小麦麸皮纤维降解糖化与分层利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦麸皮是小麦制粉过程中的副产物,占小麦颗粒的14-17%左右,目前主要用于饲料和发酵工业,综合利用率低。小麦麸皮纤维难以降解是小麦麸皮利用率低的主要原因,因此促进小麦麸皮纤维降解糖化和提高其糖化液的利用研究有重要的现实意义。
     本研究以提高小麦麸皮综合利用价值为目的,实现小麦麸皮分层利用。以小麦麸皮为原料,采用酶解去除淀粉和碱浸提法去除蛋白质制备小麦麸皮纤维;利用小麦麸皮纤维发酵制备纤维素酶,并联合木聚糖酶酶解小麦麸皮纤维制糖;结合蒸汽爆破和酶解技术以及微波酸水解技术,降解糖化小麦麸皮纤维;使用小麦麸皮纤维糖化液发酵制备苹果酸,优化发酵条件;通过发酵法利用小麦麸皮纤维糖化液,富集制备阿拉伯糖;以5000t/a小麦麸皮综合利用厂为例分析小麦麸皮综合利用经济效益。主要研究内容及结果如下:
     1.小麦麸皮成分分析结果表明小麦麸皮含有12.80%的淀粉、18.51%的蛋白质和45.40%的小麦麸皮纤维等;优化确定了蛋白质提取的最佳工艺条件为体系pHH12,料液比1:15,温度50℃和时间3h,提取量达到15.85%。通过小麦麸皮蛋白质成分和营养评价结果表明:清蛋白含量占麸皮质量的4.42%,球蛋白含量占2.92%,醇溶蛋白占3.29%,谷蛋白占4.79%和不溶蛋白占2.97%;小麦麸皮蛋白质具有一定的营养价值,必需氨基酸含量占蛋白质质量的20.75%,E/T为37.04%。经过淀粉酶和蛋白质浸提后,小麦麸皮纤维含70.27%粗纤维。
     2.以钴-60诱变筛选出的高产纤维素酶的绿色木霉发酵并优化确定了纤维素酶发酵的最佳条件:固液比1:7.5,发酵液初始pH6.0,发酵时间96h,接种量4%。在此条件下,发酵产物中纤维素酶酶活可达到1.90u/mL。通过盐析、DEAE-52和Sephadex G-75层析分离纯化获得了β-葡萄糖苷酶,其分子量为59.8kDa,且酶比活力提高了128.93倍。在pH5.0和50-时,β-葡萄糖苷酶酶活能够保持高活力和稳定性;Mg+和表面活性剂吐温80能够明显促进β-葡萄糖苷酶酶活力,而Fe3+、Cu2+和SDS对β-葡萄糖苷酶的酶活力有较大抑制作用。通过对纤维素酶和木聚糖酶酶解条件的优化,获得最佳酶解条件:底物浓度为2g/40mL,温度50-,pH5.0,处理时间8h,此时,酶解小麦麸皮纤维后得到的糖溶液浓度为9.70mg/mL。3.蒸汽爆破破坏小麦麸皮纤维结构,纤维素和半纤维素有明显降解,汽爆后的纤维pH值随蒸汽压力增大而降低,并且颜色逐步加深;汽爆后小麦麸皮表面结构降解,纤维素晶体暴露:酶解汽爆后的小麦麸皮纤维时,还原糖和葡萄糖含量明显增大,但随着汽爆压力增大而降低;酶解后木糖含量降低且与汽爆压力关系不大。
     4.微波功率、水解时间以及酸浓度对小麦麸皮纤维糖化影响显著。根据单因素条件及响应面分析法优化分析结果,在小麦麸皮纤维1g/40mL,硫酸浓度1.86%、水解时间36min和微波功率350W的条件下,能得到浓度分别为4.86mg/mL的木糖和12.91mg/mL的还原糖。小麦麸皮纤维经微波酸水解处理后,麸皮中半纤维素溶解,纤维素暴露,结晶度提高,当微波功率增大到600W时,部分纤维素溶解,木质素变化不明显。
     5.以小麦麸皮糖化液为碳源,考察硫酸铵、硫酸镁、温度和碳酸钙添加量等单因素对曲霉发酵制备苹果酸产量的影响,并使用响应面分析法进行优化,获得最佳产酸条件,硫酸镁0.17g/L、硫酸铵2.34g/L、碳酸钙70g/L和温度31℃,该条件下,苹果酸产量达到最大值15.73g/L通过筛选出的管囊酵母发酵小麦麸皮纤维糖,发酵时间72h后,阿拉伯糖含量5.93g/L,占总糖比例上升至62.10%。经脱色、脱盐和浓缩处理后,阿拉伯糖母液在4-下重结晶,可制备纯度为90.80%的阿拉伯糖。
     6.以年加工量5000t小麦麸皮综合利用工厂为例,设计了小麦麸皮生产蛋白质、糖以及苹果酸等产品的工艺技术路线,并通过物料衡算分析经济效益,结果表明小麦麸皮深加工后,可获得一定的收益。
Wheat bran is the main by-product of wheat flour, which is about14-17%of wheat grain.The comprehensive utilization rate of wheat bran is low for which is mainly used for feed and fermentation industry and fiber is hard degradation now. Therefore stduies for promoting the utilization of wheat bran have important practical meaning.
     In this study, wheat bran is a raw material for the purpose of enhancing utilization value. Wheat bran protein was extracted by alkali solution, and nutritive compositions were measured; wheat bran fiber was enzymatic saccharification by a combined treatment of xylase and cellulase prepared with fermentation; saccharification of wheat bran fiber using steam explosion combined enzymatic hydrolysis, and microwave acid hydrolysis; malic acid was prepared by fermentation of wheat bran sugar, and the fermentation conditions was optimized; arabinose was enriched preparation by fermentation using wheat bran fiber sugar; and finally the benefits of wheat bran was analyzed using a comprehensive utilization factory.
     The main results and conclusions obtained are as follows.
     1. Wheat bran component was analysised and showed that there were12.80%starch,18.51%protein and45.40%wheat bran fiber. enzymatic hydrolysis condition of starch and protein extraction condition were optimized, which showed the protein extraction reached the maximum of15.85%at pH12, solid-liquid ratio1:15,50℃and time of3h and precipitation pH3.8. There were4.42%of albumin,2.92%of bran globulin and3.29%of gliadin,4.79%of glutenin and2.97%of insoluble protein, and a high nutritional value with20.75%of essential amino acid content compared the protein quality,37.04%of E/T value. Wheat bran fiber reached70.27%after removing starch and protein.
     2. An efficient cellulolytic strain M9was selected from mutation Trichoderma viride with Co-60irradiated, and the culture condition was optimized which were composed of wheat bran fiber of3g, solid-liquid ratio of1:7.5, initial pH6.0, fermentation time96h, inoculation of4%. Cellulase activity of the strain M9produced reached1.90u/mL. β-glucosidase was separated and perificated with salting out, DEAE-52and Sephadex G-75chromatography, its molecular weight of59.8kDa and128.93times of activity than the initial. The β-glucosidase maintained a high activity and stability at pH5.0and50℃, and the activity was enhanced the activity with Mg2+, Tween80surfactant and inhibited with Fe3+, Cu2+and SDS. Enzymatic saccharification conditions of wheat bran fiber were optimized by a combined treatment of xylase and cellulase:the substrate concentration2g/40mL, temperature50c, pH5.0, time of8h, and concentration of the sugar solution reached9.70mg/mL at this condition.
     3. Wheat bran fiber structure was destroyed obviously with steam explosion pretreatment, especially significant degradation of cellulose and hemicellulose; pH of WBFSE reduced and its color deepened with the steam pressure increased; degrees of crystallization was enhanced with fiber structure degradation of WBFSE; reducing sugar and glucose concentrations increased significantly with eneymatic hydrolysised, but decreased with steam pressure increased, xylose concentrations decreased and little relationship with the pressure of the steam explosion.
     4. Microwave power, hydrolysis time and acid concentration played remarkable impacts on the saccharification of wheat bran fiber. Saccharification conditions were optimize by response surface methodology:sulfuric acid concentration of1.86%, hydrolysis time36min and microwave power350W. In this condition, the xylose got maximum of4.86mg/mL and total sugar12.91mg/mL. Hemicellulose of WBF was dissolved, and degrees of crystallization was enhanced with the cellulose exposed, even partially dissolved when the microwave power increased to600W; lignin did not change obviously.
     5. The fermentation culture mediums of malic acid were optimized with response surface methodology, which was composed of magnesium sulfate0.17g/L, ammonium sulfate2.34g/L, calcium carbonate70g/L and temperature of31℃with the wheat bran sugar. In this condition, the malic acid production reached a maximum concentration of15.73g/L. A Pachysolen tannophilus was screened for fementation of wheat bran fibers sugar, and arabinose content reached5.93g/L,62.10%of the sugar after72h cultivated. The purity of arabinose reached90.80%with recrystallized under the temperature of4℃after decolorization, desalting and concentration prtreatment.
     6. Wheat bran utilization was analyzed with a factory of5000t processing capacity as example, as well as technology route of protein、sugar and malic acid were designed. Economic benefit was analyzed through material calculation, and the statistical result showed that deep processing of wheat bran could bring a certain profit.
引文
[1]张春良.成本与需求同升面粉行情将稳中见涨[J].现代面粉工业,2012,26(5):38-40.
    [2]Akhtar M, Tariq AF, Awais MM, et al. Studies on wheat bran arabinoxylan for its immunostimulatory and protective effects against avian coccidiosis[J]. Carbohydrate Polymers,2012,90(1):333-339.
    [3]付忠梅,王洪江,李志江.碱法提取麸皮阿魏酸工艺的优化研究[J].农产品加工,2007,6:44-46.
    [4]李昌文,欧阳韶晖.小麦麸皮的综合利用[J].粮油加工与食品机械,2003,7:55-56.
    [5]周惠明,陈正行.小麦制粉与综合利用.2001:中国轻工业出版社.
    [6]Antoine C, Peyron S, Lullien-Pellerin V, et al. Wheat bran tissue fractionation using biochemical markers[J]. Journal of Cereal Science,2004,39(3):387-393.
    [7]Rose DJ and Inglett GE. Two-Stage hydrothermal processing of wheat(Triticum aestivum) bran for the production of feruloylated arabinoxylooligosaccharides[J]. Journal of Agricultural and Food Chemistry,2010,58(10):6427-6432.
    [8]Cho SS. Handbook of dietary fiber. Vol.113.2001:CRC.
    [9]Yan H, Wang ZJ, Xiong J, et al. Development of the dietary fiber functional food and studies on its toxicological and physiologic properties[J]. Food and Chemical Toxicology,2012, 50(9):3367-3374.
    [10]陈凤莲,方桂珍.不同方法分离小麦麸皮中蛋白质的研究[J].粮食加工,2009,34(004):28-30.
    [11]Zhang C, Zhang H, Wang L, et al. Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity[J]. Journal of Agricultural and Food Chemistry,2007,55(19):7654-7658.
    [12]Roberts PJ, Simmonds DH, Wootton M, et al. Extraction of protein and solids from wheat bran[J]. Journal of the Science of Food and Agriculture,1985,36(1):5-10.
    [13]Zhang H, Mao JS, and Zhang JP. Extraction and application of wheat bran protein [J]. Journal of Wuxi University of Light Industry,1998,1:44-48.
    [14]Idris WH, Babiker EE, and Tinay AH. Fractionation, solubility and functional properties of wheat bran proteins as influenced by pH and/or salt concentration[J]. Nahrung-Food,2003, 47(6):425-429.
    [15]陈凤莲.碱性蛋白酶对小麦麸皮中蛋白质的酶解作用[J].哈尔滨商业大学学报:自然科学版,2011,27(1):54-56.
    [16]Van den Borne JJGC, Kabel MA, Briens M, et al. Effects of pretreatment of wheat bran on the quality of protein-rich residue for animal feeding and on monosaccharide release for ethanol production[J]. Bioresource Technology,2012,124:446-454.
    [17]王萍,高天,赵晓丹.小麦麸皮蛋白质的提取[J].粮油加工与食品机械,2004(010)51-52.
    [18]林琳.小麦麸皮的营养成分及其开发利用[J].农业科技与装备,2010(003):41-42.
    [19]欧仕益,高孔荣.膳食纤维抑制膳后血糖升高的机理探讨[J].食品科学,1998,19(3):48-52.
    [20]Dikeman CL, Murphy MR, and Fahey GC. Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta[J]. Journal of Nutrition,2006,136 (4):913-919.
    [21]周定国,连海兰,周晓燕.机械粉碎处理对稻麦秸秆界面特征的影响[J].林产化学与工业,2008,28(1):16-22.
    [22]钱建亚,丁霄霖.酸碱挤压联合作用对膳食纤维组成的影响[J].西部粮油科技,1997,22(2):26-29.
    [23]夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产化工通讯,1999,33(1):23-28.
    [24]Kaar W, Gutierrez C, and Kinoshita C. Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol[J]. Biomass and Bioenergy,1998,14(3):277-287.
    [25]Hamala S, Pohjola DV, and Tech D. A new continuous hydrolysis process for plant materials. 5th International Congress in Scandinavia on Chemical Engineering:222nd event of the European Federation of Chemical Engineering, Copenhagen,14th-16th April 1980:Kem Tek 5.1980.
    [26]Tanahashi M. Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood[J]. Wood research:bulletin of the Wood Research Institute Kyoto University,1990,77:49-117.
    [27]Boluda-Aguilar M. and Lopez-Gomez A. Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion[J]. Industrial Crops and Products,2013,41:188-197.
    [28]Akmaz S, Gurgey I, and Yasar M. Effect of steam explosion on cellulose degradation by Trichoderma reesei cellulase.[J]. Abstracts of Papers of the American Chemical Society, 2003,226:184-184.
    [29]Ng TK, Ben-Bassat A, and Zeikus J. Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosnlfuricum[J]. Applied and Environmental Microbiology,1981, 41(6):1337-1343.
    [30]Humphrey AE. The hydrolysis of cellulosic materials to useful products[J]. Hydrolysis of cellulose:Mechanisms of enzymatic and acid catalysis,1979,181:25-53.
    [31]Walther T, Hensirisak P, and Agblevor F. The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis [J]. Bioresource Technology,2001,76 (3):213-220.
    [32]许凤,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,12(1):45-54.
    [33]林鹿,詹怀宇.制浆漂白生物技术.2002:中国轻工业出版社.
    [34]詹怀宇.国际纸浆漂白技术的新进展[J].中国造纸,1999,18(004):3843.
    [35]刘健,陈洪章,李佐虎.大麻纤维脱胶研究综述[J].中国麻业,2002,24(4):39-42.
    [36]陈洪章,李佐虎.麦草蒸汽爆破处理的研究[J].纤维素科学与技术,1999,7(4):14-22.
    [37]陈洪章,李佐虎.无污染秸秆汽爆新技术及其应用[J].纤维素科学与技术,2002,10(3):47-52.
    [38]Adam SF and Packard H. Microwave theory and applications.1969:Prentice-Hall Upper Saddle River, NJ, USA.
    [39]叶新强,付宣.应用前景广阔的微波处理技术[J].山东环境,1998(1):21-23.
    [40]Ishii TK. Handbook of Microwave Technology:Applications. Vol.2.1995:academic Press.
    [41]Hwang DR., Moerlein S, Lang L, et al. Application of microwave technology to the synthesis of short-lived radiopharmaceuticals[J]. Journal of the Chemical Society, Chemical Communications,1987(23):1799-1801.
    [42]Allan GG, Krieger BB, and Work DW. Dielectric loss microwave degradation of polymers: cellulose[J]. Journal of Applied Polymer Science,1980,25(9):1839-1859.
    [43]Margolis SA, Jassie L, and Kingston H. The hydrolysis of proteins by microwave energy[J]. Journal of Analytical Methods in Chemistry,1900,13(3):93-95.
    [44]Chan R and Krieger BB. Kinetics of dielectric-loss microwave degradation of polymers: Lignin[J]. Journal of Applied Polymer Science,1981,26(5):1533-1553.
    [45]熊犍,叶君.微波对纤维素Ⅰ超分子结构的影响[J].华南理工大学学报:自然科学版,2000,28(3):84-89.
    [46]罗爱香,刘玉环,万益琴,等.竹废料微波裂解的单因素实验研究[J].福建林业科技, 2007,34(004):46-50.
    [47]余君.不同预处理工艺对稻壳纤维素酶酶解效果的影响.2008,武汉:华中农业大学.
    [48]Lu JL and Zhou PJ. Optimal conditions for maximizing production of reducing sugars from microwave-assisted FeCl3 pretreated rice straw degraded by Trichoderma viride and Bacillus pumilus[J]. African Journal of Microbiology Research,2011,5(31):5757-5764.
    [49]徐旭峰,陈鹏,陈创鑫,等.微波强化碱处理黄麻快速脱胶工艺研究[J].上海纺织科技,2010(012):26-28.
    [50]Li HQ and Xu J. Optimization of microwave-assisted calcium chloride pretreatment of corn stover[J]. Bioresource Technology,2013,127:112-118.
    [51]Vani S, Binod P, Kuttiraja M, et al. Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application[J]. Bioresource Technology,2012,112:300-307.
    [52]张春红,陈秋玲,孙可伟.微波强化碱预处理对二次纤维结构及其氰乙基化反应的影响[J].林产化学与工业,2010,30(001):97-102.
    [53]Zhu S, Wu Y, Yu Z, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis[J]. Process Biochemistry,2005,40(9):3082-3086.
    [54]Singh A, Tuteja S, Singh N, et al. Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production[J]. Bioresource Technology,2011,102(2):1773.
    [55]朱萍,汤颖,薛青松,等.微波辅助的金属氯化物Lewis酸催化纤维素水解[J].燃料化学学报,2009,37(2):244-247.
    [56]刘龙飞,宗水珍,邱竹.微波促纤维素水解制备可发酵还原糖研究[J].常熟理工学院学报,2008,4:77-81.
    [57]邓辉,李春,李飞,等.棉花秸秆糖化碱预处理条件优化[J].农业工程学报,2009,25(1):208-212.
    [58]方诩,秦玉琪,李雪芝,等.纤维素酶与木质纤维素生物降解转化的研究进展[J].生物工程学报,2010,26(7):864-869.
    [59]Klyosov AA. Trends in biochemistry and enzymology of cellulose degradation[J]. Biochemistry,1990,29(47):10577-10585.
    [60]Mandels M and Weber J. The production of cellulases[J]. Adv. Chem. Ser,1969,95:391-414.
    [61]Lee YJ, Kim BK, Lee BH, et al. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull[J]. Bioresource Technology,2008,99 (2):378-386.
    [62]阎伯旭,曲音波,高培基,等.真菌和细菌纤维素酶的差别及内,外切葡聚糖苷酶的底物专一性[J].生命科学,1999,11(A01):61-64.
    [63]Mandels M, Weber J, and Parizek R. Enhanced cellulase production by a mutant of Trichoderma viride[J]. Applied microbiology,1971,21(1):152-154.
    [64]Gadgil N, Daginawala H, Chakrabarti T, et al. Enhanced cellulase production by a mutant of Trichodermd reesei [J]. Enzyme and Microbial Technology,1995,17(10):942-946.
    [65]Ryu DD and Mandels M. Cellulases:biosynthesis and applications[J]. Enzyme and Microbial Technology,1980,2(2):91-102.
    [66]Morikawa Y, Kawamori M, Ado Y, et al. Improvement of cellulase production in Trichoderma reesei[J]. Agricultural and biological chemistry,1985,49(6):1869-1871.
    [67]袁铸,邓小晨,金敏,等.秋水仙碱对木霉F10纤维素酶系的诱变处理研究[J].四川大学学报(自然科学版),2000,37(2):295-298.
    [68]曲音波,高培基,王祖农.青霉的纤维素酶抗降解物阻遏突变株的选育[J].菌物学报,1984,3(4):238-242.
    [69]孙宪昀,曲音波,刘自勇.青霉木质纤维素降解酶系研究[J].
    [70]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展,2003,13(1):21-29.
    [71]张鸿雁,陈锡时.微生物纤维素酶分子生物学研究进展[J].生物技术,2003,13(3):41-42.
    [72]李素芬,霍贵成.纤维素酶的分子结构组成及其功能[J].中国饲料,1997,13:12-14.
    [73]Ilmen M, Saloheimo A, Onnela ML, et al. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei[J]. Applied and Environmental Microbiology,1997, 63(4):1298-1306.
    [74]Centeno MSJ, Goyal A, Prates JAM, et al. Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus[J]. Fems Microbiology Letters,2006,265(1):26-34.
    [75]Xia DG, Wei YD, Zhang GZ, et al. cDNA cloning, expression, and enzymatic activity of a novel endogenous cellulase from the beetle Batocera horsfieldi[J]. Gene,2013,514 (1):62-68.
    [76]Ramani G, Meera B, Vanitha C, et al. Production, purification, and characterization of a beta-glucosidase of Penicillium funiculosum NCL1[J]. Applied Biochemistry and Biotechnology,2012,167(5):959-972.
    [77]Adalberto PR, Massabni AC, Goulart AJ, et al. Production of beta-galactosidase by Trichoderma reesei FTKO-39 in wheat bran-partial purification of two isozymes[J]. Applied Biochemistry and Biotechnology,2006,133(2):163-170.
    [78]潘利华,罗建平.p-葡萄糖苷酶的研究及应用进展[J].食品科学,2006,27(12):803-807.
    [79]曲音波,高培基,王祖农.斜卧青霉纤维素酶系的酶学研究[J].微生物学报,1988,28(2):121-130.
    [80]宋锦玉.美国纤维素乙醇商业化项目的进展情况[J].当代化工,2011,40(5):517-520.
    [81]McMillan JD. Bioethanol production:status and prospects[J]. Renewable Energy,1997,10 (2):295-302.
    [82]Converti A, Perego P, del Borghi M, et al. Pretreatment operations and alcohol fermentation of orange wastes[J]. Journal of Fermentation and Bioengineering,1989,68(4):277-281.
    [83]Lloyd FSE. The effect of acids and alkalis on the growth of the proto-plasm in pollen tubes [J]. Mem. Torrey Bot. Club,1918,17:84-89.
    [84]Weiss JM, Downs CR, and Corson HP. Inactive malic acid as a food acidulent[J]. Industrial & Engineering Chemistry,1923,15(6):628-630.
    [85]Weiss JM and Downs CR. Preliminary study on the formation of malic acid[J]. Journal of the American Chemical Society,1922,44(5):1118-1125.
    [86]郝夕祥.黄曲霉SFW-7产L-苹果酸的研究.2011,山东农业大学
    [87]Dakin H. The formation of L-malic acid as a product of alcoholic fermentation by yeast[J]. Journal of Biological Chemistry,1924,61(1):139-145.
    [88]Rankine BC. Decomposition of L-malic acid by wine yeasts[J]. Journal of the Science of Food and Agriculture,1966,17(7):312-316.
    [89]. Takao S. Organic acid production by basidiomycetes Ⅰ. screening of acid-producing strains[J]. Applied microbiology,1965,13(5):732-737.
    [90]Sasaki Y and Takao S. Organic acid production by basidiomycetes III. cultural conditions for L-malic acid production[J]. Applied microbiology,1967,15(2):373-377.
    [91]Peleg Y, Stieglitz B, and Goldberg I. Malic acid accumulation by Aspergillus flavus[J]. Applied Microbiology and Biotechnology,1988,28(1):69-75.
    [92]Neufeld R, Peleg Y, J Rokem, et al.1-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase[J]. Enzyme and Microbial Technology,1991,13 (12): 991-996.
    [93]Chen Y, Zhao B, Huang XL, et al. Purification and neuroprotective effects of polysaccharides from Opuntia Milpa Alta in cultured cortical neurons[J]. International Journal of Biological Macromolecules,2011,49(4):681-687.
    [94]Wang MC, Jiang CX, Ma LP, et al. Preparation, preliminary characterization and immunostimulatory activity of polysaccharide fractions from the peduncles of Hovenia dulcis[J]. Food Chemistry,2013,138(1):41-47.
    [95]方永亮,郑珩,余江河.功能性甜味剂L-阿拉伯糖的研究进展[J].氨基酸和生物资源,2009,31(1):8-12.
    [96]Beerens K, Desmet T, and Soetaert W. Enzymes for the biocatalytic production of rare sugars[J]. Journal of Industrial Microbiology & Biotechnology,2012,39(6):823-834.
    [97]Aguedo M, Vanderghem C, Goffin D, et al. Fast and high yield recovery of arabinose from destarched wheat bran[J]. Industrial Crops and Products,2013,43:318-325.
    [98]李道义,闫巧娟,江正强,等.酵母菌发酵玉米皮酸水解液制备结晶L-阿拉伯糖的研究[J].食品科学,2007,28(4):125-128.
    [99]Cheng HR, Wang HW, Lv JY, et al. A novel method to prepare L-Arabinose from xylose mother liquor by yeast-mediated biopurification[J]. Microbial Cell Factories,2011,10.
    [100]Antila J, Ravanko V, and Walliander P. Method of prepararing L-arabinose from sugar beet pulp.1999, WO Patent 1,999,010,542.
    [101]Lavarack B, Griffin G, and Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products[J]. Biomass and Bioenergy,2002,23(5):367-380.
    [102]Ahmed Z, Shimonishi T, Bhuiyan SH, et al. Biochemical preparation of L-ribose and L-arabinose from ribitol:A new approach[J]. Journal of Bioscience and Bioengineering, 1999,88(4):444-448.
    [103]Maes C and Delcour J. Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran[J]. Journal of Cereal Science,2002,35 (3): 315-326.
    [1]Antoine C, Peyron S, Lullien-Pellerin V, et al. Wheat bran tissue fractionation using biochemical markers[J]. Journal of Cereal Science,2004,39(3):387-393.
    [2]李昌文,欧阳韶晖.小麦麸皮的综合利用[J]-粮油加工与食品机械,2003,7:55-56.
    [3]张彦妮,王海滨.麦麸的综合利用与研究进展[J].粮食加工,2008,33(1):24-26.
    [4]Choteborska P, Palmarola-Adrados B, Galbe M, et al. Processing of wheat bran to sugar solution[J]. Journal of Food Engineering,2004,61(4):561-565.
    [5]Sangnark A and Noomhorm A. Chemical, physical and baking properties of dietary fiber prepared from rice straw[J]. Food Research International,2004,37(1):66-74.
    [6]Trepel F. Dietary fibre:more than a matter of dietetics. I. compounds, properties, physiological effects[J]. Wiener Klinische Wochenschrift,2004,116(14):465-476.
    [7]Lan GS, Chen HX, Chen SH, et al. Chemical composition and physicochemical properties of dietary fiber from polygonatum odoratum as affected by different processing methods[J]. Food Research International,2012,49(1):406-410.
    [8]张晖.麸皮中同时提取p-淀粉酶和植酸酶的研究[J].粮食与饲料工业,1998(6):34-35.
    [9]史一一,荞麦淀粉酶水解特性研究.2007,杨凌:西北农林科技大学.
    [10]张国权,史一一,魏益民,等.荞麦淀粉的真菌淀粉酶酶解动力学研究[J].农业工程学报,2007,23(5):42-46.
    [11]Soni SK, Kaur A, and Gupta JK. A solid state fermentation based bacterial alpha-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch[J]. Process Biochemistry,2003,39(2):185-192.
    [12]Idris WH, Babiker EE, and El Tinay AH. Fractionation, solubility and functional properties of wheat bran proteins as influenced by pH and/or salt concentration[J]. Nahrung-Food, 2003,47(6):425-429.
    [13]Tang S, Navam S, and Shellhammer TH. Protein extraction from heat-stabilized defatted rice bran.1. physical processing and enzyme treatments[J]. Journal of Agricultural and Food Chemistry,2002,50(25):7444-7448.
    [14]Gnanasambandam R and Heitiarachchy N. Protein concentrates from unstabilized and stabilized rice bran:preparation and properties[J]. Journal of Food Science,1995, 60(5):1066-1069.
    [15]Roberts PJ, Simmonds DH, Wootton M, et al. Extraction of protein and solids from wheat bran[J]. Journal of the Science of Food and Agriculture,1985,36(1):5-10.
    [16]徐忠,薄凯.小麦麸皮木瓜蛋白酶法提取工艺研究[J]-哈尔滨商业大学学报:自然科学版,2008,23(6):729-732.
    [17]Zhang H, Mao JS, and Zhang JP. Extraction and application of wheat bran protein [J]. Journal of Wuxi University of Light Industry,1998,1:44-48.
    [18]Aoac WH. Official methods of analysis. Arlington, VA,1990.
    [19]牛丽亚,小麦胚芽油超临界CO2萃取,评价及麦胚蛋白修饰改性的研究.2012,合肥工业大学.
    [20]朱圣陶,吴坤.蛋白质营养价值评价-氨基酸比值系数法[J].营养学报,1988,10(2):187-190.
    [21]Hsu H, Vavak D, Satterlee L, et al. A multienzyme technique for estimating protein digestibility[J]. Journal of Food Science,1977,42(5):1269-1273.
    [22]李雪梅,杨俊慧,张利群,等.还原糖测定方法的比较[J].山东科学,2008,21(2):18-20.
    [23]陈志敏,赵仁勇.小麦麸皮的开发利用[J].粮食流通技术,1997,3:18.
    [24]曹新志,明红梅,熊俐,等.酶-化学法从麸皮中提取膳食纤维的工艺研究[J].粮食与饲料工业,2009,4:28-30.
    [25]王萍,高天,赵晓丹.小麦麸皮蛋白质的提取[J].粮油加工与食品机械,2004(010):51-52.
    [26]董银卯,冯明珠,赵华,等.燕麦麸蛋白质等电点测定及其稀碱法提取工艺优化的研究[J].食品科技,2007,32(3):258-260.
    [27]李雪琴,苗笑亮,裘爱泳.几种豆类蛋白质组成和结构比较[J].粮食与油脂,2003,6:19-20.
    [28]朱科学,周惠明,朱振.灭酶和脱脂预处理对麦胚分离蛋白理化性质和营养价值的影响[J].食品科学,2008,29(01):31-35.
    [1]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,2:75-80.
    [2]李昌文,欧阳韶晖.小麦麸皮的综合利用[J].粮油加工与食品机械,2003,7:55-56.
    [3]陈家楠.纤维素化学的现状与发展趋势[J].纤维素科学与技术,1995,3(1):1-10.
    [4]肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志,2002,22(002):33-35.
    [5]刘家建,陆怡.纤维素酶的研究及应用综述[J].林产化工通讯,1995,29(1):6-10.
    [6]汪维云.纤维素科学及纤维素酶的研究进展[J].江苏理工大学学报:自然科学版,1998,19(3):20-28.
    [7]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展,2003,13(1):21-29.
    [8]Khan MR and Subhani A. Comparative study of cellulase of Trichoderma viride and Aspergillus niger[J]. Asian Journal of Chemistry,2012,24(10):4499-4501.
    [9]Camassola M and Dillon A. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation[J]. Journal of Applied Microbiology,2007,103(6):2196-2204.
    [10]Maki M, Leung KT, and Qin WS. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass[J]. International Journal of Biological Sciences, 2009,5(5):500-516.
    [11]张德强,黄镇亚,张志毅.绿色木霉纤维素酶AS3.3032液体发酵的研究[J].北京林业大学学报,2001,23(1):56-58.
    [12]董志扬,祝令香,于巍,等.纤维素酶高产菌株的诱变选育及产酶条件研究[J].核农学报,2001,15(1):26-31.
    [13]兰时乐,李立恒,王晶,等.微波诱变结合化学诱变选育纤维素酶高产菌的研究[J][J].微生物学杂志,2007,27(1):22-25.
    [14]Ramani G, Meera B, Vanitha C, et al. Production, purification, and characterization of a beta-glucosidase of Penicillium funiculosum NCL1[J]. Applied Biochemistry and Biotechnology,2012,167(5):959-972.
    [15]Adalberto PR, Massabni AC, Goulart AJ, et al. Production of beta-galactosidase by Trichoderma reesei FTKO-39 in wheat bran-partial purification of two isozymes[J]. Applied Biochemistry and Biotechnology,2006,133(2):163-170.
    [16]Saha BC and Cotta MA. Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol[J]. Journal of Chemical Technology and Biotechnology,2007, 82(10):913-919.
    [17]Mekala NK, Singhania RR, Sukumaran RK, et al. Cellulase production under solid-State fermentation by Trichoderma reesei RUT C30:statistical optimization of process parameters[J]. Applied Biochemistry and Biotechnology,2008,151 (2-3):122-131.
    [18]Kiryu T, Nakano H, Kiso T, et al. Purification and characterization of a novel alpha-glucuronidase from Aspergillus niger specific for O-alpha-D-glucosyluronic acid alpha-D-glucosiduronic, acid[J]. Bioscience Biotechnology and Biochemistry,2005, 69(3):522-529.
    [19]Li XT, She YL, Sun BG, et al. Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp[J]. Biochemical Engineering Journal,2010,52(1):71-78.
    [20]Hirayama K, Watanabe H, Tokuda G, et al. Purification and characterization of termite endogenous beta-1,4-endoglucanases produced in Aspergillus oryzae[J]. Bioscience Biotechnology and Biochemistry,2010,74(8):1680-1686.
    [21]Ghose T and Bisaria V. Studies on the mechanism of enzymatic hydrolysis of cellulosic substances[J]. Biotechnology and Bioengineering,2004,21(1):131-146.
    [22]曲春香,沈颂东,王雪峰,等.用考马斯亮蓝测定植物粗提液中可溶性蛋白质含量方法的研究[J].苏州大学学报:自然科学版,2006,22(2):82-85.
    [23]Khan MR and Amin F. Cellulose of Trichoderma viride for biological degradation of cellulosic wastes[J]. Asian Journal of Chemistry,2012,24(6):2524-2528.
    [24]Ahamed A and Vermette P. Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor[J]. Biochemical Engineering Journal,2008,42(1):41-46.
    [25]Ahmed S, Bashir A, Saleem H, et al. Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma Harzianum[J]. Pakistan Journal of Botany, 2009,41(3):1411-1419.
    [26]Saibi W and Gargouri A. Purification and biochemical characterization of an atypical beta-glucosidase from Stachybotrys microspora[J]. Journal of Molecular Catalysis B-Enzymatic,2011,72(3-4):107-115.
    [27]林元山,刘晨辉,王继瑞,等.绿色木霉内切纤维素酶的分离纯化及酶学性质的研究[J].湖南农业科学,2007(5):59-62.
    [28]Saibi W, Amouri B, and Gargouri A. Purification and biochemical characterization of a transglucosilating beta-glucosidase of Stachybotrys strain[J]. Applied Microbiology and Biotechnology,2007,77(2):293-300.
    [29]Lee KW, Han NS, and Kim JH. Purification and characterization of ceta-glucosidase from Weissella cibaria 37[J]. Journal of Microbiology and Biotechnology,2012,22(12):1705-1713.
    [30]刘佳,袁兴中,曾光明,等.表面活性剂对绿色木霉产纤维素酶影响的实验研究木[J].中国生物工程杂志,2006,26(8):62-66.
    [1]Xie XJ, Cui SW, Li W, et al. Isolation and characterization of wheat bran starch[J]. Food Research International,2008,41(9):882-887.
    [2]Bercier A, Plantier-Royon R, and Portella C. Convenient conversion of wheat hemicelluloses pentoses (D-xylose and L-arabinose) into a common intermediate[J]. Carbohydrate Research,2007,342(16):2450-2455.
    [3]Ahmad Z, Butt MS, Anjum FM, et al. Effect of wheat bran concentration on xylanase biosynthesis by Aspergillus niger[J]. International Journal of Agriculture and Biology,2009, 11(5):571-576.
    [4]曾凡忠.小麦麸皮酶法制备低聚糖可行性的探讨[J].粮食与饲料工业,2000,5:38-38.
    [5]陶颜娟,钱海峰,周惠明.酶法制备小麦麸皮膳食纤维及其功能性质的研究[J].食品与发酵工业,2008,33(10):40-5.
    [6]陈凤莲,小麦麸皮中低聚木糖的生物制备技术研究.2006,哈尔滨:东北林业大学.
    [7]郑学玲,李利民.小麦加工副产品—麸皮的综合利用研究[J].粮食与饲料工业,2001(012):38-38.
    [8]Dunford NT, Irmak S, and Jonnala R. Effect of the solvent type and temperature on phytosterol contents and compositions of wheat straw, bran, and germ extracts[J]. Journal of Agricultural and Food Chemistry,2009,57(22):10608-10611.
    [9]Girio FM, Fonseca C, Carvalheiro F, et al. Hemicelluloses for fuel ethanol:A review[J]. Bioresource Technology,2010,101(13):4775-4800.
    [10]Oliva JM, Saez F, Ballesteros I, et al. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus[J]. Applied Biochemistry and Biotechnology,2003,105:141-153.
    [11]Tucker MP, Kim KH, Newman MM, et al. Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility[J]. Applied Biochemistry and Biotechnology,2003,105:165-177.
    [12]Agblevor FA, Batz S, and Trumbo J. Composition and ethanol production potential of cotton gin residues[J]. Applied Biochemistry and Biotechnology,2003,105:219-230.
    [13]詹怀宇.杨木爆破法制浆的研究.中国造纸,1988.
    [14]许凤,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,12(1):45-54.
    [15]陈洪章,李佐虎.麦草蒸汽爆破处理的研究[J].纤维素科学与技术,1999,7(4):14-22.
    [16]廖双泉,马凤国,廖建和,等.蒸汽爆破处理对剑麻纤维组分分离的影响[J].热带作物学报,2003,24(3):27-30.
    [17]刘健,陈洪章,李佐虎.大麻纤维脱胶研究综述[J].中国麻业,2002,24(4):39-42.
    [18]Akmaz S, Gurgey I, and Yasar M. Effect of steam explosion on cellulose degradation by Trichoderma reesei cellulase.[J]. Abstracts of Papers of the American Chemical Society, 2003,226:184-184.
    [19]Deejing S and Ketkorn W. Comparison of hydrolysis conditions to recover reducing sugar from various lignocellulosic materials[J]. Chiang Mai Journal of Science,2009,36 (3):384-394.
    [20]Ibrahim MM, Agblevor FA, and El-Zawawy WK. Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass[J]. Bioresources,2010,5 (1): 397-418.
    [21]王建荣,张曼夫,黄涛.绿色木霉纤维素酶CBHII基因的结构研究[J].遗传学报,1995,22(1):74-80.
    [22]林雁飞,何进,操丽丽,等.高效毛细管电泳法测定蜂蜜中的多种糖[J].分析测试学报,2005,24(4):74-76.
    [23]张其安,王娟,戴建晓,等.高效液相色谱-荧光检测法测定蜂蜜中的果糖,葡萄糖和麦芽糖[J].食品科学,2011,32(14):249-252.
    [24]Xu WL, Ke GZ, Wu JH, et al. Modification of wool fiber using steam explosion[J]. European Polymer Journal,2006,42(9):2168-2173.
    [25]Chen X, Ning XQ, Zhang BB, et al. Effect of steam explosion and ionic liquid pretreatment technology on the enzymatic hydrolysis of corn stalk[J]. Asian Journal of Chemistry,2012, 24(3):1015-1018.
    [26]Zhang LH, Li D, Wang LJ, et al. Effect of steam explosion on biodegradation of lignin in wheat straw[J]. Bioresource Technology,2008,99(17):8512-8515.
    [27]Bonini C, Auria M D, Di Maggio P, et al. Characterization and degradation of lignin from steam explosion of pine and corn stalk of lignin:the role of superoxide ion and ozone[J]. Industrial Crops and Products,2008,27(2):182-188.
    [1]叶新强,付宣.应用前景广阔的微波处理技术[J].山东环境,1998(1):21-23.
    [2]Achilias DS, Redhwi HH, Siddiqui MN, et al. Glycolytic depolymerization of PET waste in a microwave reactor[J]. Journal of Applied Polymer Science,2010,118(5):3066-3073.
    [3]Ahmed ABA, Taha RM, Mohajer S, et al. Preparation, properties and biological applications of water soluble chitin oligosaccharides from marine organisms[J]. Russian Journal of Marine Biology,2012,38(4):351-358.
    [4]熊犍,叶君.微波对纤维素Ⅰ超分子结构的影响[J].华南理工大学学报:自然科学版,2000,28(3):84-89.
    [5]Allan GG, Krieger BB, and Work DW. Dielectric loss microwave degradation of polymers: cellulose[J]. Journal of Applied Polymer Science,1980,25(9):1839-1859.
    [6]Liu JF, Cao Y, Yang MH, et al. Saccharification of the pretreated corn stover by microwave assisted DMSO/amimCl Co-solvents[J]. Acta Chimica Sinica,2012,70(18):1950-1956.
    [7]余君.不同预处理工艺对稻壳纤维素酶酶解效果的影响.2008,武汉:华中农业大学.
    [8]Lu JL and Zhou PJ. Optimal conditions for maximizing production of reducing sugars from microwave-assisted FeCl3 pretreated rice straw degraded by Trichoderma viride and Bacillus pumilus[J]. African Journal of Microbiology Research,2011,5(31):5757-5764.
    [9]徐旭峰,陈鹏,陈创鑫等.微波强化碱处理黄麻快速脱胶工艺研究[J].上海纺织科技,2010(012):26-28.
    [10]Li HQ and Xu J. Optimization of microwave-assisted calcium chloride pretreatment of corn stover[J]. Bioresource Technology,2013,127:112-118.
    [11]Vani S, Binod P, Kuttiraja M, et al. Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application[J]. Bioresource Technology,2012,112:300-307.
    [12]张春红,陈秋玲,孙可伟.微波强化碱预处理对二次纤维结构及其氰乙基化反应的影响[J].林产化学与工业,2010,30(001):97-102.
    [13]Zhu S, Wu Y, Yu Z, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis[J]. Process Biochemistry,2005,40(9):3082-3086.
    [14]Singh A, Tuteja S, Singh N, et al. Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production[J]. Bioresource Technology,2011,102(2):1773-1782.
    [15]朱萍,汤颖,薛青松,等.微波辅助的金属氯化物Lewis酸催化纤维素水解[J].燃料化学学报,2009,37(2):244-247.
    [16]刘龙飞,宗水珍,邱竹.微波促纤维素水解制备可发酵还原糖研究[J].常熟理工学院学报,2008,4:77-81.
    [17]邓辉,李春,李飞,等.棉花秸秆糖化碱预处理条件优化[J].农业工程学报,2009,25(1):208-212.
    [18]杨培周,姜绍通,潘丽军,等.玉米芯糖化微波与酸/碱联合预处理效果实验分析[J].农业机械学报,2010,41(7):101-104.
    [19]Matsumoto A, Tsubaki S, Sakamoto M, et al. A novel saccharification method of starch using microwave irradiation with addition of activated carbon[J]. Bioresource Technology,2011, 102(4):3985-3988.
    [20]Aguedo M, Vanderghem C, Goffin D, et al. Fast and high yield recovery of arabinose from destarched wheat bran[J]. Industrial Crops and Products,2013,43:318-325.
    [1]赵欣.干酪乳杆菌w-r8发酵小麦麸皮生产乳酸的研究及应用[D].2007.
    [2]Leathers TD and Manitchotpisit P. Production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by Aureobasidium pullulans[J]. Biotechnology Letters,2013, 35(1):83-89.
    [3]刘建军,姜鲁燕,赵祥颖,等.L-苹果酸的应用及研究进展[J].中国食品添加剂,2003(3):53-56.
    [4]Zelle RM, De Hulster E, Van Winden WA, et al. Malic acid production by Saccharomyces cerevisiae:engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export[J]. Applied and Environmental Microbiology,2008,74(9):2766-2777.
    [5]吴清平,周小燕.L-苹果酸研究进展[J].微生物学通报,1990,17(1):30-33.
    [6]Yeramian N, Chaya C, and Lepe JS. L-malic acid production by Saccharomyces spp. during the alcoholic fermentation of wine[J]. Journal of Agricultural and Food Chemistry,2007,55 (3):912-919.
    [7]Goldberg I, Rokem JS, and Pines O. Organic acids:old metabolites, new themes[J]. Journal of Chemical Technology and Biotechnology,2006,81(10):1601-1611.
    [8]Kubota Y, Matsuda T, Harada T, et al. Production of malic acid by baker's yeast:fixation of carbon dioxide[J]. Journal of Molecular Catalysis B-Enzymatic,2007,48(3-4):113-113.
    [9]胡纯铿.L-苹果酸产生菌黄曲霉Aspergillus flavus H-98发酵特性的研究[J].食品与发酵工业,1999,2:5.
    [10]胡纯铿,陈哲超,施巧琴,等.L-苹果酸产生菌Aspergillus flavus HLD-12产酸条件的研究[J].福建师范大学学报(自然科学版),1994,10(2):75-80.
    [11]胡纯铿,白凤武,安利佳.膜蛋白氨基酸组成通过改变膜流动性影响粟酒裂殖酵母和酿酒酵母融合株耐酒精能力[J].生物工程学报,2005,21(5):809-813.
    [12]刘建军,赵祥颖,田延军,等.直接利用糖质原料生产L-苹果酸菌种的选育[J].工业微生物,2003,1:27-31.
    [13]Battat E, Peleg Y, Bercovitz A, et al. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor[J]. Biotechnology and bioengineering,1991,37 (11): 1108-1116.
    [14]Curcio E, Di Profio G, and Drioli E. Recovery of fumaric acid by membrane crystallization in the production of L-malic acid[J]. Separation and Purification Technology,2003, 33(1):63-73.
    [15]黄艳红,田延军,郝夕祥,等.L-苹果酸代谢流分析及高产菌株构建[J].山东食品发酵,2009(003):3-8.
    [16]Moon SY, Hong SH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of malic acid[J]. Biochemical Engineering Journal,2008,40(2):312-320.
    [17]Zhang HL, Cai J, Dong JQ, et al. High-level production of poly (beta-L-malic acid) with a new isolated Aureobasidium pullulans strain[J]. Applied Microbiology and Biotechnology, 2011,92(2):295-303.
    [18]West TP. Malic acid production from thin stillage by Aspergillus species[J]. Biotechnology Letters,2011,33(12):2463-2467.
    [19]Presecki AV and Vasic-Racki D. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp Strains[J]. Biotechnology Letters,2005,27(23-24):1835-1839.
    [20]Chen Y, Zhao B, Huang XL, et al. Purification and neuroprotective effects of polysaccharides from Opuntia Milpa Alta in cultured cortical neurons[J]. International Journal of Biological Macromolecules,2011,49(4):681-687.
    [21]Wang MC, Jiang CX, Ma LP, et al. Preparation, preliminary characterization and immunostimulatory activity of polysaccharide fractions from the peduncles of hovenia dulcis[J]. Food Chemistry,2013,138(l):41-47.
    [22]方永亮,郑珩,余江河.功能性甜味剂L-阿拉伯糖的研究进展[J].氨基酸和生物资源,2009,31(1):8-12.
    [23]Beerens K, Desmet, T and Soetaert W. Enzymes for the biocatalytic production of rare sugars[J]. Journal of Industrial Microbiology & Biotechnology,2012,39(6):823-834.
    [24]石建鹏.L-阿拉伯糖的保健功效及其在食品药品中的应用[J].农产品加工,2012(012):8-9.
    [25]Aguedo M, Vanderghem C, Goffin D, et al. Fast and high yield recovery of arabinose from destarched wheat bran[J]. Industrial Crops and Products,2013,43:318-325.
    [26]李道义,闫巧娟,江正强,等.酵母菌发酵玉米皮酸水解液制备结晶L-阿拉伯糖的研究[J].食品科学,2007,28(4):125-128.
    [27]Cheng HR, Wang HW, Lv JY, et al. A novel method to prepare L-arabinose from xylose mother liquor by yeast-mediated biopurification[J]. Microbial Cell Factories,2011,10:43.
    [28]Shibanuma K, Takamine K, Maseda S, et al. Partial acid hydrolysis of corn fiber for the production of L-arabinose[J]. Journal of Applied Glycoscience,1999,46:249-256.
    [29]Hizukuri S, Abe JI, Ohsaki S, et al, Process for producing L-arabinose by acid hydrolysis method.2010, EP Patent 1,076,100.
    [30]Ahmed Z, Shimonishi T, Bhuiyan SH, et al. Biochemical preparation of L-ribose and L-arabinose from ribitol:A new approach[J]. Journal of Bioscience and Bioengineering, 1999,88(4):444-448.
    [31]秦海敏,喻宗沅,容如滨.L-阿拉伯糖研究进展[J].化工与生物工程,2006,23(2):50-52.
    [32]李令平,周娟,邱学良.玉米皮酸解提取L-阿拉伯糖的工艺研究[J].中国食品添加剂,2009,6:139-142.
    [33]马年方,蚁细苗,谭文兴,等.离子交换树脂对蔗渣水解液中木糖与阿拉伯糖的色谱分离研究[J].离子交换与吸附,2012,28(6):553-559.
    [34]雷华杰.从木糖母液中回收L-阿拉伯糖的工艺研究.2010,浙江大学.
    [35]Park NH, Yoshida S, Takakashi A, et al. A new method for the preparation of crystalline L-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast[J]. Biotechnology Letters,2001,23(5):411-416.
    [36]赵凯,许鹏举,谷广烨.3,5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学,2008,29(8):534-536.
    [37]尹志梅,杨青.L-苹果酸定量检测方法[J].中国酿造,1999(4):33-34.
    [38]唐慧慧,蔡清宇,毛翼.HPLC法测定净乌梅及乌梅炭中柠檬酸和苹果酸的含量[J].中药材,2007,30(1):52-54.
    [39]Yeramian N, Chaya C, and Lepe JAS. L-(-)-Malic acid production by Saccharomyces spp. during the alcoholic fermentation of wine (1)[J]. Journal of Agricultural and Food Chemistry, 2007,55(3):912-919.
    [40]景晓辉,丁友土.发酵法生产L-苹果酸技术的研究[J].食品工业科技,2005,26(9):151-153.