新型促血小板生成融合蛋白的基因工程制备及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,由多种原因引起的血小板减症越来越常见。血小板由骨髓中的巨核细胞产生,通过对巨核细胞增殖分化进行调控,可有效促进血小板生成。因此,具有升血小板作用的造血生长因子类基因工程产品倍受推崇。然而,目前临床上用于救治血小板减少症的该类药物种类稀少,且存在着可能产生中和性抗体、副反应突出、价格昂贵等多种缺点,临床上迫切需要能够高效升血小板的新型药物。
     血小板生成素(thrombopoietin, TPO),又称巨核细胞生长发育因子(megakaryocytegrowth and development factor, MGDF),是调节巨核细胞生成和血小板产生最重要的细胞因子。通过与其受体(c-Mpl)结合,TPO能够激活巨核细胞中一系列的信号通路,发挥其促进巨核细胞增殖分化的功能。据此,人们尝试利用基因工程方法制备出重组人血小板生成素(recombinant human thrombopoietin, rhTPO)和聚乙二醇化重组人巨核细胞生长发育因子(pegylated recombinant human megakaryocyte growth and developmentfactor, PEG-rhMGDF)两种第一代促血小板生长因子类药物。但是,PEG-rhMGDF在临床试验中产生了能够与内源性TPO交叉反应的中和性抗体,美国FDA因此全面禁止了重组人TPO类基因工程产品的临床实验。TPO模拟肽(thrombopoietin mimetic peptide,TMP)是通过噬菌体表面展示技术鉴定出的一种由14个氨基酸组成,与c-Mpl具有高亲和力,但与TPO序列完全不同源的短肽。实验表明,TMP不仅能够在体外有效促进巨核细胞增殖,且在动物体内未发现其能够诱导产生中和性TPO抗体。然而,TMP分子量太小,难以通过基因工程方法制备,且在循环中极易降解,限制了其应用。
     多项体内研究发现,人生长激素(human growth hormone, hGH)对造血干/巨核祖细胞增殖分化及促进血小板生成具有重要调控作用。hGH主要通过与其受体(growthhormone receptor, GHR)结合发挥其生物学活性,该受体与c-Mpl同为I类细胞因子受体,能够激活相似的增殖分化信号通路。因此,我们设想将TMP与hGH进行融合,一方面利用与生长激素进行融合,提高分子量,使得TMP能够通过基因工程方法进行制备,同时延长其体内半衰期。另一方面,通过融合发挥TMP与hGH在促进巨核细胞生成及血小板产生方面的协同作用。
     基于已有的研究基础,在国家“863”计划和新药创制科技重大专项课题的资助下,我们首先尝试通过巴斯德毕赤酵母表达系统对一个TMP分子与hGH的融合蛋白rTMP-GH进行了发酵表达及纯化制备。之后,为了提高融合蛋白的生物学活性,又设计了一种由两个串联的TMP分子(TMP二联体)与hGH组成的融合蛋白,并利用pMAL-p2x原核表达载体在大肠杆菌中进行可溶性表达与制备。在确认dTMP-GH具有显著促进巨核细胞生成活性的基础上,为了简化制备工艺、提高产量,进一步探索了在大肠杆菌中以温控诱导和包涵体表达方式生产制备dTMP-GH融合蛋白,通过工艺优化最终实现了该重组融合蛋白的高密度发酵表达及放大生产,获得了纯度大于98%,且具有高效促巨核细胞增殖分化活性的dTMP-GH融合蛋白基因工程产品。同时,从信号通路激活的角度对dTMP-GH融合蛋白促巨核细胞增殖分化的作用机制进行了探讨。所取得的主要研究结果与结论如下:
     1.通过基因重组成功构建了pPIC9K-rTMP-GH真核重组表达质粒,筛选出高G418抗性的His+/Mut+多克隆表达菌株,实现了rTMP-GH在巴斯德比赤酵母GS115中的高密度发酵表达。经超滤、阴离子柱及分子筛纯化,获得了纯度大于95%的rTMP-GH重组融合蛋白。经体外实验证实rTMP-GH具有一定的促进巨核细胞增殖活性。
     2.通过合理化设计酶切位点,成功构建了pMAL-dTMP-GH重组表达质粒。电转化大肠杆菌后,阳性克隆经IPTG诱导,获得可溶性融合蛋白MBP-dTMP-GH。通过亲和层析、Xa酶切、疏水株及分子筛再纯化,最终得到纯度达98.5%,且N端不含任何多余氨基酸的重组融合蛋白dTMP-GH。体外细胞实验证实,dTMP-GH能够以剂量依赖方式促进巨核祖细胞株M07e的增殖,其活性显著优于等摩尔剂量的rTMP-GH融合蛋白。
     3.利用温控原核表达载体pBV220,通过包涵体形式实现了dTMP-GH融合蛋白在大肠杆菌中的高密度发酵表达,表达水平约为500mg/L。建立了包括包涵体变性、复性、阳离子柱层析、阴离子柱层析及分子筛层析的纯化方案,获得了纯度大于98%的dTMP-GH融合蛋白,得率为20%。其生物学活性与采用大肠杆菌分泌性表达方式制备的dTMP-GH无显著性差异。
     4.体外实验证实,dTMP-GH促进早期巨核细胞增殖的活性较等摩尔剂量dTMP强,GH拮抗剂培维索孟预处理能够显著削弱dTMP-GH的促巨核细胞增殖活性,提示融合蛋白中的hGH具有增强dTMP促巨核细胞增殖分化的作用,而且这种增强作用可能通过巨核细胞表面的GHR介导发挥。
     5. Western blot分析结果表明, dTMP作用15min即可显著上调M07e细胞中STAT5和ERK1/2的磷酸化水平,1h左右磷酸化水平恢复正常,而rhGH却无明显促STAT5磷酸化作用,但在其作用1h后可出现ERK1/2的显著磷酸化,并可持续3h以上时间。提示rhGH可能通过缓慢而持续激活ERK1/2信号通路来增强dTMP诱导的巨核细胞增殖与分化。
     6.激光共聚焦及Western blot检测分析发现,rhGH处理能够显著上调成熟巨核细胞株Meg-01中肌动蛋白的表达,并能促进肌丝拉伸和细胞伪足伸出,提示rhGH具有促进巨核细胞分化成熟的作用。进一步研究发现,rhGH作用15min即可显著上调Meg-01中Akt的磷酸化水平,而dTMP对Akt无明显激活作用,提示rhGH可能通过激活Akt信号通路促进了巨核细胞的分化成熟。
     7. dTMP-GH融合蛋白可同时发挥dTMP与rhGH的生物学活性。在M07e中,dTMP-GH作用可同时上调STAT5和ERK1/2的磷酸化水平,且ERK1/2磷酸化可持续3h以上。给予GH拮抗剂培维索孟能够抑制dTMP-GH对ERK1/2信号通路的持续激活作用。在Meg-01中,dTMP-GH作用可显著上调Akt的磷酸化水平,且该作用能够被培维索孟显著抑制。
     8.对人脐血CD34+来源的原代巨核细胞的实验证明,dTMP-GH能够显著上调培养至7d原代巨核细胞STAT5和ERK1/2磷酸化水平,且ERK1/2磷酸化可持续至3h以上。并且dTMP-GH作用可显著激活培养至11d原代巨核细胞中的Akt信号通路。
     总之,本研究通过探索不同的表达体系、优化表达条件和纯化工艺,从而成功实现了一种TMP二联体与hGH的重组融合蛋白在大肠杆菌中的高效表达与制备,最终获得纯度大于98%的dTMP-GH融合蛋白。体外实验证实,dTMP-GH具有显著促进巨核细胞增殖分化活性,其中dTMP主要发挥促进巨核细胞早期增殖分化的作用,GH除了可以增强dTMP的促巨核细胞增殖活性外,还具有促进巨核细胞分化成熟的作用。因而,通过融合不仅间接增大了dTMP的分子量,使其可以通过基因工程方法进行制备,而且所形成融合蛋白还具有突出促巨核细胞增殖、分化和成熟的活性,显示出很好的开发应用前景。
With the development of society, thrombocytopenia caused by various reasonsbecomes more and more common. The megakaryocyte (MK) is a bone marrow cellresponsible for the production of platelets. Thrombopoiesis are ligations of the cytoplasmfrom megakaryocytes, can be promoted effectively by regulating the proliferation anddifferentiation of MKs. Therfore, considerable attention has been devoted togene-engineering products of hematopoietic growth factors which could promote plateletsproduction. However, these products for thrombocytopenia treatment in clinic are scarce atthe present stage, and the exisiting products have notable disadvantages, such as theproduction of neutralizing antibodies, prominent side effects and expensive costs. In all,there is an urgent demand for new drugs which can promote thrombopoiesis efficiently.
     Thrombopoietin(TPO), which was previously termed as MK growth and developmentfactor(MGDF), is the most important cytokine which regulates megakaryocytopoiesis andthrombopoiesis. Through binding to its receptor(c-Mpl), TPO activates a cascade of signaltransduction pathways which promote MKs proliferation and differentiation. Accordingly,recombinant human thrombopoietin(rhTPO) and pegylated recombinant humanmegakaryocyte growth and development factor(PEG-rhMGDF) as the first generationthrombopoietic growth factors have been developed through gene-engineering approach.However, the emergence of autoantibody against PEG-rhMGDF, which could cross-reactwith and neutralize endogeous TPO, results a total ban on clinical trials of recombinanthuman TPO gene-engineering products by the U.S. FDA. Thrombopoietin mimeticpeptide(TMP), which was identified by phagy display technology, is a14-mer peptide withhigh affinity to c-Mpl and shares no homologous sequences with TPO. Studies showed thatTMP could promote MKs proliferation in vitro, but not induce TPO neutralizing antibody invivo. Nevertheless, TMP is hardly to be prepared by gene-engineering methods due to its small molecular weight, and it is easy to be degraded in the circulation, which together limitits application.
     Human growth hormone(hGH) has been reported to play an important role inproliferation and differentiation of hematopoietic and megakaryocytic progenitor cells, andenhance thrombopoiesis. hGH exerts its function mainly by binding to GH receptor(GHR),a kind of type I cytokine receptor as c-Mpl, and in turn activates the proliferation anddifferentiation related signal pathways. Therefore, we envisaged to construct a chimericprotein which fused TMP to hGH. On one hand, fusion with hGH increases molecularweight, which makes preparation of TMP through genetic engineering approach possibleand extends its half life in vivo; on the other hand, by fusion with hGH, there may be asynergetic effect on megakaryocytopoiesis and thrombopoiesis.
     Based on our previous works, with funding of national “863” plan and major scienceand technology poject of new drug development, the chimeric protein rTMP-GH was triedto prepared by expression and purification in Pichia pastoris. In order to improve thebioactivity of the fusion protein, a chimeric protein containing a tandem dimmer of TMP(dTMP) fused to hGH was then constructed in Escherichia coli with pMAL-p2x expressionvector. After identifying its significant effect on promotion megakaryocytopoiesis,dTMP-GH was expressed in inclusion body form through temperature control inducing inEscherichia coli, which simplifies the preparation process and improve the yield, Byoptimizing the technology, high densty fermentation and production amplification of thefusion protein were successfully achieved. Finally, a gene-engineering product ofdTMP-GH with high purity over than98%and fuction of promoting the proliferation anddifferentiation efficiently was obtained. At the same time, the mechanism of dTMP-GHpromoting the proliferation and differentiation of MKs was discussed from the perspectiveof signaling pathways. The main results and conclusions are summarized as follows:
     1. The recombinant eukaryotic expression plasmid pPIC9K-rTMP-GH was constructedsuccessfully by genetic recombination. The His+/Mut+polyclonal expression strain withhigh G418resistance was screened out, followed by the expression of rTMP-GH throughhigh density fermentation in Pichia pastoris GS115. The recombinant fusion proteinrTMP-GH with purity over than95%was then obtained by purification with ultrafiltration,anion column and molecular sieve. A certain activity on promoting MKs proliferation of rTMP-GH was confirmed in vitro.
     2. By rational designed restriction sites, the recombinant expression plasmidpMAL-dTMP-GH was constructed successfully. After electrically transformation toEscherichia coli, the soluble fusion protein MBP-dTMP-GH was obtained through IPTGinduction in positive clone. By application of amylase resin chromatography, Xa factordigestion, hydrophobic chromatography followed by gel filtration, the dTMP-GH fusionprotein with purity of98.5%and without redundant amino acid at N terminal was obtained.The functional assays in vitro showed that dTMP-GH could promote the proliferation ofmegakaryoblast cell line M07e in a dose-dependent manner. Moreover, an enhanced effectof dTMP-GH was found as compared with equimolar concentration of rTMP-GH fusionprotein.
     3. By using of prokaryotic expression vector pBV220, the expression of dTMP-GHthrough high densty fermentation in inclusion body form was achieved successfully, withthe yield of500mg/L. A purification strategy including inclusion body denaturation,refolding, cation chromatography, anion chromatography and molecular sievechromatography was established to obtain dTMP-GH with purity over than98%andpencent recovery of20%. There was no significant difference in the bioactivities ofdTMP-GH obtained through the above two approaches.
     4. The MKs proliferation activity of dTMP-GH was significantly stronger thanequimolar concentration of dTMP and obviously weaken by GH antagonist Pegvisomant,while there is no notable effect on MKs proliferation of rhGH. It suggested that hGH mayenhanced the effect on promoting MKs proliferation and differentiation of dTMP by GHRmediated.
     5. Result of Western blot analyse displayed that the phosphorylation levels of STAT5and ERK1/2in M07e cells were up-regulated in15min and lasted to1h by dTMP. Therewas no detectable promotion of STAT5phosphorylation after rhGH treatment, but itinduced obviously phosphorylation of ERK1/2in1h and continuing for more than3h. Itsuggested that the proliferation and differentiation of MKs induced by dTMP may beenhanced by rhGH through slow and sustained activation of ERK1/2signaling pathway.
     6. Confocal laser scanning and Western blot detection showed that rhGH treatmentup-regulated the expression of actin in mature megakaryocytic cell line Meg-01, in turn promoted myoneme stretching and pseudopodia extending. It indicated that rhGH has thefunction of promoting MKs maturation. Further research in Meg-01revealed that rhGHup-regulated the phosphorylation level of Akt significantly, which was not activatedobviously by dTMP. It suggested that rhGH promote MKs differentiation and maturationthrough the activating of Akt signal pathway.
     7. The fusion protein dTMP-GH could exert bioactivites of both dTMP and rhGH. Thephosphorylation level of ERK1/2in M07e was up-regulated markedly and lasted more than3h by the treatment of dTMP-GH. And Pegvisomant was able to inhibited the sustainedactivation of ERK1/2by dTMP-GH. In Meg-01, the role of dTMP-GH was to up-regulatethe phosphorylation level of Akt, which could be inhibited by Pegvisomant too.
     8. Evidence on human CD34+derived primary megakaryoctes cultured for7dconfirmed that dTMP-GH was able to up-regulated STAT5and ERK1/2phosphorylationlevel, and the phosporylation of ERK1/2sustained for over3h. Additionally, Akt signalpathway in cells cultured for11d could be activated by dTMP-GH.
     In this study, by exploring different expression systems, optimizing expressionconditions and purification processes, we successfully fulfilled the efficiently expressionand preparation of a recombinant fusion protein that constructed with a tandem dimmerTMP fused to rhGH in Escherichia coli. A fusion protein of dTMP-GH with high purityover than98%was finally obtained. Experiments in vitro confirmed that dTMP-GH had theactivity of promoting the proliferation and differentiation of MKs. The major effect ofdTMP was to promote the proliferation and differentiation of early MKs, while GHenhanced the activity of dTMP on promoting MKs proliferation, as well as promoteddifferentiation and maturation of MKs. Therefore, the fusion of hGH not only increased themolecular weight of dTMP, which made it possible to be prepared by gene-engineeringapproach, but also had prominent effects on promoting proliferation, differentiation andmaturation of MKs. The novel thrombopoietic fusion protein, dTMP-GH, showed awonderful prospect for the development and application.
引文
1. Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B,Nichol JL, Swift S, Johnson MJ, Hsu RY, Parker VP, Suggs S, Skrine JD, MerewetherLA, Clogston C, Hsu E, Hokom MM, Hornkohl A, Choi E, Pangelinan M, Sun Y, MarV, McNinch J, Simonet L, Jacobsen F, Xie C, Shutter J, Chute H, Basu R, Selander L,Trollinger D, Sieu L, Padilla D, Trail G, Elliott G, Izumi R, Covey T, Crouse J, Garcia A,Xu W, Del Castillo J, Biron J, Cole S, Hu MCT, Pacifici R, Ponting I, Saris C, Wen D,Yung YP, Lin H, Rosselman RA. Identification and cloning of a megakaryocyte growthand development factor that is a ligand for the cytokine receptor Mpl[J]. Cell,1994,77(7):1117-1124.
    2. De Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, DarbonneWC, Henzel WJ, Wong SC, Kuang WJ, Oles KJ, Hultgren B, Solberg Jr LA, GoeddelDV, Eaton DL. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mplligand[J]. Nature,1994,369(6481):533-538.
    3. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiologicalregulator of megakaryocyte growth and platelet production[J]. Proc Natl Acad Sci U SA,1994,91(23):11104-11108.
    4. Vainchenker W, Debili N, Norol F, Wendling F. Thrombopoietin and megakaryocytedifferentiation[J]. Schweiz Med Wochenschr,1998,128(42):1575-1581.
    5. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ. Thrombocytopeniacaused by the development of antibodies to thrombopoietin[J]. Blood,2001,98(12):3241-3248.
    6. Basser RL, O'Flaherty E, Green M, Edmonds M, Nichol J, Menchaca DM, Cohen B,Begley CG. Development of pancytopenia with neutralizing antibodies tothrombopoietin after multicycle chemotherapy supported by megakaryocyte growth anddevelopment factor[J]. Blood,2002,99(7):2599-2602.
    7. Cwirla SE, Balasubramanian P, Duffin DJ, Wagstrom CR, Gates CM, Singer SC, DavisAM, Tansik RL, Mattheakis LC, Boytos CM, Schatz PJ, Baccanari DP, Wrighton NC,Barrett RW, Dower WJ. Peptide agonist of the thrombopoietin receptor as potent as thenatural cytokine[J]. Science,1997,276(5319):1696-1699.
    8. Broudy VC, Lin NL. AMG531stimulates megakaryopoiesis in vitro by binding toMpl[J]. Cytokine,2004,25(2):52-60.
    9. Frederickson S, Renshaw MW, Lin B, Smith LM, Calveley P, Springhorn JP, Johnson K,Wang Y, Su X, Shen Y, Bowdish KS. A rationally designed agonist antibody fragmentthat functionally mimics thrombopoietin[J]. Proc Natl Acad Sci USA.2006,103(39):14307-14312.
    10. Kuter, D.J. New thrombopoietic growth factors[J]. Blood.2007,109(11):4607-4616.
    11. Hanley MB, Napolitano LA and McCune JM. Growth hormone-induced stimulation ofmultilineage human hematopoiesis[J]. Stem Cells,2005,23(8):1170-1179.
    12. Carlo-Stella C, Di Nicola M, Milani R, Longoni P, Milanesi M, Bifulco C, Stucchi C,Guidetti A, Cleris L, Formelli F, Garotta G, Gianni AM. Age-and irradiation-associatedloss of bone marrow hematopoietic function in mice is reversed by recombinant humangrowth hormone[J]. Exp Hematol,2004,32(2):171-178.
    13. Sirohi B, Powles R, Morgan G, Treleaven J, Kulkarni S, Horton C, Saso R, Rolfe D,Cook G, Shaw C, Wass J. Use of physiological doses of human growth hormone inhaematological patients receiving intensive chemotherapy promotes haematopoieticrecovery: a double-blind randomized, placebo-controlled study[J]. Bone MarrowTransplant,2007,39(2):115-120.
    14. Carlo-Stella C, Di Nicola M, Milani R, Guidetti A, Magni M, Milanesi M, Longoni P,Matteucci P, Formelli F, Ravagnani F, Corradini P, Gianni AM.Use of recombinanthuman growth hormone (rhGH) plus recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the mobilization and collection of CD34+cells in poormobilizers[J]. Blood,2004,103(9):3287-3295.
    15. Li X, Huang Y, Jiang J, Frank SJ.Synergy in ERK activation by cytokine receptors andtyrosine kinase growth factor receptors[J]. Cell Signal,2011,23(2):417-424.
    16.邵波,艾国平,王军平,刘晓宏,肖燕,冉新泽,开丽,粟永萍.新型升血小板因子静脉注射在小鼠体内的靶向性实验研究[J].重庆医学,2006,35(18):1679-1680.
    17. Li J, Shen L, Li Y, Zhang X, Li J, Gong J, Deng W. Recombinant human interleukin-11for treatment of chemotherapy-induced thrombocytopenia in patients withgastrointestinal cancer[J]. the Chinese-German Journal of Clinical Oncology,2007,6(5):450-452.
    18.彭毅,步威,康良仪.甲醇酵母表达系统[J].生物技术通报,2000,(1):38-41.
    19.付平平,黎洋.新型酵母表达系统-Pichia pastoris高效分泌型表达病毒生长因子的研究[J].中国免疫学杂志,2000,16:378-380.
    20. Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K. Rapid selectionusing G418of high copy number transformants of Pichia pastoris for high level foreigngene expression[J]. Bio Technol,1994,12(2):181-184.
    21.马骊,张智清,陈爱君,姚立红,姜忠良,王小宁.人血管内皮生长因子在毕赤酵母菌中的表达和鉴定[J].中华实验和临床病毒学杂志,2000,14(4):309-312.
    22.应革,吴淑华,王静,赵小东,陈建明,张晓光,侯云德.重组巴氏毕赤酵母高密度发酵表达人乳铁蛋白的研究[J].中华实验和临床病毒学杂志,2004,18(2):181-185.
    23.王蒙,杨媛,杨峥嵘,李广阔,刘晓红,粟永萍,程天民.人TALL-1基因在毕赤酵母中的分泌表达与鉴定[J].第三军医大学学报,2007,29(6):494-497.
    24. McGrew JT, Leiske D, Dell B, Klinke R, Krasts D, Wee SF, Abbott N, Armitage R,Harrington K. Expression of trimeric CD40ligand in Pichia Pastoris: use of a rapidmethod to detect high-level expressing transformants[J]. Gene1997,187(2):193-200.
    25. Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM,Sreekrishna K, Henwood CA. Production of EGF in yeast: High–level secretion usingPichia pastoris strains containing Multiple gene copies[J]. Gene,1991,105(2):205-212.
    26. Cregg JM, Tschopp JF, Stillman C, Siegel R, Akong M, Craig WS, Buckholz RG,Madden1KR, Kellaris PA, Davis GR, Smiley BL, Cruze J, Torregrossa R, Veliclebi G,Thill GP. High-level expression and efficient assembly of hepatitis B surface antigen inmethylotrophic yeast[J]. Bio/Technology,1987,5:479-485.
    27.彭毅,杨希才,康良仪.影响甲醇酵母中外源蛋白表达的因素[J].生物技术通报2000,(4):33-36.
    28.章如安,杨晟,邱荣德,袁中一.巴斯德毕赤酵母表达体系研究及进展[J].微生物学通报,2000,27(5):371-373.
    29. Avanzi GC, Brizzi MF, Giannotti J, Ciarletta A, Yang YC, Pegoraro L, Clark SC. M07ehuman leukemic factor-dependent cell line provides a rapid and sensitive bioassay forthe human cytokines GM-CSF and IL-3[J]. J Cell Physiol,1990,145(3):458-464.
    30.赵咏梅,刘林.血小板生成素与受体c-Mpl分子结构及信号通路的研究进展[J].西部医学,2008,20(1):191-193.
    31. Maina CV, Riggs PD, Grandea AG,3rd Slatko BE, Moran LS, Tagliamonte JA,McReynolds LA, Guan CD. An Escherichia coli vector to express and purify foreignproteins by fusion to and separation from maltose-binding protein[J]. Gene,1988,74(2):365-373.
    32. Kapust RB and Waugh DS. Escherichia coli maltose-binding protein is uncommonlyeffective at promoting the solubility of polypeptides to which it is fused[J]. Protein Sci,1999,8(8):1668-1674.
    33. Wang A, Su Y, Wang S, Shen M, Chen F, Chen M, Ran X, Cheng T, Wang J. Highefficiency preparation of bioactive human alpha-defensin6in Escherichia coliOrigami(DE3)pLysS by soluble fusion expression[J]. Appl Microbiol Biotechnol,2010,87(5):1935-1942.
    34. Drayer AL, Boer AK, Los EL, Esselink MT, Vellenga E. Stem cell factor synergisticallyenhances thrombopoietin-induced STAT5signaling in megakaryocyte progenitorsthrough JAK2and Src kinase[J]. Stem Cells,2005,23(2):240-251.
    35.张智清,姚立红,侯云德.含PRPL启动子的原核高效表达载体的组件及应用[J].病毒学报,1990,6(2):112-116.
    36.陈萍萍,吴逸明,张朝武,吴拥军.人GSTM1TV2基因的克隆及温控表达[J].中国公共卫生,2003,19(6):644-645.
    37.顾维新.重组大肠杆菌的发酵与外源基因的表达[J].海峡医学,2007,19(2):85-87.
    38.林白雪,王捷,张宏斌.人血管生长素重组大肠杆菌发酵条件优化[J].中国医药工业,2003,34(8):380-382.
    39.隋广超,胡美浩.影响大肠杆菌中外源基因表达的因素[J].生物化学与生物物理进展,1994,21(2):128-132.
    40.沈林南,魏东芝,周宇荀,王二力,俞俊棠.乙酸对重组大肠杆菌生长及外源基因表达的影响[J].微生物学通报,2000,27(4):254-256.
    41. Kim BS, Lee SC, Lee SY, Chang YK, Chang HN. High cell density fed-batchcultivation of Escherichia coli using exponential feeding combined with pH-stat[J].Bioprocess Biosyst Eng.2004,26(4):147-150.
    42. Marshak DR, Kadonaga TK, Brugess RP, Knuth MW, Brennan WA, Lin SH.蛋白质纯化与鉴定实验指南[M].科学出版社,1999:144-147.
    43.李邦东,石正军,孙玉森. G-CSF工程菌包涵体洗涤方法探讨[J].黑龙江医药,1999,12(5):266-267.
    44.马雪,惠宏襄,周颖,何功浩,孟静茹,贾敏,罗晓星.重组人胰高血糖素样肽前药的表达、纯化及生物活性分析[J].中国药学杂志,2009,44(6):411-414.
    45. Marshak DR, Kadonaga TK, Brugess RP, Knuth MW, Brennan WA, Lin SH.蛋白质纯化与鉴定实验指南[M].科学出版社,1999:179-180.
    46. de Serres M, Ellis B, Dillberger JE, Rudolph SK, Hutchins JT, Boytos CM, Weigl DLDePrince RB. Immunogenicity of thrombopoietin mimetic peptide GW395058inBALB/c mice and New Zealand white rabbits: evaluation of the potential forthrombopoietin neutralizing antibody production in man[J]. Stem Cells,1999,17(4):203-209.
    47. Wang B, Nichol JL and Sullivan JT. Pharmacodynamics and pharmacokinetics of AMG531, a novel thrombopoietin receptor ligand[J]. Clin Pharmacol Ther,2004,76(6):628-638.
    48. Cerneus D, Brown K, Harris R, End D, Molloy C, Yurkow E, Koblish H, Franks C,Moolenaar M, Burggraaf K. Stimulation of Platelet Production in Healthy Volunteersby a Novel Pegylated Peptide-Based Thrombopoietin (TPO) Receptor Agonist[A]. ASHAnnual Meeting Abstracts106(11):1249.
    49. Postel-Vinay MC and Finidori J. Growth hormone receptor: structure and signaltransduction. Eur J Endocrinol[J].1995,133(6):654-659.
    50. Murphy WJ, Tsarfaty G and Longo DL. Growth hormone exerts hematopoieticgrowth-promoting effects in vivo and partially counteracts the myelosuppressive effectsof azidothymidine[J]. Blood,1992,80(6):1443-1447.
    51. Cavallo L, Gurrado R, Zecchino C, Manolo F, De Sanctis V, Cisternino M, Caruso NM,Galati M. Short-term therapy with recombinant growth hormone in polytransfusedthalassaemia major patients with growth deficiency[J]. J Pediatr Endocrinol Metab,1998,11Suppl3:845-849.
    52. Tian ZG, Woody MA, Sun R, Welniak LA, Raziuddin A, Funakoshi S, Tsarfaty G,Longo DL, Murphy WJ. Recombinant human growth hormone promotes hematopoieticreconstitution after syngeneic bone marrow transplantation in mice[J]. Stem Cells,1998,16(3):193-199.
    53. Bakker B, Oostdijk W, Geskus RB, Stokvis Brantsma, WH, Vossen JM, Wit JM.Growth hormone (GH) secretion and response to GH therapy after total bodyirradiation and haematopoietic stem cell transplantation during childhood[J]. ClinEndocrinol (Oxf),2007,67(4):589-597.
    54. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF.. Ineffectiveerythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of earlyerythroblasts[J]. Blood,2001,98(12):3261-3273.
    55. Snow JW, Abraham N, Ma MC, Abbey NW, Herndier B, Goldsmith MA. STAT5promotes multilineage hematolymphoid development in vivo through effects on earlyhematopoietic progenitor cells[J]. Blood,2002.99(1):95-101.
    56. Bunting KD, Bradley HL, Hawley TS, Moriggl R, Sorrentino BP, Ihle JN. Reducedlymphomyeloid repopulating activity from adult bone marrow and fetal liver of micelacking expression of STAT5[J]. Blood,2002,99(2):479-487.
    57. Majka M, Ratajczak J, Villaire G, Kubiczek K, Marquez LA, Janowska-Wieczorek A,Ratajczak MZ. Thrombopoietin, but not cytokines binding to gp130protein-coupledreceptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+cells, megakaryocytes, and platelets[J]. Exp Hematol,2002,30(7):751-760.
    58. Ihle JN, Nosaka T, Thierfelder W, Quelle FW, Shimoda K. Jaks and Stats in cytokinesignaling[J]. Stem Cells,1997,15Suppl1:105-112.
    59. Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T. STAT5as amolecular regulator of proliferation, differentiation and apoptosis in hematopoieticcells[J]. EMBO J,1999,18(17):4754-4765.
    60. Kirito K, Watanabe T, Sawada K, Endo H, Ozawa K, Komatsu N. Thrombopoietinregulates Bcl-xL gene expression through Stat5and phosphatidylinositol3-kinaseactivation pathways[J]. J Biol Chem,2002,277(10):8329-8337.
    61. Matsumura I, Ishikawa J, Nakajima K, Oritani K, Tomiyama Y, Miyagawa J, Kato T,Miyazaki H, Matsuzawa Y, Kanakura Y. Thrombopoietin-induced differentiation of ahuman megakaryoblastic leukemia cell line, CMK, involves transcriptional activationof p21(WAF1/Cip1) by STAT5[J]. Mol Cell Biol,1997,17(5):2933-2943.
    62. Mazharian A, Watson SP and Severin S. Critical role for ERK1/2in bone marrow andfetal liver-derived primary megakaryocyte differentiation, motility, and proplateletformation[J]. Exp Hematol,2009,37(10):1238-1249e1235.
    63. Severin S, Ghevaert C and Mazharian, A. The mitogen-activated protein kinasesignaling pathways: role in megakaryocyte differentiation[J]. J Thromb Haemost,2010,8(1):17-26.
    64. Guerriero R, Parolini I, Testa U, Samoggia P, Petrucci E, Sargiacomo M, Chelucci C,Gabbianelli M, Peschle C. Inhibition of TPO-induced MEK or mTOR activity inducesopposite effects on the ploidy of human differentiating megakaryocytes[J]. J Cell Sci,2006,119(4):744-752.
    65. Fuhler GM, Tyl MR, Olthof SG, Lyndsay Drayer A, Blom N, Vellenga, E. Distinct rolesof the mTOR components Rictor and Raptor in MO7e megakaryocytic cells[J]. Eur JHaematol,2009,83(3):235-245.
    1. Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B,Nichol JL, Swift S, Johnson MJ, Hsu RY, Parker VP, Suggs S, Skrine JD, MerewetherLA, Clogston C, Hsu E, Hokom MM, Hornkohl A, Choi E, Pangelinan M, Sun Y, MarV, McNinch J, Simonet L, Jacobsen F, Xie C, Shutter J, Chute H, Basu R, Selander L,Trollinger D, Sieu L, Padilla D, Trail G, Elliott G, Izumi R, Covey T, Crouse J, Garcia A,Xu W, Del Castillo J, Biron J, Cole S, Hu MCT, Pacifici R, Ponting I, Saris C, Wen D,Yung YP, Lin H, Rosselman RA. Identification and cloning of a megakaryocyte growthand development factor that is a ligand for the cytokine receptor Mpl[J]. Cell,1994,77(7):1117-1124.
    2. Si L, Kenneth K, Richard DH, Joseph LK, Catherine EL, Pieter JO, Francis JG, MarkDH, Steve KB, Janet MK, L Anne B, Cindy AS, Hal B, Rebecca J, Donna P, AndrewFTC, Shannon LM, Mason CB, John WF, Michele MB, Sherri GO, Simon JE, Paul OS,Scott RP, Patrick JOH, Fredrick SH, Gerald JRoth, Donald CF. Cloning and expressionof murine thrombopoietin cDNA and stimulation of platelet production in vivo[J].Nature,1994,369:565-568.
    3. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiologicalregulator of megakaryocyte growth and platelet production[J]. Proc Natl Acad Sci U SA,1994,91(23):11104-11108.
    4. Kato T, Ogami K, Shimada Y, Iwamatsu A, Sohma Y, Akahori H, Horie K, Kokubo A,Kudo Y, Maeda E. Purification and characterization of thrombopoietin[J]. J Biochem,1995,118(1):229-236.
    5. De Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, DarbonneWC, Henzel WJ, Wong SC, Kuang WJ, Oles KJ, Hultgren B, Solberg Jr LA, GoeddelDV, Eaton DL. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mplligand[J]. Nature,1994,369(6481):533-538.
    6. Kuter DJ, Begley CG. Recombinant human thrombopoietin: basic biology andevaluation of clinical studies[J]. Blood,2002,100(10):3457-3469.
    7. Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ. Thrombocytopeniacaused by the development of antibodies to thrombopoietin[J]. Blood,2001,98(12):3241-3248.
    8. Basser RL, O'Flaherty E, Green M, Edmonds M, Nichol J, Menchaca DM, Cohen B,Begley CG. Development of pancytopenia with neutralizing antibodies tothrombopoietin after multicycle chemotherapy supported by megakaryocyte growth anddevelopment factor[J]. Blood,2002,99(7):2599-2602.
    9. Kuter, D.J. New thrombopoietic growth factors[J]. Blood.2007,109(11):4607-4616.
    10.赵永强.第2代促血小板生成剂临床研究现状[J].内科理论与实践,2008,3:1696-1699.
    11. Kuter DJ. Thrombopoietin. In: Oppenheim JJ, Feldmann M, Durum SK, Hirano T,Vilcek J, Nicola NA, eds. Cytokine Reference: A Compendium of Cytokines and OtherMediators of Host Defense[M]. New York, NY: Academic Press;2000:965-982.
    12. Kuter DJ, Li JL. Thrombopoietin receptor. In: Oppenheim JJ, Feldmann M, Durum SK,Hirano T, Vilcek J, Nicola NA, eds. Cytokine Reference: A Compendium of Cytokinesand Other Mediators of Host Defense[M]. New York, NY: Academic Press;2000:1953-1968.
    13. Feese MD, Tamada T, Kato Y, Maeda Y, Hirose M, Matsukura Y, Shigematsu H, MutoT, Matsumoto A, Watarai H, Ogami K, Tahara T, Kato T, Miyazaki H, Kuroki R.Structure of the receptor-binding domain of human thrombopoietin determined bycomplexation with a neutralizing antibody fragment[J]. Proc Nati Acad Sci U.S.A.,2004,101(7):1816-1821.
    14. Alexander WS, Metcalf D, Dunn AR. Point mutations within a dimer interfacehomology domain of c-Mpl induce constitutive receptor activity and tumorigenicity[J].EMBO J,1995,14:5569-5578.
    15. Sabath DF, Kaushansky K, Broudy VC. Deletion of the extracellular membrane-distalcytokine receptor homology module of Mpl results in constitutive cell growth and lossof thrombopoietin binding[J]. Blood,1999,94:365-367.
    16. Remy I, Wilson IA, Michnick SW. Erythropoietin receptor activation by aligand-induced conformation change[J]. Science,1999,283:990-993.
    17. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA.Crystallographic evidence for preformed dimers of erythropoietin receptor beforeligand activation[J]. Science,1999,283:987-990.
    18. Stoffel R, Wiestner A, Skoda RC. Thrombopoietin in thrombocytopenic mice: evidenceagainst regulation at the mRNA level and for a direct regulatory role of platelets[J].Blood,1996,87:567-573.
    19. Siemensma NP, Bathal PS, Penington DG. The effect of massive liver resection onplatelet kinetics in the rat[J]. J Lab Clin Med,1975,86:817-833.
    20. Quin S, Fu F, Li W, Chen Q, de Sauvage FJ. Primary role of the liver in thrombopoietinproduction shown by tissue-specific knockou[J]t. Blood,1998,92:2189-2191.
    21. Peck-Radosavljevic M, Zacherl J, Meng YG, Pidlich J, Lipinski E, L ngle F, SteiningerR, Mühlbacher F, Gangl A. Is inadequate thrombopoietin production a major cause ofthrombocytopenia in cirrhosis of the liver?[J]. J Hepatol,1997,27(1):127-131.
    22. Peck-Radosavljevic M, Wichlas M, Zacherl J, Stiegler G, Stohlawetz P, Fuchsj ger M,Kreil A, Metz-Schimmerl S, Panzer S, Steininger R, Mühlbacher F, Ferenci P, Pidlich J,Gangl A. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopicliver transplantation through increased platelet production[J]. Blood,2000,95(3):795-801.
    23. Li J, Xia Y, Kuter D. Interaction of thrombopoietin with the platelet c-mpl receptor inplasma: binding, internalization, stability and pharmacodynamics[J]. Br J Haematol,1999,106:345-356.
    24. Broudy VC, Lin NL, Sabath DF, Papayannopoulou T, Kaushansky K. Human plateletsdisplay high-affinity receptors for thrombopoietin[J]. Blood,1997,89:1896-1904.
    25. Li J, Xia Y, Kuter DJ. Interaction of thrombopoietin with the platelet c-mpl receptor inplasma: binding, internalization, stability and pharmacokinetics[J]. Br J Haematol.1999,106:345-356.
    26. Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mplcytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shcphosphorylation[J]. Proc Natl Acad Sci U S A.,1995,92:5292-5296.
    27. Fielder PJ, Gurney AL, Stefanich E, Marian M, Moore MW, Carver-Moore K, deSauvage FJ. Regulation of thrombopoietin levels by c-mpl-mediated binding toplatelets[J]. Blood,1996,87(6):2154-2161.
    28. Fielder PJ, Hass P, Nagel M, Stefanich E, Widmer R, Bennett GL, Keller GA, deSauvage FJ, Eaton D. Human platelets as a model for the binding and degradation ofthrombopoietin[J]. Blood,1997,89(8):2782-2788.
    29. Kuter DJ, Rosenberg RD. Appearance of a megakaryocyte growth-promoting activity,megapoietin, during acute thrombocytopenia in the rabbit[J]. Blood,1994,84:1464-1472.
    30. Cwirla SE, Balasubramanian P, Duffin DJ, Wagstrom CR, Gates CM, Singer SC, DavisAM, Tansik RL, Mattheakis LC, Boytos CM, Schatz PJ, Baccanari DP, Wrighton NC,Barrett RW, Dower WJ. Peptide agonist of the thrombopoietin receptor as potent as thenatural cytokine[J]. Science,1997,276(5319):1696-1699.
    31. de Serres M, Ellis B, Dillberger JE, Rudolph SK, Hutchins JT, Boytos CM, Weigl DLDePrince RB. Immunogenicity of thrombopoietin mimetic peptide GW395058inBALB/c mice and New Zealand white rabbits: evaluation of the potential forthrombopoietin neutralizing antibody production in man[J]. Stem Cells,1999,17(4):203-209.
    32. Cerneus D, Brown K, Harris R, End D, Molloy C, Yurkow E, Koblish H, Franks C,Moolenaar M, Burggraaf K. Stimulation of Platelet Production in Healthy Volunteersby a Novel Pegylated Peptide-Based Thrombopoietin (TPO) Receptor Agonist[A]. ASHAnnual Meeting Abstracts106(11):1249.
    33. Liem-Moolenaar M, Cerneus D, Molloy CJ, End D, Brown KH, de Kam ML, CohenAF, van Hensbergen Y, Burggraaf J. Pharmacodynamics and Pharmacokinetics of theNovel Thrombopoietin Mimetic Peptide RWJ-800088in Humans[J]. Clinicalpharmacology&Therapeutics,2008,84:481-487.
    34.李越希,李朝,陶开华,贾向红,程度胜,黄培堂. TPO模拟肽与人IgG1Fc融合蛋白在毕赤酵母中的表达及活性鉴定[J].生物工程学报,2004,20(1):25-29.
    35.叶祥忠,郭强,李朝,刘凤云,程度胜. TPO模拟肽与人IgG1Fc融合蛋白在毕赤酵母中的表达及活性鉴定[J].生物工程学报,2004,20(1):25-29.
    36. Drayer AL, Boer AK, Los EL, Esselink MT, Vellenga E. Stem cell factor synergisticallyenhances thrombopoietin-induced STAT5signaling in megakaryocyte progenitorsthrough JAK2and Src kinase[J]. Stem Cells,2005,23(2):240-251.
    37. Su L, Chen S, Yang K, Liu C, Liang Z. Cloning and expression of human stem cellfactor fused with thrombopoietin mimetic peptide in Escherichia coli[J]. BiotechnolLett,2006,28:857-862
    38.许杨,王军平,赵景宏,粟永萍,陈芳,申明强,陈默,王崧,开丽.重组融合蛋白rTMP-GH对体外培养巨核细胞增殖的影响[J].第三军医大学学报,2008,30(1):1-4.
    39.邵波,艾国平,王军平,刘晓宏,肖燕,冉新泽,开丽,粟永萍.新型升血小板因子静脉注射在小鼠体内的靶向性实验研究[J].重庆医学,2006,35(18):1679-1680.
    40.邵波,艾国平,王军平,刘晓宏,肖燕,开丽,粟永萍.新型升血小板因子的免疫原性实验研究[J].免疫学杂志,2005,21(6):471-473.
    41. Frederickson S, Renshaw MW, Lin B, Smith LM, Calveley P, Springhorn JP, Johnson K,Wang Y, Su X, Shen Y, Bowdish KS. A rationally designed agonist antibody fragmentthat functionally mimics thrombopoietin[J]. Proc Natl Acad Sci U S A,2006,103:14307-14312.
    42. Wang B, Nichol JL, Sullivan JT. Pharmacodynamics and pharmacokinetics of AMG531, a novel thrombopoietin receptor ligand[J]. Clin Pharmacol Ther,2004,76:628-638.
    43. Bussel J, Kuter DJ, George JN. Effect of a thrombopoiesis-stimulating protein(AMG-531) in chronic immune thrombocytopenic purpura[J]. N Engl J Med,2006,355:1-14.
    44. Broudy VC, Lin NL. AMG531stimulates megakaryopoiesis in vitro by binding toMpl[J]. Cytokine,2004,25:52-60.
    45. Kuter DJ, Bussel J, George JN. Long-term dosing of AMG531in thrombocytopenicpatients with immune thrombocytopenic purpura:48week update[J]. Blood,2006,108:476a.
    46. Kuter DJ, Bussel JB, Senecal FM. Evaluation of AMG531in nonsplenectomizedpatients with chronic immune thrombocytopenic purpura in a randomizedplacebo-controlled phase3study[J]. Blood,2007,110:173a.
    47. Bussel JB, Kuter DJ, de Wolf JT, et al. Long-term dosing of AMG531inthrombocytopenic patients with immune thrombocytopenic purpura:2-year update[J].Blood,2007,110:174a.
    48. Liem-Moolenaar M, Cerneus D, Molloy CJ, End D, Brown KH, de Kam ML, CohenAF, van Hensbergen Y, Burggraaf J. Pharmacodynamics and pharmacokinetics of thenovel thrombopoietin mimetic peptide RWJ-800088in humans[J]. Clin Pharmacol Ther,2008,84(4):481-487.