功能性大豆蛋白的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白是一类优质植物蛋白资源,含有多种氨基酸,具有较高的营养价值。大豆蛋白作为油脂加工的副产物,在中国有着相当大的产量。但受其本身性质方面的影响,大豆蛋白在食品工业中的应用受到很大的限制,目前仅能应用在肉制品等少数领域。因而如何使大豆蛋白更广泛地应用在食品中,成为一个亟待解决的课题。饮料工业是食品工业中的一个重要分支,是人们日常消费最多的一类食品之一,而饮料中60-70%为酸性饮料,如果能将大豆蛋白应用到酸性饮料中,一定能够极大拓宽大豆蛋白的应用领域。众所周知,大豆蛋白在酸性条件下(pH3.0-4.5)溶解性很差,而酸性饮料的pH值正好在此区间,这就导致大豆蛋白很难应用于诸如果汁等的酸性饮料中。本论文旨在解决大豆蛋白的酸溶性问题,使其在酸性条件下(pH3.0-4.5)具有良好的溶解性和透光性,适合加入到果汁等酸性饮料中。本论文通过对不同因素影响大豆蛋白酸溶性的研究,探究出三种制备酸溶性大豆蛋白的方法。主要结论如下:
     (1)首先研究了壳聚糖对提高大豆蛋白酸溶性的影响。研究表明,加入蛋白量5%(w/w)的壳聚糖(500KDa),可以使大豆蛋白在pH4.0的氮溶指数(NSI)从30.05±1.25%提高到81.28±0.98%,浊度下降了89.32±1.07%,而且NSI的升高和浊度的降低与壳聚糖的添加量成正相关。此外,水热处理对提高大豆蛋白酸溶性也有着显著的作用。在等电点附近的水热处理可以使大豆蛋白在pH4.0的氮溶指数(NSI)从26.76±1.54%提高到72.19±0.67%。
     (2)其次研究了植酸酶与酸性蛋白酶的结合处理会对大豆蛋白酸溶性的影响。研究表明,植酸酶单独作用时,大豆蛋白在pH4.0时的NSI为41.74±2.02%,酸性蛋白酶单独作用时,其NSI为29.64±1.56%,而二者结合后NSI为81.84±1.84%,可见二者的结合处理效果要大大高于单独处理。此种方法制得的酸溶蛋白具有更加良好的风味和口感。
     (3)最后研究了预凝胶法制备酸性蛋白饮料的工艺。研究表明,蛋白经GDL诱导成凝胶后,再经均质处理,其平均粒径从448.4±25.9nm下降到282.7±21.6nm,zeta电位从41.2±4.4mv下降到15.8±2.4mv,蛋白由于形成更稳定的颗粒,从而减少了沉淀的发生。
     (4)本论文在实验室小试的基础上进行了车间中试实验,并把制得的酸溶蛋白应用到酸性饮料的生产中,产品具有良好的稳定性和透光度,相关数据和结论为工业化大规模生产提供了依据。
which contains many amino acids. As the byproduct of oil processing, soy protein has a large production in China. However, affected by its natural property, soy protein has a limited application in the food industry, only used in a few areas such as meat products. So how to make soy protein be used in food industry more widely become an issue to be solved immediately. Beverage industry is an important branch of food industry. Beverage is one of the most consumer goods in our daily lives,60-70% of which are acidic beverages. So if soy protein can be applied to acidic beverages, we can greatly broaden the applications of soy protein. As we all know, soy protein has a poor solubility under acidic conditions (pH3.0-4.5), which is also the pH area of acidic beverages. So this will lead to a limited application of soy protein in acidic drinks, such as fruit juice. This paper aims to solve the acid-soluble problem of soy protein, make it has a good solubility and transparency in acidic conditions (pH3.0-4.5) to be fit for the addition of acidic drinks. By the study of different factors which can affect acid-soluble property of soy protein, this paper has explored three kinds of methods to prepare acid-soluble soy protein. The following conclusions were drawn from this essay:
     (1) Effect of chitosan(CTS) on improving solubility of soy protein under acidic conditions is studied. Studies have shown that 5%(w/w)chitosan(500KDa) can make soy protein has an ascension from 30.05±1.25% to 81.28±0.98% in NSI and a decline of 89.32±1.07% in turbidity, and the variation is positively related with the content of chitosan. In addition, the hydrothermal treatment also has a significant effect on improving the solubility of acid-soluble soy protein. The hydrothermal treatment near the isoelectric point of soy protein can make it has an ascension from 26.76±1.54% to 72.19±0.67% in NSI.
     (2) Effect of combination treatment of phytase and acidic protease on improving solubility of soy protein under acidic conditions is studied. Studies have shown that NSI of soy protein in pH4.0 is 41.74±2.02% when treated by phytase, NSI is 29.64±1.56% when treated by acidic protease, and NSI is 81.84±1.84% when treated by the combination of the two enzymes. So the combination treatment has a better effect than separate. The acid-soluble protein made by this method has a better flavor and taste.
     (3) At last, pre-gelatin method preparing acidic protein beverages is studied. Studies have shown that protein gelatin induced by GDL has a decline from 448.4±25.9nm to 282.7±21.6nm in average particle size after homogeneous treatment, and has a decline from 41.2±4.4mv to 15.8±2.4mv in zeta potential. Since forming more stable particles, soy protein has little precipitation during shelf life.
     (4)Based on laboratory test, this paper has carried out the pilot plant experiments, and applied this acid-soluble protein to the production of acidic beverages. The products have good stability and long shelf life, and related data and conclusions can provide a foundation for industrial mass production.
引文
[1]时海窕.大豆蛋白在食品加工中的应用[J].农业科学,2010(5):58.
    [2]王凤翼.大豆的化学组成(一)[J].肉类工业,1995(3):44-47.
    [3] Wilson A D, Stokes C R, Bourne F J. Effect of age on absorption and immune responses to weaning or introduction of novel dietary antigens in pigs .Research in veterinary science, 1989, 46 :180-186 .
    [4] Kenneth KC, Elzbieta MK. Soy consumption and cholesterol reduction: review of animal and human studies .J Nutr, 1995, 125 :594-597 .
    [5] Washbum S, Burke GL, Morgan T, et al. Effect of soy protein supplementation on serum lipoproteins, blood pressure, and menopausal symptoms in perimenopausal women .Menopause, 1999, 6 :7~13 .
    [6] Kazuhiro yagasaki, Toshio Takagi. Biochemical characterization of soybean protein consisting of different subunits of glycinin .J Agric Food Chem, 1997, (45) :656-660 .
    [7]曲家妮,杨晓泉.大豆蛋白组分功能性质的比较研究[J].中国粮油学报, 2010,25(06):26-29.
    [8] Teraishi K, Takahashi M, Hajika M, et al. Suppression of soybeanβ-conglycinin genes by a dominant gene, Scg-1 .Theor Appl Genet. 2001, 103:1266-1272.
    [9] Maruyama N,Maruyama Y, Tsuruki T et al. Creation of soybeanβ-conglycininβwith strong pHagocytosis-stimulating activity [J] .Bioehimica et BiopHysica Acta. 2003, 1648:99-104.
    [10] Ikura Ketal. Crosslinking of soybean7S and11S proteins by transglutaminase[J] .Agric Biol chem, 1980, 44 (12) :2979~2984 .
    [11] Peng I C, Quass D W, Dayton W R, et al. The pHysicochemical and functional properties of soybean 11S globulin a review .Cereal Chemistry, 1984, 61 (6):480-489.
    [12]石彦国,任莉.大豆制品工艺学.北京:中国轻工业出版社, 1993,10.
    [13]中国医学科学院卫生研究所编著.食物成分表,北京:人民卫生出版社, 1976.
    [14] Fukushim a D. Review: RecentProgress in Research and Technology on soybeans [J] .Food Sci.Technol.Res, 2001, 7 (1):8-16.
    [15]李吕木.大豆分离蛋白及其制取[J].粮食与食品工业, 2004, (2): 7-10.
    [16]郑田要.以高温脱脂豆粕为原料制备大豆分离蛋白的研究[D]华南理工大学,2010.
    [17]王尔惠.大豆蛋白质生产新技术[M].北京:中国轻工业出版社, 1999.9.
    [18] Chun Liu,Xiansheng Wang,Hao Ma,etal. Functional properties of protein isolates fromsoybeans stored under various conditions[J] .Food Chemistry, 2008, 111 (1) :29-37 .
    [19]邢小鹏,吴高峻,孙华.大豆分离蛋白的功能特性[J].食品工业科技, 2000, 21(4): 74-76.
    [20] Jorge R Wagner, Jacques Gueguen. Surface functional properties of native, acid-treated, and reduced soy glycinin: emulsifying properties .Journal of Agricultural and Food C hemistry, 1999, 47 (6):2181-2187.
    [21] Owen R Fennema.王璋,译.食品化学[M].第二版.北京:中国轻工业出版社, 1991, 219, 223, 228-246.
    [22]钟振声,文锡莲,陈然.物理改性对大豆分离蛋白功能性质的影响[J].中国油脂, 2008, 33(5): 21-23.
    [23]郭永,张春红.大豆蛋白改性的研究现状及发展趋势[J].粮油加工与食品机械, 2003, (7): 46-50.
    [24]杨会丽,马海乐.超声波对大豆分离蛋白物理改性的研究[J].中国酿造,2009, 5: 24-27.
    [25] Maria Babajimopoulos,Srinivasan Damodaran,Syed S H Rizvi,et al. Effect of various anious on the rheological and gellingbehavior of soy proteins:thermodynamic observations[J] .Journal of Agriculture and Food Chemistry. 1983, 31 :1270-1275 .
    [26] Yufei Hua,Steve W. Cui,Qi Wang,Yoshinori Mine,Vaino Poysa. Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours .Food Research International, 2005, 38:377~385.
    [27]白宝兰,郑鸿雁.高功能性大豆浓缩蛋白的性能及在肉制品中应用的研究[J].食品科学, 2005,26(9): 58-61.
    [28]田少君,杨敏,郭兴风等.不同物理法改性醇洗大豆浓缩蛋白功能性及微观结构比较研究[J].中国油脂, 2008, 33(7):27-31.
    [29] Kyong-Ae Lee & Charlotte P. Brennand(2004).PHysico-chemical, textural and sensory properties of a fried cookie system containing soy protein isolate, International Journal of Food Science and Technology 2005, 40, 501~508.
    [30] Yao, J.J., Wei, L.S. & Steinberg, M.P. (1988). Waterimbibing capacity and rheological properties of isolated soy proteins. Journal of Food Science, 53, 464~467.
    [31]刘彬,陈中,杨晓泉,等.大豆制品对面包品质影响的研究[J].食品工业科技,2005,26(4):92-97.
    [32]郭睿,杨晓泉,金郁葱等.大豆蛋白肽对高蛋白焙烤食品质构的改善作用.食品工业科技,2011,(8):126-128.
    [33] Piaz, M. N. Healthy Baking With Soy Ingredienfs .Cereal Foods World, 1999, (3):136-139.
    [34]谭属琼,王庭.大豆蛋白在肉制品中的应用[J].肉类研究,2010,(10):67-69.
    [35] Belloque,J,García,M.C,Torre,M,Marina,M.L. Analysisof soyabean proteins in meat products.A review .Critical Reviewsin Food Science and Nutrition. 2002, 42 :507~532 .
    [36] Lin W,Mei M Y. Influence of g ums,soy protein isolate,and heating temperatures on reduced-fat meat batters in a model sy stem .F ood Sci. 2000, 65 :48~52 .
    [37]姚汉亭,蔡凤鸣,秦惠珍等.大豆蛋白强化儿童食品对动物生长和氮代瀚的影响[J].南京医学院学报,1986,6(3):195-197.
    [38]任广鸣.强化大豆蛋白食品[J].粮食加工,1988,(1):12-16.
    [39]黄舜荣.大豆蛋白的营养及其饮料的生产[J].山西食品工业, 2002,(02):2-3.
    [40]高宇萍,韩育梅.饮料发展现状和发展方向探讨[J].农产品加工,2010(7):79-86. [41]辛文琦,傅铭,安效卓.酸乳蛋白饮料新制造技术[J].食品工业科技, 1984,(06):13-17.
    [42]丁海霞.各种饮料的作用[J].科学之友, 2006,(08):79.
    [43] Athina Papadopoulou,Richard A. Frazier. Characterizationof Protein-PolypHenol Intractions. Trends of Food Science and Technology,2004,15:186-190.
    [44] Asquith T, Butler L. Interactions of Condensed Tannins with Selected Proteins. PHytochemsitry,1986,25(7):1591-1593.
    [45] Shi Bi,He Xiangqi, Haslam E. PolypHenol-Gelation Interaction. J. Am. Leather Chemists As-sociation, 1994, 89(4):98-104.
    [46] Haslam E, Lilley T, Cai Y et al. Traditional Herbal Medicines. The Role of PolypHenols. Planta Medica,1989,55:1-3.
    [47]覃思,吴卫国.茶多酚对蛋白质功能特性影响研究初探[J].中国食物与营养, 2005,(05)
    [48]滕紫.大豆蛋白7S/11S组分的分离与性质研究[D].华南理工大学,2009.
    [49]李彦荣.果汁豆奶的制备及其稳定性研究[D].江南大学,2006.
    [50]凌恩福.均质对“爱乐特”鲜牛奶果汁饮料稳定性的影响[J].食品研究与开发, 1995,(02):31-33.
    [51]朱良工,林劲松等卡拉胶在中性乳饮料中的作用机理.中国乳业,2002,8:28-30.
    [52] R.A.Bufo, G.A.Reineccius, G.W.Oehlert. Influence of time-temperature treatments onthe emulsifying Properties of gum acacia in beverage emulsions. Journal of Food Engineering, 2002, 51:341-345.
    [53]俞小良.调配型果汁豆乳饮料的研制及其稳定性研究[D].浙江工商大学,2010.
    [54]邓宇峰.电点迁移法提高含乳饮料的稳定性[J].食品工业科技,2001,2(4):4.
    [55] Olli TOssavainen. Effect of Milk Protein Products on the Stability of a Model Low-Fat SPread.Int.Dairy journal, 1996, 6:171-184.
    [56]王白鸥,果汁中的多酚物质及测定[J].果蔬加工,2001,(5):27.
    [57] King-Thom Chung, Cheng-I Wei, Michael G Johnson. Are tannase a double-edged sword in biology and health[J] .Trends in Food Science Technology, 1998, (9) :168~175 .
    [58]贺立东,豆奶稳定性的探讨.饮料工业,2000,3(4):36-38.
    [59]方丰华.果汁豆奶的研制及其稳定性研究[D].江南大学,2006.
    [60]KATO, Y SASAKI,R FURUTAK, Kobayashi. Functional protein-polysaccharide conjugate prepared by controlled dry heat-ing of ovalbumin-dextran mixtures [J] .Agric.Biol.Chem, 1990, 54 (1):107-112.
    [61] Majeti N V, Ravi Kumar. A review of chitin and chitosan applications .Reactive and Functional Polymers, 2000, 46 (1):1-27.
    [62] Somashekar D, JosepH Richard. Chitosanases-properties and applications: a review .Bioresource Technology, 1996, 55 (1):35-45.
    [63] Lowry Oliver H., Rosebrough Nira J., Farr A. Lewis. Protein measurement with the folin pHenol reagent [J]. The Journal of Biological Chemistry. 1951, 265-275.
    [64] Petruccelli, S., &, Anon MC. Relationship between the method of obtention and the structural and functional properties of soy protein isolates. 1. Structural and hydration properties. Journal of Agricultural and Food Chemistry. 1994, 42, 2161–2169.
    [65]赵剪,方婷,陈梅英,高明才,林美娜,陈锦权.模糊数学在不同处理橙汁感官评定中的应用[J].河南工业大学学报(自然科学版), 2008,(01):72-75.
    [66] Van der veenM, NordeW, stuartM C. Effects of succinylation on the structure and thermostability of lysozyme[J]. Journal of Agricultural and Food Chemistry, 2005, 53 (14): 5702-5707.
    [67] Oh H I, Kim Y J, Chang E J, et al. Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise .Biosci Biotechnol Biochem, 2001, 65(11) :2378-2383.
    [68] De Boland AR, Garner GB, O'Dell BL. Identification and properties of pHytate in cereal grains and oilseed products [J]. J. Agric. Food. Chem., 1975, 23:1186-1189.
    [69] Jaffe G.. PHytic Acid in Soybeans[J]. JAOCS, 1981, 58:493-495.
    [70]刘翀,大豆蛋白分级分离机理的研究[D],华南理工大学,2010.
    [71] Ishibashi N,Ono I,Kato K. et al. Studies in flavored peptides.3 role of the hydropHobic amino-acid residue in the bitterness of peptides[J] .Agriculture and Biological Chemistry, 1988, 52 (1) :91-94 .
    [72]王海青,刘克为,于兹东,刘坤,刘玉兰.分光光度法测定植酸的比较研究[J].青岛医学院学报, 1999, 14(3): 37-39.
    [73] Spellman D; Mcevoy E; O’Quinn G Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis [J]. International Dairy Journal2003, 13:447-453.
    [74] Zhao, Y., Mine, Y., & Ma, C. Y. Study of thermal aggregation of oat globulin by laser light scattering. Journal of Agricultural and Food Chemistry. 2004, 52, 3089–3096.
    [75] Laemmli UK. Cleavage of structural proteins dur ing the assembly of the head of bacteriopHage T4 [J]. Nature, 1970, 227: 680-685.
    [76] Ullah A.H.J, Sethumadhavan K, Mullaney E J, Ziegelhoffer T, Austin-PHillips S. Characterization ofrecombinant fungal pHytase(pHyA) expressed in tobaccoleaves .Biochemical and BiopHysical Research Communications. 1999, 264 :201~206.
    [77] Thanh, V.H., Shibasaki,K. Major Proteins of Soybean Seeds.A Straight forward fractionation and their characterization[J]. J. Agric. Food Chem. 1976, 24:1111-1117.
    [78] Clark A H, Kavanagh G M, Ross-MurpHy S B. Globular protein gelation-theory and experiment[J] .Food Hydrocolloids, 2001, 15 (4/6) :383-400 .
    [79] Hermansson A M. Microstructure of protein gels related to functionality [M] .London: Blackie Academic and Professional, 1994:22-42.
    [80]姚玉静,黄国平,龚慧雯,等.果醋发酵工艺研究进展[J],粮食与食品工业,2010,17(6):28-30.
    [81] Kaoru K, Katsuyoshi N. Rheological studies on the gelation process of soybean 7 S and 11 S protein in the presence of GDL .J Agric Food Chem, 1993, 41:8-12.
    [82]刘志胜.豆腐凝胶的研究[D].中国农业大学,2000.
    [83]马光.沙果果醋发酵生产工艺研究[J].中国调味品,2011,36(3):74-76.
    [84]闵维.大豆蛋白_多糖复合凝胶流变学及微结构研究[D].华南理工大学,2010.
    [85] Ju, Z. Y., &Kilara, A. Gelatin of pH-aggregated whey protein isolate solution inducedby heat, protease, calcium salt, and acidulant. Journal of Agricultural and Food Chemistry, 1998a, 46:1830-1835.
    [86] Alting,A.C., de Jongh, H.H.J., Visschers,, R.W.,&Simons ,J. PHysical and chemical interactions in cold gelation of food proteins. Journal of Agricultural and Food Chemistry, 2002, 50:4682-4689.