Krammer, H. J., Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon, Gastroenterology 123 (2002) 1459-1467.
    11. He, C. L., Burgart, L., Wang, L., Pemberton, J., Young-Fadok, T., Szurszewski, J., andFarrugia, G., Decreased interstitial cell of cajal volume in patients with slow-transit constipation, Gastroenterology 118 (2000) 14-21.
    12. Sabri, M., Barksdale, E., and Di, L. C., Constipation and lack of colonic interstitial cells of Cajal, Dig.Dis.Sci. 48 (2003) 849-853.
    13. Bott, L., Boute, O., Mention, K., Vinchon, M., Boman, F., and Gottrand, F., Congenital idiopathic intestinal pseudo-obstruction and hydrocephalus with stenosis of the aqueduct of sylvius, Am.J.Med.Genet.A 130 (2004) 84-87.
    14. Chang, I. Y., Glasgow, N. J., Takayama, I., Horiguchi, K., Sanders, K. M., and Ward, S. M., Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction, J.Physiol 536 (2001) 555-568.
    15. Ordog, T., Redelman, D., Horvath, V. J., Miller, L. J., Horowitz, B., and Sanders, K. M., Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract, Cytometry A 62 (2004) 139-149.
    16. Sanders, K. M., A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract, Gastroenterology 111 (1996) 492-515.
    17. Sanders, K. M., Publicover, N. G., and Ward, S. M., Involvement of interstitial cells of Cajal in pacemaker activity of canine colon, J.Smooth Muscle Res. 27 (1991) 1-11.
    18. Ward, S. M. and Sanders, K. M., Pacemaker activity in septal structures of canine colonic circular muscle, Am.J.Physiol 259 (1990) G264-G273.
    19. Yoneda, S., Fukui, H., and Takaki, M., Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon, Neurogastroenterol.Motil. 16 (2004) 621-627.
    20. Ward, S. M., Interstitial cells of Cajal in enteric neurotransmission, Gut 47 Suppl 4 (2000) iv40-iv43.
    21. Jessen, H. and Thuneberg, L., Interstitial cells of Cajal and Auerbach's plexus. A scanning electron microscopical study of guinea-pig small intestine, J.Submicrosc. Cytol.Pathol. 23 (1991) 195-212.
    22. Rumessen, J. J., Peters, S., and Thuneberg, L., Light- and electron microscopical studies of interstitial cells of Cajal and muscle cells at the submucosal border of human colon, Lab Invest 68 (1993) 481-495.
    23. Ashman, L. K., The biology of stem cell factor and its receptor C-kit, Int.J.Biochem.Cell Biol. 31 (1999) 1037-1051.
    24. Hanani, M., Introduction to interstitial cells of Cajal, Microsc.Res.Tech. 47 (1999) 221-222.
    25. Roskoski, R., Jr., Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor, Biochem.Biophys.Res.Commun. 337 (2005) 1-13.
    26. Sanders, K. M., Ordog, T., and Ward, S. M., Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal, Am.J.Physiol Gastrointest.Liver Physiol 282 (2002) G747-G756.
    27. Mikkelsen, H. B., Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions, J.Cell Mol.Med.(2010) .
    28. Kluppel, M., Huizinga, J. D., Malysz, J., and Bernstein, A., Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine, Dev.Dyn. 211 (1998) 60-71.
    29. Lecoin, L., Gabella, G., and Le Douarin, N., Origin of the c-kit-positive interstitial cells in the avian bowel, Development 122 (1996) 725-733.
    30. Young, H. M., Embryological origin of interstitial cells of Cajal, Microsc.Res.Tech. 47 (1999) 303-308.
    31. Liu, L. W., Thuneberg, L., and Huizinga, J. D., Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine, Dev.Dyn. 213 (1998) 271-282.
    32. Young, H. M., Ciampoli, D., Southwell, B. R., and Newgreen, D. F., Origin of interstitial cells of Cajal in the mouse intestine, Dev.Biol. 180 (1996) 97-107.
    33. Wu, J. J., Rothman, T. P., and Gershon, M. D., Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand, J.Neurosci.Res. 59 (2000) 384-401.
    34. Nahar, N. S., Torihashi, S., Iino, S., Senda, T., Chowdhury, J. U., and Kobayashi, S., Special smooth muscle cells along the submucosal surface of the guinea pig colon with reference to its spontaneous contractions, Cell Tissue Res. 293 (1998) 143-154.
    35. Ward, S. M., Dalziel, H. H., Bradley, M. E., Buxton, I. L., Keef, K., Westfall, D. P., and Sanders, K. M., Involvement of cyclic GMP in non-adrenergic, non-cholinergic inhibitory neurotransmission in dog proximal colon, Br.J.Pharmacol. 107 (1992) 1075-1082.
    36. Torihashi, S., Ward, S. M., Nishikawa, S., Nishi, K., Kobayashi, S., and Sanders, K. M., c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract, Cell Tissue Res. 280 (1995) 97-111.
    37. Torihashi, S., Ward, S. M., and Sanders, K. M., Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine, Gastroenterology 112 (1997) 144-155.
    38. Mei, F., Guo, S., He, Y. T., Zhu, J., Zhou, D. S., Niu, J. Q., Wang, H. Z., and Tian, Y. P., Apoptosis of interstitial cells of Cajal, smooth muscle cells, and enteric neurons induced by intestinal ischemia and reperfusion injury in adult guinea pigs, Virchows Arch. 454 (2009) 401-409.
    39. Mei, F., Han, J., Huang, Y., Jiang, Z. Y., Xiong, C. J., and Zhou, D. S., Plasticity of interstitial cells of cajal: a study in the small intestine of adult Guinea pigs, Anat.Rec.(Hoboken.) 292 (2009) 985-993.
    40. Torihashi, S., Nishi, K., Tokutomi, Y., Nishi, T., Ward, S., and Sanders, K. M., Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype, Gastroenterology 117 (1999) 140-148.
    41. Huizinga, J. D. and White, E. J., Progenitor cells of interstitial cells of Cajal: on the road to tissue repair, Gastroenterology 134 (2008) 1252-1254.
    42. Lorincz, A., Redelman, D., Horvath, V. J., Bardsley, M. R., Chen, H., and Ordog, T., Progenitors of interstitial cells of cajal in the postnatal murine stomach, Gastroenterology 134 (2008) 1083-1093.
    43. Nakahara, M., Isozaki, K., Vanderwinden, J. M., Shinomura, Y., Kitamura, Y., Hirota, S., and Matsuzawa, Y., Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor, Life Sci. 70 (2002) 2367-2376.
    44. Wouters, M. M., Gibbons, S. J., Roeder, J. L., Distad, M., Ou, Y., Strege, P. R., Szurszewski, J. H., and Farrugia, G., Exogenous Serotonin Regulates Proliferation ofInterstitial Cells of Cajal in Mouse Jejunum Through 5-HT(2B) Receptors, Gastroenterology 133 (2007) 897-906.
    45. Chen, H., Hirota, S., Isozaki, K., Sun, H., Ohashi, A., Kinoshita, K., O'Brien, P., Kapusta, L., Dardick, I., Obayashi, T., Okazaki, T., Shinomura, Y., Matsuzawa, Y., and Kitamura, Y., Polyclonal nature of diffuse proliferation of interstitial cells of Cajal in patients with familial and multiple gastrointestinal stromal tumours, Gut 51 (2002) 793-796.
    46. Nakagawa, T., Misawa, H., Nakajima, Y., and Takaki, M., Absence of peristalsis in the ileum of W/W(V) mutant mice that are selectively deficient in myenteric interstitial cells of Cajal, J.Smooth Muscle Res. 41 (2005) 141-151.
    47. Sanders, K. M. and Ward, S. M., Kit mutants and gastrointestinal physiology, J.Physiol 578 (2007) 33-42.
    48. Isozaki, K., Hirota, S., Nakama, A., Miyagawa, J., Shinomura, Y., Xu, Z., Nomura, S., and Kitamura, Y., Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats, Gastroenterology 109 (1995) 456-464.
    49. Nakama, A., Hirota, S., Okazaki, T., Nagano, K., Kawano, S., Hori, M., and Kitamura, Y., Disturbed pyloric motility in Ws/Ws mutant rats due to deficiency of c-kit-expressing interstitial cells of Cajal, Pathol.Int. 48 (1998) 843-849.
    50. Mikkelsen, H. B., Malysz, J., Huizinga, J. D., and Thuneberg, L., Action potential generation, Kit receptor immunohistochemistry and morphology of steel-Dickie (Sl/Sld) mutant mouse small intestine, Neurogastroenterol.Motil. 10 (1998) 11-26.
    51. Bernex, F., De Sepulveda, P., Kress, C., Elbaz, C., Delouis, C., and Panthier, J. J., Spatial and temporal patterns of c-kit-expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos, Development 122 (1996) 3023-3033.
    52. Ward, S. M., Burns, A. J., Torihashi, S., Harney, S. C., and Sanders, K. M., Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants, Am.J.Physiol 269 (1995) C1577-C1585.
    53. Dahlen, D. D., Lin, N. L., Liu, Y. C., and Broudy, V. C., Soluble Kit receptor blocks stem cell factor bioactivity in vitro, Leuk.Res. 25 (2001) 413-421.