荷电粒子在垂直电泳中的迁移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,电泳技术在分离和鉴定荷电粒子中已经得到了广泛的应用。但其应用范围主要在于微量荷电粒子的分析与鉴定,而对于连续制备过程应用较少,因为在此条件时,电场中离子的迁移规律直接影响分离、鉴定的结果,因此,研究电泳过程中荷电粒子的迁移规律对优化电泳条件具有重要意义。
     本文首先利用容积为30L的大垂直电泳装置对苦咸水中氯离子的迁移规律进行了研究。考查了电压、进水流速和填料对氯离子浓度的影响,得出了氯离子浓度与电导率的拟合曲线。根据电导-浓度曲线,测得了电泳室内不同位置的氯离子浓度,研究氯离子浓度在垂直电泳中的迁移规律。接着设计新的微型(容积为60mL)电泳装置,与原来的装置相比,在结构上增加了两冷却室以减小电泳时焦耳热的影响。以硫酸钠和氨基酸混合物为研究对象,考查了硫酸根离子和甘氨酸、赖氨酸混合物的迁移规律。
     大电泳装置的实验结果表明:保持进水流速不变,电压越大,氯离子的迁移程度越大;对于金刚砂填料,随着进水流速增大,氯离子的迁移程度先增大后减小,存在一个较佳的进水流速,在该流速条件下,氯离子迁移的程度最大,相应的脱盐效果也较好;填料的粒径越小,其作为承载填料对进分离液的分散效果越好,从而在垂直电泳过程中荷电粒子的迁移程度越明显;在一定pH值条件下,电导与氯离子的浓度成良好的线性关系,氯离子在电泳箱内横向和纵向分布规律与理论上基本相符,但石英砂填料下氯离子浓度与理论的偏离比金刚砂填料下的偏离大。
     微型电泳装置的实验结果表明:支持介质——滤纸在反应初期对实验结果的影响较大,当稳定运行时,可不考虑它的影响;随着电压的增大,硫酸根离子在电泳中的迁移程度较大,出样比较集中,硫酸根离子与钠离子的迁移速率之比与理论分析存在一定的差异;两性电解质氨基酸在电泳过程中的迁移规律较无机离子复杂,在本实验过程中没有发现明显的规律性;电场中赖氨酸在比甘氨酸容易带电,电泳时的迁移程度大;电压对氨基酸的迁移有很大影响;新设计的垂直电泳装置适合用于无机离子的分离,如用于分离两性电解质氨基酸还需进一步研究电泳条件或改进装置。
In the last few years, electrophoresis technology has been used widely in the separation and determination of charged ions. However, it is applied mainly in the microanalysis and there are few reports in the continuous operation. Since the migration of charged ions has the direct influence on the efficiency of separation and determination, therefore, the research on the migration of charged ions in the electrophoresis can help to optimize the electrophoresis conditions to obtain good results.Firstly, the migration of Cl* in seawater is studied using the large electrophoresis equipment with a volume of 30L. The influence of voltage, flow rate, padding properties on concentration of Cl" is researched. The fitted curve of relationship between conductivity and Cl" concentration is obtained. According to the curve, the concentration of Cl" at different location of electrophoresis chamber is measured. The migration of Cl" in the process of electrophoresis is studied. Secondly, a new subminiature (the volume is 60mL) electrophoresis equipment (SEE) has been designed. The distinguishing configuration feature of SEE compared with the former is the addition of two cooling chambers to reduce the effect of forming heat on electrophoresis. Finally, selecting Na2SO4 and mixture of amino acid as the research object, the migration of charged ions in Na2SO4 and mixture of lysine and glycin is investigated.The conclusions obtained by the large electrophoresis equipment are as follows: the bigger the voltage, the easier the migration of Cl" while keeping the fixed flow rate; the migration extent of Cl" is strengthened at first and then weakened with the increase of flow rate when the carborundum is used; the optimal flow rate is found at which the maximum migration quantity of Cl' is obtained, and the desalting efficiency is well; the comparison of two kinds of padding show that the smaller the diameter of padding, the better effect of disperse for influx, therefore the bigger the migration extent of charged ion in vertical electrophoresis; at certain pH, the relationship of conductivity and Cl" concentration is linear; the distribution of Cl" in transverse and longitudinal direction of electrophoresis chamber is nearly the same with the theoretical values, but the departure from theoretical values using quartz sand is bigger than using carborundum.The conclusions obtained by SEE are as follows: the supporting medium--filter paperhas obvious influence on the experiment results at the beginning of reaction, but when the equipment run steadily, the influence can be neglected; the migration extent of SO42- is strengthened and the distribution of SO42- is concentrated with the increase of voltage; the ratio of migration rate of SO42- to Na+ is different from that of the theory analysis; the migration
    
    regularity of ampholyte amino acid is more complex than that of inorganic ion and the obvious regularity is not found in the experiment; in electrical field, the lysine is charged easier than glycin, so the migration quantity of lysine is larger than glycin; the voltage has obviously influence on the migration of amino acid; the new equipment can be applied to separate inorganic ions and some improvements for equipment and further research on conditions of electrophoresis should be undertaken to separate ampholyte amino acid.
引文
[1] 俊钰.电泳技术在药物分析中的应用[J].安徽医药,2004,9(2):125-126.
    [2] 沈霞.电泳技术的现状和发展[J].中华检验医学杂志,2001,24(5):263-265.
    [3] 何忠效,张树政.电泳[M].北京:科学出版社,1999.
    [4] 吴性良,朱万森,马林.分析化学原理[M].北京:化学工业出版社,2004.
    [5] 刘志国.新编生物化学[M].北京:中国轻工业出版社,2003.
    [6] 刘中华.激光诱导荧光毛细管电泳装置的研制与应用:(硕士论文).武汉:武汉大学,2003.
    [7] Cao C X. Comparisons of the mobilities of salt ions obtained by the moving boundary method and two empirical equations in capillary electrophoresis[J]. Journal of Chromatography A, 1997, 771(1-2): 374-378.
    [8] 陈勇,袁倬斌.毛细管区带电泳直接分离与测定抗坏血酸对映体的研究[J].应用基础与工程科学学报,1995,3(1):14-17.
    [9] 陈连英,王惠民,丛辉等.琼脂糖凝胶区带电泳应用于蛋白尿的分析[J].南通大学学报(医学版),2005,25(1):55-56.
    [10] 薛艳,杨海鹰,杨永坛.毛细管区带电泳测定纳米粒子粒度分布的研究[J].色谱.2004,22(5):490-493.
    [11] 李琦,马少妹,王小如等.毛细管区带电泳法测定丹参及其复方制剂中水溶性有效成分[J].厦门大学学报(自然科学版),2004,43(1):80-83.
    [12] 王效娅,朱冠梅,王会仍.等速电泳法测定肌病患者运动前后的血有机酸含量[J].浙江实用医学,2002,7(1):22-23.
    [13] 胡荣宗,郑金坚,刘文远等.等速电泳法同时检测K~+、Na~+、ca~(2+)、Mg~(2+)和NH_4~+[J].分析仪器,1999,2:47-50.
    [14] 韦晓梅,窦艳桂.氯乙酸的等速电泳分析方法[J].辽宁化工,2000,29(3):184-185.
    [15] 杨春,姬磊,张维冰等.毛细管等电聚焦电泳技术进展[J].色谱,2003,21(2):121-125.
    [16] 成凤桂,陈玉等.电聚焦电泳法分离鉴定生漆中同工酶[J].中南民族学院学报(自然科学版),2001,20(1):78-82.
    [17] 王晓峰,赵婷.超薄等电聚焦电泳技术及其在种子纯度鉴定中的运用[J].种子,2000,6:55-57.
    [18] 廖朗,李福平,郭跃文.电泳分析技术及其临床应用的某些进展[J].现代科学仪器,2001,2:60-62.
    [19] J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著.金冬雁,黎孟枫译.分子克隆实验指南[M].北京:科学出版社,1999.
    [20] Matthias U. Capillary zone electrophoresis of alkaloids Influence of structure on electrophoretic mobility[J], Joumal of Chromatography A, 1998, 807: 81-87.
    [21] Abolghasem J G, Morteza G, Khaledi M. Calculation of electrophoretic mobilities in water-organic modifier mixtures in capillary electrophoresis[J]. Journal of Chromatography A, 2000, 868: 277-284.
    [22] Wemer F, Jetse C R, Ernst K. Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis[J]. Joumal of Chromatography A, 1995, 709: 63-70.
    
    [23] Balvant R. S, Hooi H K, Milton T W. Studies on the relationship between structure and electrophoretic mobility of α-helical and β-sheet peptides using capillary zone electrophoresis [J]. Journal of Chromatography A, 1999, 857: 263-273.
    [24] Afonso J L, Michael J. Clifton. Coupling between transfer phenomena in continuous-flow electrophoresis: effect on the steadiness of the cartier flow[J]. Chemical Engineering Science, 2001, 56: 3053-3064.
    [25] Vladislav D. Selectivity, differential mobility and resolution as parameters to optimize capillary electrophoretic separation[J]. Journal of Chromatography A, 1996, 744: 115-121.
    [26] Vladislav D. Capillary zone electrophoresis of serum proteins: study of separation variables [J]. Journal of Chromatography A, 1995, 709: 99-110.
    [27] Robert J, Cooke H. Gel electrophoresis for the identification of plant varieties [J]. Journal of Chromatography A, 1995, 689: 281-299.
    [28] Barany M, Barany K, Giometti C S. Gel electrophoresis for studying biological function [J]. Analytica Chimica Acta, 1998, 372 (1-2): 33-66.
    [29] NemotoT, Sato N. Analysis of subunit structures of proteins by polyacrylamide gel electrophoresis [J]. Analytical Biochemistry, 1998, 265 (1): 190-192.
    [30] 郭丹,陈娜娜,晏媛等.高效毛细管电泳法测定人血清中头孢拉定的含量[J].中国医院药学杂志,2004,24(10):624-626.
    [31] 许重远,陈振德,晏媛等.中药狗脊多糖的含量测定及高效毛细管电泳指纹图谱分析[J].中药材,2004,27(1):22-23.
    [32] 沈佐君.高效毛细管电泳技术及其临床应用进展[J].生命科学仪器,2003,21:57-60.
    [33] 付煜荣,张兰桐.高效毛细管电泳在临床检验中的应用[J].张家口医学院学报,2003,20(2):58-60.
    [34] Ji X H, Li Y, Liu H W, et al. Determination of the alkaloid content in different parts of some Mahonia plants by HPCE [J]. Pharmaceutica Acta Helvetiae, 2000, 74: 387-391.
    [35] Krull I S, Liu X, Dai J et al. HPCE methods for the identification and quantitation of antibodies, their conjugates and complexes[J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 16: 377-393.
    [36] Glowka F K, Karazniewicz M. High performance capillary electrophoresis method for determination of ibuprofen enantiomers in human serum and urine[J]. Analytica Chimica Acta, 2005, 540 (1): 95-102.
    [37] 张裕平,李向军,袁倬斌.毛细管电泳法分析西维因等农药[J].色谱,2002,20(4):341-344.
    [38] 祖元刚,李海英,裴毅.高效毛细管电泳法测定甘草中甘草酸的含量[J].植物研究,2001,21(3):425-427.
    [39] 宋文丽.垂直电泳技术在苦咸水淡化中的应用:(学士论文).大连:大连理工大学,2004.
    [40] 常业恬.薄层聚丙烯酰胺凝胶等电聚焦电泳测定正常人血清肌酸激酶同工酶[J].中华医学检验杂志,1990,13(3):137-142.
    [41] 罗玲.血清肌酸激酶MB同工酶琼脂糖电泳方法—非特异呈色干扰的去除[J].中华医学检验杂志,1990,13(1):13-19.
    [42] 胡厚源,杨振华,张远慧.琼脂糖凝胶电泳法测定血清肌酸激酶MB亚型[J].中华医学检验杂志,1995,18(6):345-352.
    
    [43] 陈宝荣.天门冬氨酸氨基转移酶同工酶的琼脂糖凝胶电泳[J].中华医学检验杂志,1993,16(4):216-225.
    [44] Harrison H. Clinical Application of High Resolution Two Dimensional Electrophoresis(2DE) of Proteins[J]. Clin. Chem, 1989, 35: 1083-1097.
    [45] 范国荣,李珍,胡晋红,等.头孢克洛人体尿药浓度的毛细管电泳分析[J].第二军医大学学报A,2000,21(5):469-472.
    [46] 尹茶,吴玉田.高效毛细管电泳法用于环丙沙星原料药的杂质限量分析[J].第二军医大学学报A,2000,21(10):950-951.
    [47] 姜舜尧,宋景政,周明昊,等.高效毛细管电泳测定夏天无药材中延胡索乙素的含量[J].中国药学杂志,2000,35(05):336-337.
    [48] 李学仁,程庆春,杨跃伟.高效毛细管电泳法研究阿托品类药物的手性分离[J].中国医院药学杂志,1999,19(1):9-11.
    [49] 吴正三,陈明.作物种子纯度检验的电泳方法[J].种子,1998,3:29-30.
    [50] 张文玲,徐献军.酸溶蛋白质电泳方法鉴定小麦种子纯度[J].种子,2005,24(2):94-95.
    [51] 胡群宝,夏清华,陈森.用等电聚焦技术鉴定杂交稻华优桂99的种子纯度[J].植物生理学通讯,2004,40(5):597-598.
    [52] 卢行芳.凝胶电泳及其在皮革工业中的应用[J].中国皮革,2000,29(23):32-34.
    [53] 赵庶忠,张昆亮.电泳工艺在标牌制作中的应用[J].网印工业,2005,01:26-30.
    [54] 蒋守富.电泳技术在寄生虫病诊断中的应用[J].中国血吸虫病防治杂志,2000,12(4):253-256.
    [55] 唐冰.电泳技术在动物类贵重药材鉴别中的应用[J].时珍国医药,2000,11(9):805-806.
    [56] Herve C, Johann B, Gerhard W. Separation of plant membranes by electromigration techniques[J]. Journal of Chromatography B, 1999, 722: 121-139.
    [57] Hidesaburo K, Katuyoshi S, Tomohiko A, et al. Free-flow electroresis in a microfabricated chamber with a micromodule fraction separator:continuous separation of proteins[J]. Journal of Chromatography A, 2003, 990: 169-178.
    [58] Morte D J, Morte D M, James M, et al. Separation of endosomes by aqueous two-phase partition and flee-flow electrophoresis[J]. Journal of Chromatography B, 1998, 711: 203-215.
    [59] Ab T, Desiree V, Jacques N. Electromigration for separations of protein complexes[J]. Journal of Chromatography B, 1999, 722: 141-151.
    [60] Latorre R M, Saurina J, Santiago H C. Continuous flow derivatization system coupled to capillary electrophoresis for the determination of amino acids[J]. Journal of Chromatography A, 2002, 976: 55-64.