土壤侵蚀对种子迁移、流失和幼苗建植的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是我国生态系统退化和土壤侵蚀状况最严重的地区,植被的恢复与重建是控制和改善该区域水土流失现状、减轻土壤侵蚀程度的关键。种子作为种子植物的繁殖体是植被恢复的基础,早期幼苗阶段是植物生活史中对环境条件反映最为敏感的时期,种子和幼苗阶段对植被的的恢复产生着重要的影响。土壤侵蚀不仅造成土壤颗粒与养分的流失,同时通过地表径流和泥沙输移也会带走坡面上散落的种子,并且加剧土壤的干旱,恶化幼苗的生长环境。为此,本研究采用人工模拟降雨试验,研究黄土高原地区典型代表物种的种子在不同降雨强度、不同下垫面条件下的迁移与流失特征、不同形态种子的流失特征、不同雨型对刚萌发的幼苗的破坏能力、以及土壤侵蚀对幼苗建植的影响,主要得出以下结论:
     1)在降雨过程中,不同下垫面条件下种子流失率随着降雨强度的增大而增加,在裸坡的流失率增加趋势最快,具草被的坡面和具草被+蹄印的坡面流失率增加趋势较小且二者相差不大。降雨强度越大,在裸坡上种子流失率越接近迁移率,而在具草被坡面和具草被+蹄印的坡面上这种规律不明显,说明草被和蹄印的存在影响着种子迁移与流失,对于缓解由降雨强度的增加而引起的流失率增加有明显的积极作用。坡面上草被和蹄印的存在对坡面上的种子具有一定的拦截效益,草被的拦截效益一般在10-20%之间,蹄印的拦截效益在10%以下,二者的拦截效益随降雨强度的变化不明显。
     2) 60物种的种子在降雨过程中均发生了迁移,不同物种种子迁移率变化在3.33-100%,其中93.33%的物种种子迁移率超过50%,61.67%的物种种子迁移率达到100%。91.67%的种子发生了流失,只有黄刺枚、酸枣、扁核木、魁蓟和大针茅5个物种流失率为0,流失率达到100%的物种包括地黄、灰叶黄耆、委陵菜和猪毛菜,为最容易流失的物种。种子在坡面的迁移方式包括滚动式、悬浮式和跳跃式三种,其中大部分种子都以跳跃式迁移。
     3)容易发生流失的种子特征主要包括种子重量低于10mg,种子体积低于30mm3,种子为近球形,种子表面光滑和无附属物等。具有抵抗土壤侵蚀的种子特征主要有种子重量大于150mg,种子遇水后能够分泌粘液,狭长型或扁平状的种子,种子表面结构粗糙,以及具有芒、刺、冠毛、翅等附属物的种子。
     4)在微度土壤侵蚀的条件下,40天内的幼苗受降雨破坏情况明显,而40天以后的幼苗在降雨过程中均没有发生数量上的变化,说明幼苗生长到40天以后就具备了抵抗降雨侵蚀破坏的能力。狼牙刺、白羊草和猪毛蒿3个物种的幼苗在生长初期(20天)数量分别为末期(120天)的1.08倍、1.42倍和3.62倍。
     5)雨量相同的条件下,短历时高雨强(150mm/h历时20min)和长历时低雨强(25mm/h历时120min)条件下产生的累积土壤侵蚀量均较大,相应的降雨条件下造成的猪毛蒿和白羊草的幼苗死亡率也较大,且长历时低雨强造成的幼苗死亡率更大。幼苗遭受降雨破坏的主要方式包括连根拔出、打倒和流失。
     6)降雨过程引起的土壤侵蚀在植物发育过程中产生着持续的影响。土壤侵蚀不仅通过产生地表径流和泥沙对存在于地表的种子进行挟带和输移,造成种子的流失,减少可萌发种子的数量;部分种子还会由于淤积作用造成埋藏深度增加,不利于幼苗出土成活;同时土壤侵蚀还通过降低土壤养分,减少土壤水分含量等因素恶化种子所需的萌发条件,抑制种子的萌发;当部分种子萌发成功后,土壤侵蚀通过雨滴打击、泥沙输移等方式直接或间接的破坏幼苗及其生长环境,导致一部分幼苗死亡,减少物种的成活率;已成活的幼苗也会遭受退化侵蚀环境和种内种间的竞争等因素的影响,也会有一部分幼苗死亡;在经历土壤侵蚀这一系列的影响之后仍然在坡面存活的幼苗,最终才能够建植成功。
The Loess Plateau is a area with degraded ecosystem and serious soil erosion in China. Vegetation restoration and reconstruction is the key factor to control and reduce the extent of soil erosion in the region. As propagules of seed plants, seeds is the basis for vegetation restoration. Early seedling stage is most sensitive to environmental conditions in plant life cycle, so seed and seedling stage have important influences to vegetation restoration. Not only soil particles and nutrients can be lost by soil erosion, surface runoff and sediment transport also can carry seeds and intensify soil drought, deteriorate the seedling living environment. Thus, simulated rainfall experiments were carried out for analyzing the features of seed loss and movement under different rainfall intensities, underlying surfaces and seed morphological characteristics, the characteristics of seedlings destruction by different rainfall types, and the influence of soil erosion in seedlings establishment. Main results are as follows:
     1) Under the different underlying surfaces, seed loss rate increased while the rainfall intensity increased during the rainfall events, seed loss rate increased fast on the bare slope, but slower on slopes with vegetation and hoof prints. Seed loss rate was close to seed displacement rate on the bare slope, but not the result on the slopes with vegetation and hoof prints. It suggested that vegetation and hoof print have positive impact on seed loss and movement while rainfall intensity increase. Vegetation and hoof print could intercept seed on the slopes, and the intercept benefit of vegetation and hoof print was between 10-20%, and less than 10% separately , and it was stable with rainfall intensity changes.
     2) All the seeds forn 60 species on the slopes translocated during the rainfall process, and the seed displacement rate was between 3.33% and 100%. 93.33% of all the species had seed displacement rate more than 50%, and 61.67% of all the species reached 100%. 91.67% of seeds in all the species lost in the rainfall experiments, only Rosa xanthina, Ziziphus jujube, Prinsepia utilis, Cirsium leo and Stipa grandis did not lost in any rainfall events, and the seeds of Rehmannia glutinosa, Astragalus discolor, Potentilla Chinensis and Salsola ruthenica wete all lost out of the slopes. There were three types of seed removal on slope, i.e., rolling, suspension and jumping, and most seeds moved with jumping.
     3) Seed characterastics which prone to loss mainly included: seed weight less than 10mg, seed volume less than 30mm3, spherical shape, smoothly surface, and no appendages. Seed features which hard to loss mainly included: seed weight more than 150mg, segregating mucilage when contact with water, long-narrow and flat shapes, rough surface, and having appendages as hairs, wings awns and so on.
     4) In the conditions of weak erosion, seedlings within 40 days damaged by the rainfall most obviously, while the amount of seedlings which was older than 40 days had no changes after the rainfall event. It indicated that the seedlings which was older than 40 days have the ability to resist erosion damage. The amount of Sophora davidii, Bothriochloa ischaemun and Artemisia scoparia in early phases(20 days)were 1.08, 1.42 and 3.62 times higher than that in the ending phases(120 days), separately.
     5) Extreme rainfall with short duration and high intensity(150mm/h lasted for 20min) and rainfall with long duration and low intensity(25mm/h lasted for 120min) led to highest soil erosion amount; and high death rate of Artemisia scoparia and Bothriochloa ischaemun were occurred corresponding to the same rainfall conditions, and even higher in thr rainfall with the long duration and low rainfall intensity. There mainly were three ways of seedling destory by rainfall: pull out of roots, beat down and lost.
     6) The sustained effects on the development of vegetation by soil erosion are lasted in the whole process directly and indirectly. Soil erosion can move the seeds on the slope by runoff and sediment transport and reduce the amount of germination seed; Part of the seedlings are hardly exposed to the soil surface because the seed may be buried deeper by sedimentation effects; Soil erosion can also deterioration the environment for seed germination by reducing soil nutrients and soil moisture content, leading to lower survival rate; Whenever part of the seeds which germinated successfully, the seedlings would be destroyed by raindrop hitting, sediment transport, leading to lower survival rate; Some of temporary survived seedlings would also be affected by deteriorated erosion environment conditions and intraspecific and interspecific competition factors; The seedlings which still living on the slope finally is established successful after these sustained effects by soil erosion.
引文
白文娟,焦菊英,张振国. 2007.黄土丘陵沟壑区退耕地土壤种子库与地上植被的关系.草业学报, 16(6):30-38.
    白文娟,焦菊英. 2006.土壤种子库的研究方法综述.干旱地区农业研究, 24(6):195-198,203.
    陈浩,蔡强国. 2006.坡面植被恢复对沟道侵蚀产沙的影响.中国科学d辑, 36(01):69-80.
    程积民,万惠娥,胡相明. 2006.黄土高原草地土壤种子库与草地更新.土壤学报, 43(4):679-683.
    崔鹏,王道杰,韦方强. 2005.干热河谷生态修复模式及其效应——以中国科学院东川泥石流观测研究站为例.中国水土保持科学, 3(3):60-64.
    德英,敖特根,布仁吉雅. 2008.放牧强度对草原化荒漠土壤种子库物种多样性和生活型的影响.干旱区研究, 25(05):637-641.
    冯伟,汪小进,宣力,丁增发. 2008.森林土壤种子库研究方法综述.安徽农业科学, 36(9):3657-3659.
    韩鲁艳,焦菊英,雷东. 2010.种子流失与迁移的人工降雨模拟试验方法研究.水土保持通报, 30(2): 220-224.
    韩鲁艳. 2009.种子随土壤侵蚀流失的人工模拟降雨试验研究[D].陕西杨凌:中国科学院教育部水土保持与生态环境研究中心.
    何念鹏,吴泠,周道玮. 2004.松嫩草地次生光碱斑种子流及其生态恢复意义.生态学报, 24(4):843-847.
    侯志勇,谢永宏,于晓英,任勃,杨刚. 2008.淡水湿地种子库的研究方法、内容与展望.生态学杂志, 27(8):1400-1405.
    黄云凤. 2004.植被控制水土流失机理及措施研究综述.福建水土保持, 16(03):14-18.
    黄振英,张新时. 2001.光照、温度和盐分对梭梭种子萌发的影响.植物生理学报, 27(3):275-280.
    黄忠良,彭少麟. 2001.影响季风常绿阔叶林幼苗定居的主要因素.热带亚热带植物学报, 9(2):123-128.
    靳铁治,王开锋,王永奇. 2009.陕北黄土高原植被建设现状分析.陕西林业科技, (1):105-107.
    雷东,韩鲁艳,焦菊英,温仲明. 2011.模拟降雨条件下黄土丘陵区主要植物种子的流失特征.水土保持研究, 18(1):1-6.
    冷丽娇,格根塔娜,康学玲. 1991.不同光质对柠条锦鸡儿种子萌发和幼苗生长影响的初步研究.中国草地学报, (04):17-22.
    李宏俊,张知彬. 2001.动物与植物种子更新的关系Ⅱ.动物对种子的捕食、扩散、贮藏及与幼苗建成的关系.生物多样性, 9(1):25-37.
    李全发,刘文耀,沈有信,刘伦辉. 2005.南涧干热退化山地不同恢复群落土壤种子库储量及其分布.北京林业大学学报, 27(5):26-31.
    李阳兵,谢德体,魏朝富,李先源. 2006.重庆喀斯特山地土壤种子分布特征.生态环境, 15(2):358-361.
    李毅,邵明安. 2006.雨强对黄土坡面土壤水分入渗及再分布的影响.应用生态学报, 17(12):2271-2276.
    刘贵华,肖蒇,陈漱飞,张全发. 2007.土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用.自然科学进展, (06).
    刘国彬,蒋定生,朱显谟. 1996.黄土区草地根系生物力学特性研究.土壤侵蚀与水土保持学报. 2(3): 21-28.
    吕世海,卢欣石,曹帮华. 2005.呼伦贝尔草地风蚀沙化地土壤种子库多样性研究.中国草地, 27(3):5-10.
    吕仕洪,陆树华,欧祖兰,向悟生,王晓英,覃家科. 2007.桂西南石漠化山地土壤种子库的基本特征及植被恢复对策.植物资源与环境学报, 16(1):6-11.
    彭闪江,黄忠良,彭少麟,欧阳学军,徐国良. 2004.植物天然更新过程中种子和幼苗死亡的影响因素.广西植物, 24(2):113-121,124.
    尚占环,任国华,龙瑞军. 2009.土壤种子库研究综述——规模、格局及影响因素.草业学报, 18(1):144-154.
    沈有信,陈胜国,江洁,蔡光丽,张平. 2003b.滇东南岩溶山地次生林土壤种子库储量与优势成分.广西植物, 23(6):528-532,540.
    沈有信,张平,蔡光丽,陈胜国,江洁. 2003a.滇东喀斯特山地土壤种子及其分布特征.山地学报, 21(6):707-711.
    沈有信,张彦东. 2001.云南北部泥石流多发干旱河谷区不同干扰对干扰对土壤种子库的影响.植物生态学报, 25(5):623-629.
    沈玉芳,秦清军,吴永红. 2003.植被类型对黄土高原土壤侵蚀的影响研究.西北农业学报, 12(3):5-8.
    束文圣,蓝崇钰,黄铭洪,张志权. 2003.采石场废弃地的早期植被与土壤种子库.生态学报, 23(7):1305-1312.
    王俊,白瑜. 2006.土壤种子库研究的几个热点问题.生态环境, 15(6):1372-1379.
    王宁,贾燕锋,白文娟,张振国,焦菊英. 2009.黄土丘陵沟壑区退耕地土壤种子库特征与季节动态.草业学报, 18(3):43-52.
    王宁. 2008.坡沟侵蚀环境对繁殖体库及幼苗建植的影响[D].陕西杨凌:西北农林科技大学.
    王全九,王力,李世清. 2007.坡地土壤养分迁移与流失影响因素研究进展.西北农林科技大学学报(自然科学版), 35(12):109-114.
    王万忠,焦菊英. 1996黄土高原坡面降雨产流产沙过程变化的统计分析.水土保持通报,(5).21-28.
    王晓燕. 2009.黄土高原植被破坏与重建过程中土壤侵蚀强度变化.生态环境学报, (03):1083-1087.
    王协康,方铎. 2000.植被措施控制水土流失机理及其效益研究.四川大学学报:工程科学版, 32(2):13-16.
    吴钦孝,赵鸿雁. 2001.植被保持水土的基本规律和总结.水土保持学报, 15(4), 13-15.
    武高林,杜国祯,尚占环. 2006.种子大小及其命运对植被更新贡献研究进展.应用生态学报, 17(10):1969-1972.
    肖治术,张知彬. 2001.都江堰地区三种壳斗科植物的种子库及其影响因素研究.生物多样性, 9(4):373-381.
    尹忠东,周心澄,朱金兆. 2003.影响水土流失的主要因素研究概述.世界林业研究, 16(3):32-36.
    于顺利,陈宏伟,李晖. 2007.种子重量的生态学研究进展.植物生态学报, 31(6):989-997.
    于顺利,蒋高明. 2003.土壤种子库的研究进展及若干研究热点.植物生态学报, 27(4):552-560.
    鱼小军,师尚礼,龙瑞军,王芳,陈本建. 2006.生态条件对种子萌发影响研究进展.草业科学, 23(10):44-49.
    曾彦军,王彦荣,保平,塔拉腾,苏勒德. 2005.几种生态因子对红砂和霸王种子萌发与幼苗生长的影响.草业学报, 14(5):24-31.
    曾彦军,王彦荣,庄光辉,杨鬃山. 2004.红砂和霸王种子萌发对干旱与播深条件的响应.生态学报, 24(8):1629-1634.
    张海,杨荣慧,高鹏程. 2003.黄土坡地经济林大鱼鳞坑膜下滴灌技术研究.林业科学, 39(6):83-86.
    张金屯. 2004.黄土高原植被恢复与建设的理论和技术问题.水土保持学报, 18(5):120-124.
    张玲,方精云. 2004.太白山土壤种子库储量与物种多样性的垂直格局.地理学报, 59(6):880-888.
    张小彦. 2010.黄土丘陵沟壑区主要植物种子形态特征及有效性研究[D].陕西杨凌:西北农林科技大学.
    张志权,黄铭洪. 2001.土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配. 植物生态学报, 25(3):306-311.
    赵丽娅,李锋瑞,王先之. 2003.草地沙化过程地上植被与土壤种子库变化特征.生态学报, 23(9):1745-1756.
    郑粉莉,唐克丽. 1995.自然侵蚀和人加速侵蚀与生态环境演变.生态学报, 15(3):102-108.
    郑粉莉,赵军.2004.人工模拟降雨大厅及模拟降雨设备简介.水土保持研究, 2004, 11(4):177-178. 中国科学院植物研究所. 2004.中国植物志.北京:科学出版社.
    周国英,陈桂琛,王顺忠,韩友吉. 2005.青海湖地区芨芨草草地土壤种子库的初步研究.生态学杂志, 24(7):724-728.
    Aerts R, Maes WH, November E, Behailu M, Poesen J, Deckers J, Hermy M, Muys B. 2006. Surface runoff and seed trapping efficiency of shrubs in a regenerating semiarid woodland in northern Ethiopia. Catena, 65(1):61-70.
    Aguiar MR, Sala OE. 1997. Seed Distribution Constrains the Dynamics of the Patagonian Steppe. Ecology, 78(1):93-100.
    Alexander RW, Calvo HA. 1994. A Natural stabilisation mechanisms on badland slopes: Tabernas Almeria,Spain. Environmental Change in Drylands, 85-111.
    Benjamin F, Tracy M, Sanderson A. 2000. Seedbank Diversity in Grazing Lands of the Northeast United States Journal of Range Management, 53(1):114-118.
    Bochet E, Rubio JL, Poesen J. 1999. Modified topsoil islands within patchy Mediterranean vegetation in SE Spain. Catena, 38:23-44.
    Bullock JM., Moy IL. 2004. Plants as seed traps: inter-specific interference with dispersal. Act.Oecol, 25(1-2):35-41.
    Caballero I, Olano JM, Loidi J, Escudero A. 2003. Seed bank structure along a semi-arid gypsum gradient in Central Spain. Journal of Arid Environments, 55(2):287-299.
    Cerda A, Garcia-Fayos P. 1997. The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology, 18(2):77-90.
    Cerda A, Garcia-Fayos P. 2002. The influence of seed size and shape on their removal by water erosion. Catena, 48(4):293-301.
    Chambers JC, Mahon JA. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review of Ecology and Systematics, 25263-292.
    Chambers JC. 2000. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems: implications for restoration. Ecol. Appl, 10:1400-1413.
    DeFalco LA, Esque TC, Kane JM, Nicklas MB. 2009. Seed banks in a degraded desert shrubland:Influence of soil surface condition and harvester ant activity on seed abundance. Journal of Arid Environments, 73(10):885-893.
    Fenner M. 1985. Seed Ecology. In London:Chapman and Hall.
    Garcia-Fayos P, Cerda A. 1997. Seed losses by surface wash in degraded Mediterranean environments. CATENA, 29(1):73-83.
    Garcia-Fayos P, RecataláTM, CerdàA. 1995. Seed population dynamics on badland slopes in southeastern Spain. Journal of Vegetation Science, 6:691-696.
    Guardia R, Gallart F, Ninot JM. 2000. Soil seed bank and seedling dynamics in badlands of the Upper Llogregat basin ( Pyrenees). Catena, 40: 189-202.
    Han LY, Jiao JY, Jia YF, Wang N, Lei D, Li LY. 2011. Seed removal on loess slopes in relation to runoff and sediment yield. Catena, 85: 12-21.
    Harper, J. L. 1977. Popultion Biology of Plants.
    Isselin-Nondedeu F, Bédécarrats A.. 2007. Influence of alpine plants growing on steep slopes on sediment trapping and transport by runoff. Catena, 71(2):330-339.
    Isselin-Nondedeu F, Rey F, Bédécarrats A. 2006. Contributions of vegetation cover and cattle hoof prints towards seed runoff control on ski pistes. Ecological Engineering, 27(3):193-201.
    Jalili A, Hamzeh'ee B, Asri Y. 2003. Soil seed banks in the Arasbaran Protected Area Of Iran and their significance for conservation management. Biological Conservation, 109(3):425-431.
    Jiao JY, Zou HY, Jia YF, Wang N. 2009. Research progress on the effects of soil erosion on vegetation. Acta Ecologica Sinica, 29(2):85-91.
    Kalamees R, Zobel M. 2002. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology, 83 (4):1017-1025.
    Kinloch JE, Friedel MH. 2005. Soil seed reserves in arid grazing lands of central Australia. Part 2: availability of `safe sites'. Journal of Arid Environments, 60(1):163-185.
    Luo H. 2006. Soil seed bank and aboveground vegetation within hillslope vegetation restoration sites in Jinshajing hot-dry river valley. Acta Ecologica Sinica, 26(8):2432-2442.
    McDonald AW, Bakker JP, Vegelin K. 1996. Seed bank classification and its importance for the restoration of species-rich Flood-Meadows. Journal of Vegetation Science, 7(2):157-164.
    Mengistu T, Teketay D, Hulten H. 2005. The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. Journal of Arid Environments, 60(2):259-281.
    Moles AT, Hodson DW, Webb CJ. 2000. Seed size and shape and persistence in the soil in the New Zealand. flora Oikos, 89(3):541-545.
    Poesen J, 1987. Transport of rock fragments by rill flow—a field study. Catena, Suppl. 8, 35–54.
    Rey F, Isselin-Nondedeu F, Bédécarrats A. 2005. Vegetation Dynamics on Sediment Deposits Upstream of Bioengineering Works in Mountainous Marly Gullies in a Mediterranean Climate (Southern Alps, France). Plant and Soil, 278(1-2):149-158.
    Rotundo J, Aguiar L. 2004. Vertical seed distribution in the soil constrains regeneration of Bromus pictus in a Patagonian steppe. Journal of Vegetation Science, 15(4):515-522.
    Sagrario A, Suarez F. 2005. Spatial dynamics of Ilex aquifolium populations seed dispersal and seed bank: understanding the first steps of regeneration. Plant Ecology, 177237-248.
    Simposon RL. 1989. Ecology of soil seed bank. San Diego: Academic Press.
    Thompson K. 1986. Small-scale heterogeneity in the seed bank of an acide grassland. Journal of Ecology, 74:733-738.
    Thornes JB. 1985. The ecology of erosion. Geography, 70:222-236.
    Valbuena L, Trabaud L. 2001. Contribution of the soil seed bank to post-fire recovery of a heathland. Plant Ecology, 152: 175-183.
    Vrsic S, Ivancic A, Pulko B, Valdhuber J. 2011. Effect of soil management systems on erosion and nutrition loss in vineyards on steep slopes. Journal of environmental biology, 32(3): 289-294.
    Wellstein C, Otte A, Waldhardt R. 2009. Seed bank diversity in mesic grasslands in relation to vegetation type, management and site conditions. Journal of Vegetation Science, 18(2):153-162.