构建DNA及银纳米簇荧光传感器用于金属离子及有机小分子的识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着相关学科的迅速发展以及相关新技术的引入,荧光分析法的灵敏度、准确度和选择性日益提高,方法的应用范围遍及众多领域。目前,荧光分析法已经发展成为一种十分重要且有效的光谱化学分析手段,本论文利用荧光分析法构建传感器用于与人类健康和安全密切相关的金属离子及小分子的识别研究。自从2004年,Ono,A.和Togashi,H.研究证实Hg2+能特异性识别胸腺嘧啶(T)以来,基于T-Hg2+-T协同作用特异性检测Hg2+的研究陆续报道,本文也追随这一研究热点,构建了简单、快速、灵敏的DNA荧光传感器识别Hg2+。荧光金属簇由于量子限制效应而具有荧光,其已经作为一类新型的超小尺寸的荧光探针应用于环境、生物分析等方面。基于本实验室新开发的银纳米簇,本文还构建了银纳米簇荧光传感器识别Cr(Ⅵ)、叶酸和苦味酸爆炸物,拓展了银纳米簇的应用领域。
     本文的主要研究内容及结论如下:
     1.构建DNA荧光传感器用于Hg2+的识别研究
     (1)基于poly(dT)DNA双链和氧化石墨烯的传感器的构建
     互补的T15与FAM-A15杂交形成DNA双链,由于DNA双链与GO作用弱,FAM-A15不能靠近GO表面而保持强的荧光信号。若体系中存在Hg2+,T15与Hg2+形成稳定的T15-(Hg2+)n-T15复合物,FAM-A15以单链形式存在,与GO之间存在强的π-π堆积相互作用,FAM接近GO表面,其荧光被GO猝灭,体系显示弱的荧光信号。在一定Hg2+浓度范围内,体系荧光的猝灭程度与Hg2+浓度成正比。在最佳实验条件下,基于FAM荧光的猝灭反应,可以高灵敏度、高选择性地测定Hg2+,检测限低至0.5nM。其他可能共存的金属离子,对Hg2+的测定没有影响。将该方法用于江水样品中Hg2+的测定及回收实验,获得了满意的效果。
     (2)基于乙炔基信号放大和T-Hg2+-T复合物的传感器的构建
     FAM标记的poly d(T) DNA序列(记作:FAM-Tn, n为T的数目)与Hg2+反应,FAM的荧光猝灭:FAM-T1的荧光猝灭效率很低;FAM-Tn (n>1)的荧光猝灭效率较高,并随着T数目的增加,最大荧光猝灭效率降低。若FAM-T3的另一端再修饰乙炔基,Hg2+加入后,则荧光团的最大荧光猝灭效率提高,可高达95%。本研究以两端分别标记有FAM和乙炔基的HC=C-(5')TTT(3')-FAM为探针,借助乙炔基的信号放大作用,构建了灵敏度高、选择性好、快速识别Hg2+的荧光传感器,并详细探讨了乙炔基放大猝灭荧光的原理。此外,在Hg2+猝灭体系荧光的基础上,构建了半胱氨酸传感器。实验结果表明,该研究体系对半胱氨酸也显示高的灵敏度和选择性。
     2.构建银纳米簇荧光传感器用于金属离子及小分子的识别研究
     (1)Cr(Ⅵ)传感器的构建以及银纳米簇与不同类金属离子的作用机理初探
     以聚乙烯亚胺为模板合成的银纳米簇具有较强的荧光信号,Cr(Ⅵ)能高效猝灭该银纳米簇的荧光,由此建立了识别Cr(Ⅵ)的荧光新方法。在最佳实验条件下,Cr(Ⅵ)浓度在0.1nM-1.5μM范围内与荧光猝灭效率具有良好的线性响应,方法灵敏度高(0.04nM)、速度快。基于不同金属离子对银纳米簇荧光响应的差异,利用紫外.可见吸收光谱,再结合各离子的特征电子构型、对应氢氧化物的溶解性能、碱性条件下的电极电势等相关特性探讨了银纳米簇与不同金属离子之间的作用机理,认为金属离子与银纳米簇之间可通过金属离子与模板之间的氢键作用或络合作用间接靠近银纳米簇,以及金属离子以亲金属相互作用或沉淀包覆的形式直接与银纳米簇作用两种方式相互作用,电荷转移是荧光猝灭的主要因素。
     (2)叶酸传感器的构建以及银纳米簇与叶酸的作用机理初探
     叶酸能有效猝灭聚乙烯亚胺为模板的银纳米簇的荧光,基于此构建了高灵敏识别叶酸的新型荧光传感器。对多种可能与叶酸共存的物质进行分析,结果显示该体系对叶酸识别具有高的选择性;广泛用于固体奶粉、液态奶、面粉、发酵面团、尿液、药片等实际样品中叶酸含量的测定,结果令人满意。利用紫外可见吸收光谱、高分辨率透射电镜、红外光谱、荧光寿命图谱以及荧光光谱等多种表征手段探讨了叶酸猝灭银纳米簇荧光的机理,提出了以聚乙烯亚胺作为桥梁,从叶酸到银纳米簇的两步电子转移荧光猝灭机理。
     (3)苦味酸爆炸物传感器的构建以及银纳米簇与苦味酸的作用机理初探
     基于苦味酸对银纳米簇的荧光猝灭反应,建立了荧光检测苦味酸的新方法。在最佳实验条件,银纳米簇荧光与苦味酸浓度呈现好的线性响应特征:线性响应范围1nM-2.25μM,检出限为0.7nM,优于检测苦味酸的其他方法。研究表明该体系能很好地区分苦味酸与2,4,6-三硝基甲苯等硝基甲苯类、硝基苯类爆炸物。苦味酸通过与银纳米簇模板-聚乙烯亚胺之间的静电作用靠近银纳米簇,发生从银纳米簇到缺电子的苦味酸苯环之间的电荷转移,从而使银纳米簇的荧光发生猝灭。
With the rapid development of some subjects and the introduction of new techniques, the sensitivity, accuracy and selectivity of fluorescence analysis increasingly improve and its applications range many fields. To date, fluorescence analysis has become an important and effective spectral chemical method. This work constructed sensors based on fluorescence analysis for sensing metal ions and small moleculars closely related to human health and safety. In2004, Ono A. and Togashi H. authenticated that Hg2+can specifically recognize thymine (T), and since then, Hg2+was measured based on T-Hg2+-T complex in lots of reports. In this paper, this research focus was followed and developed simple, rapid, sensitive sensors based on T-Hg2+-T based Hg2+were developed. Metal clusters are fluorescent owing to its quantum confinement effect and it has been used as a new type of ultra small size of the fluorescent probe in environmental and biological analysis. On the base of the new type of silver nanoclusters synthesized in our laboratory, fluorescent silver nanoclusters sensors were constructed for sensing Cr (VI), folic acid, and picric acid explosive, which contributed to researchers' understand the characteristics of silver nanoclusters and expands the application field of silver nanoclusters.
     The main contents and conclusions of this paper are listed as follows:
     1. Constructing fluorescent DNA sensor for identification of Hg2+
     (1) Construction of fluorescent DNA sensor based on duplexes of poly(dT) and graphene oxide (GO)
     T15hybridize to FAM-A15, forming double stranded DNA, and FAM fluoresces strongly due to the weak interaction between double stranded DNA and GO. In the presence of Hg2+, the stable T15-(Hg2+)n-T15complexes are formed and the single stranded FAM-A15interacts strongly with GO via π-π stacking, so the fluorescence of FAM is quenched by GO. Under the optimum experimental conditions, the fluorescence quenching efficiencies are proportional to the concentrations of Hg2+and a detection limit of0.5nM was obtained. Other potential coexisting metal ions had no significant effects on the determination of Hg2+. The proposed method was applied for the determination of Hg2+in river water samples and recovery experiment, the satisfactory results were achieved.
     (2) Construction of fluorescent DNA sensor based on fluorescence quenching effect of T-Hg2+-T complexes and ethynyl enhanced fluorescence quenching
     Hg2+can quench the fluorescence of FAM labeled polyd (T) sequences (denoted as: FAM-Tn, n for the number of T). The fluorescence quenching efficiencies were low for FAM-T1, while higher for FAM-Tn (n>1) and with the increasing number of T in sequence, the fluorescence quenching efficiencies decreased. If FAM and ethynyl were labeled on the two termini of T3, respectively, the fluorescence quenching efficiencies of FAM can be improved. In this study, HC=C-(5')TTT(3')-FAM was used as probe and highly sensitive, highly selective, and rapid Hg2+sensor was constructed by aid of signal amplification from ethynyl. In this paper, the principle of signal amplification was discussed in detail and on the basis of the fluorescence-quenching system by Hg2+, the cysteine sensor was further constructed. The experimental results indicate that the proposed method also shows high sensitivity and selectivity for cysteine.
     2. Constructing fluorescent silver nanoclusters sensors for recognition of metal ions and small molecules
     (1) Construction of fluorescent silver nanoclusters sensor for Cr(Ⅵ) and the investi-gation of mechanism for silver nanoclusters interacting with different metal ions
     Polyethyleneimine-capped silver nanoclusters, which were easy to be synthesized and have excellent performance, were used as the probe for rapid, sensitive detection of Cr (Ⅵ). Under the optimized experimental conditions, the linear response range of0.1nM-1.5μM (R2=0.9991) and the detection limit of0.04nM were obtained. On the basis of the different response of silver nanoclusters to several metal ions, the mechanism for silver nanoclusters interacting with different metal ions were studied in detail based on UV-Vis spectroscopy, the characteristic electron configuration of ion, the solubility of corresponding hydroxide, and the electrode potential. Possible modes of action were concluded that targets were brought into close proximity with silver nanoclusters by hydrogen bonding or target complexing with template, or by metallophilic interaction or direct complexation between target and silver nanoclusters. And fluorescence quenching mechanism based on charge transfer was proposed.
     (2) Construction of fluorescent silver nanoclusters sensor for folic acid and the investigation of mechanism for silver nanoclusters interacting with folic acid
     Folic acid can efficiently quench the fluorescence of silver nanoclusters, based on which, the experimental conditions were optimized and the fluorescent silver nanoclusters sensor for folic acid recognition with high sensitivity was constructed. Those potential coexisting species were measured and the results show that the sensing system has high selectivity for detection of folic acid. The proposed method was well used for sensing folic acid in various real samples, such as milk powder, liquid milk, flour, ferment dough, urine, tablets, and so on. Sevral characterizations such as UV-Vis absorption spectroscopy, infrared spectra, high resolution transmission electron microscopy, fluorescence decay profiles, fluorescence spectra, and so on, were adopted to study the fluorescence quenching mechanism in detail. A two-step electron-transfer process, in which the electron is transferred from FA to AgNCs through PEI molecule functioned as a bridge, was proposed.
     (3) Construction of fluorescent silver nanoclusters sensor for picric acid explosive and the investigation of mechanism for silver nanoclusters interacting with picric acid
     The fluorescent silver nanoclusters sensor with high sensitivity for identification of picric acid was founded based on fluorescence quenching reaction between silver nanoclusters and picric acid. Under the optimized experimental conditions, the proposed sening syetem shows excellent linear response characteristics, of which, the linear response range was1nM-2.25μM, and the detection limit was0.7nM. The performance was better than that of other TNP detection methods reported in last few years. The as-developed TNP analysis technology can discriminate between TNT and TNP. Picric acid and silver nanoclusters were brought into close proximity through the electrostatic interaction between picric acid and PEI and the charge transfer from silver nanoclusters to TNP would result in the fluorescence quenching.
引文
[1]Tyagi, S.; Kramer, F.R. Molecular beacons:probes that fluoresce upon hybridization. Nat. BiotechnoL 1996,14,303-308.
    [2]Zuo, X.L.; Xia, F.; Xiao, Y.; Plaxco. K.W. Sensitive and selective amplified fluorescence DNA detection based on exonuclease Ⅲ-aided target recycling.J. Am. Chem. Soc.2010,132, 1816-1818.
    [3]Zheng, A.H.; Luo, M.; Xiang, D.S.; Xiang, X.; Ji, X.H.; He. Z.K. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green I. Talanta 2013,114,49-53.
    [4]Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P.K.; Sood, A. K.; Rao, C.N.R. Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem.2009,10,206-210.
    [5]Liu, Z.; Robinson, T.J.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,10876-10877.
    [6]Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X. Chen. G.N. A Graphene Platform for Sensing Biomolecules. Angew. Chem. Int. Ed.2009,121,4879-4881.
    [7]He, S.J.; Song, B.; Li, D.; Zhu, C.F.; Qi, W.P.; Wen, Y.Q.; Wang, L.H.; Song, S.P.; Fang, H.P.; Fan. C.H. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater.2010,20,453-459.
    [8]Li, Y.H.; Yang, Q.; Zhong, Z.T.; Li, D.; Wang, L.H.; Song, S.P.; Fan, C.H. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2010,2,1021-1026.
    [9]Qiu, S.Y.; Li, X.H.; Xiong, W.M.; Xie, L.D.; Guo, L.H.; Lin, Z.Y.; Qiu, B.; Chen. G.N. A novel fluorescent sensor for mutational p53 DNA sequence detection based on click chemistry. Biosens. Bioelectron.2013,41,403-408.
    [10]Pavlov, V.; Shlyahovsky, B.; Willner, I. Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. J. Am. Chem. Soc.2005,127,6522-6523.
    [11]Luzi, E.; Minunni, M.; Tombelli, S.; Mascini, M. New trends in affinity sensing:aptamers for ligand binding. Trends Anal Chem.2003,11,810-818.
    [12]Kawakami, J.; Hirofumi, I.; Yukie, Y.; Sugimoto, N. J. In vitro selection of aptamers that act with Zn2+. Inorg. Biochem.2000,82,197-206.
    [13]Potyrailo, R. A.; Conrad, R. C.; Ellington, A. D.; Hieftje, G. M. Adapting selected nucleic acid Iigands (aptamers) to biosensors. Anal. Chem.1998,70,3419-3425.
    [14]Heyduk, E.; Heyduk, T. Nucleic acid-based fluorescence sensors for detecting proteins. Anal. Chem.2005,77,1147-1156.
    [15](a) Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992,355, 564-566.
    [16]Wu, Q.; Tsiang, M.; Sadler, J. E. Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite.J.Biol. Chem.1992,267,24408-24412.
    [17]Hamaguchi, N.; Ellington, A.; Stanton, M. Aptamer Beacons for the Direct Detection of Proteins. Anal. Biochem.2001,294,126-131.
    [18]Ho, H.A.; Leclerc, M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. J.Am. Chem. Soc.2004,126,1384-1387.
    [19]Heyduk E.; Heyduk, T. Nucleic acid-based fluorescence sensors for detecting proteins. Anal. Chem.2005,77,1147-1156.
    [20]Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X.; Chen, G..N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,121,4879-4881.
    [21]Chang, H.X.; Tang, L.H.; Wang, Y; Jiang, J.H.; Li, J.H. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem.2010,82,2341-2346.
    [22]Liu, J.J.; Song, X.R. Wang, Y.W.; Zheng, A.X.; Chen, G.N.; Yang, H.H. Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Anal. Chim. Acta 2012,749,70-74.
    [23]Li, H.; Wang, M.; Wang, C.Z.; Li, W.; Qiang, W.B.; Xu, D.K.. Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Anal. Chem.2013,85,4492-4499.
    [24]Shi, Y.; Huang, W.T.; Luo, H.Q.; Li, N.B. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin, Chem. Commun.2011, 47,4676-4678.
    [25]Kong, L.; Xu, J.; Xu, Y.Y.; Xiang, Y.; Yuan, R.; Chai, Y.Q. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye. Biosens. Bioelectron.2013,42,193-197.
    [26]Stojanovic, M.N.; de Prada, P.; Landry, D.W. Aptamer-based folding fluorescent Ssensor for cocaine. J. Am. Chem. Soc.2001,123,4928-4931.
    [27]He, J.L.; Wu, Z.S.; Zhou, H.; Wang, H.Q.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal. Chem.2010, 82,1358-1364.
    [28]Sheng, L.F.; Ren, J.T.; Miao, Y,Q.; Wang, J.H.; Wang, E.K. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens. Bioelectron.2011,26,3494-3499.
    [29]Pu, F.; Huang, Z.Z.; Ren, J.S.; Qu, X.G. DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal. Chem.2010,82, 8211-8216.
    [30]Liu, H.L.; Wang, Y.H.; Shen, A.G.; Zhou, X.D.; Hu, J.M. Highly selective and sensitive method for detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide. Talanta 2012,93,330-335.
    [31]Malashikhina, N.; Pavlov, V. DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosens. Bioelectron.2012,33,241-246.
    [32]Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed.2004,43,4300-4302.
    [33]Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A. Mercuryll-mediated formation of thymine-Hgll-thymine base pairs in DNA duplexes. J. Am. Chem. Soc.2006,128,2172-2173.
    [34]Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y; Kojima, C.; Ono, A.15N 15N J-coupling across Hgll:direct observation of Hgll-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007,129,244-245.
    [35]Qi, L.; Zhao, Y.X.; Yuan, H.; Bai, K.; Zhao, Y.; Chen, F.; Dong, Y.H.; Wu, Y.Y. Amplified fluorescence detection of mercury(Ⅱ) ions (Hg2+) using target-induced DNAzyme cascade with catalytic and molecular beacons. Analyst,2012,137,2799-2805.
    [36]Liu, B. Highly sensitive oligonucleotide-based fluorometric detection of mercury(II) in aqueous media. Biosens. Bioelectron.2008,24,756-760.
    [37]Chiang, C.K.; Huang, C.C.; Liu, C.W.; Chang, H.T. Oligonucleotide-Based Fluorescence Probe for Sensitive and Selective Detection of Mercury(Ⅱ) in Aqueous Solution. Anal. Chem.2008, 80,3716-3721.
    [38]Oh, B.N.; Park, S.J.; Ren, J.; Jang, Y.J.; Kim, S.K.; Kim, J. Label-free emission assay of mercuric ions using DNA duplexes of poly(dT). Dalton Trans.2011,40,6494-6499.
    [39]Li, H.L.; Zhai, J.F.; Tian, J.Q.; Luo, Y.L.; Sun, X.P. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens. Bioelectron. 2011,26,4656-4660
    [40]Li, M.; Wang, Q.Y.; Shi, X.D.; Hornak, L.A.; Wu, N.Q. Detection of mercury(Ⅱ) by quantum Dot/DNA/Gold nanoparticle ensemble based Nnanosensor via nanometal surface energy transfer. Anal. Chem.2011,83,7061-7065.
    [41]Tan, D.D.; He, Y.; Xing, X.J.; Tang, H.W.; Pang, D.W. Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (Ⅱ) ion in aqueous solution. Talanta 2013,113,26-30.
    [42]Li, M.; Zhou, X.J.; Ding, W.Q.; Guo, S.W.; Wu, N.Q. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(Ⅱ). Biosens. Bioelectron.2013, 41,889-893.
    [43]Ono, A.; Cao, S.Q.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, Y.; Miyake, S.; Okamotoa, I.; Tanaka, Y. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun.,2008,4825-4827.
    [44]Zhao, C; Qu, K.G; Song, Y.J.; Xu, C; Ren, J.S.; Qu, X.G. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective setection of Ag+ and cysteine in aqueous solutions. Chem. Eur. J.2010,16,8147-8154.
    [45]Pu, W.D.; Zhao, H.W.; Huang, C.Z.; Wu, L.P.; Xua, D. Fluorescent detection of silver(Ⅰ) and cysteine using SYBR Green Ⅰ and a silver(Ⅰ)-specific oligonucleotide. Mlcrochim Acta 2012, 177,137-144.
    [46]Wen, Y.Q.; Xing, F.F.; He, S.J.; Song, S.P.; Wang, L.H.; Long, Y.T.; Li, D.; Fan, C.H. A graphene-based fluorescent nanoprobe for silver(Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun.,2010,46,2596-2598.
    [47]Yang, Q.; Li, F.; Huang, Y.; Xu, H.; Tang, L.S.; Wang, L.H.; Fan, C.H. Highly sensitive and selective detection of silver(Ⅰ) in aqueous solution with silver(Ⅰ)-specific DNA and Sybr green Ⅰ. Analyst 2013,138,2057-2060.
    [48]Zhang, G.Y.; Lin, W.L.; Yang, W.Q.; Lin, Z.Y; Guo, L.H.; Qiu, B.; Chen, G.N. Logic gates for multiplexed analysis of Hg2+ and Ag+. Analyst,2012,137,2687-2691. Talanta 2012,93, 330-335.
    [49]Li, H.I.; Zhai, J.F.; Sun, X.P. Highly sensitive and selective detection of silver(I) ion using nano-C60 as an effective fluorescent sensing platform. Analyst 2011,136,2040-2043.
    [50]Li, H.L.; Zhai, J.F.; Sun, X.P. Sensitive and selective detection of silver(I) ion in aqueous solution using carbon nnoparticles as a cheap, effective fluorescent sensing platform. Langmuir 2011,27,4305-4308.
    [51]Li, M.; Zhou, X.J.; Guo, S.W.; Wu, N.Q. Detection of lead (Ⅱ) with a "turn-on" fluorescent biosensor basedon energy tra nsfer from CdSe/ZnS quantum dots to graphene oxide. Biosens. Bioelectron.2013,43,69-74.
    [52]Liu, C.W.; Huang, C.C.; Chang, H.T. Highly selective DNA-based sensor for lead(Ⅱ) and mercury(II) Ions. Anal. Chem.2009,81,2383-2387.
    [53]Chung, C.H.; Kima, J.H.; Jung, J.; Chung, B.H. Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens. Bioelectron.2013,41,827-832.
    [54]Wen, Y.Q.; Peng, C。; Li, D.; Zhuo, L。; He, S.J.; Wang, L.H.; Huang, Q.; Xu, Q.H.; Fan, C.H. Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(Ⅱ) ions with high sensitivity, selectivity and tunable dynamic range. Chem. Commun.2011,47,6278-6280.
    [55]Yao, J.J.; Li, J.S.; Owens, J.; Zhong, W.W. Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(Ⅱ) in water. Analyst 2011,136,764-768.
    [56]Xiang, Y.; Tong, A.J.; Lu, Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J. Am. Chem. Soc.2009,131,15352-15357.
    [57]Xiang, Y.; Wang, Z.D.; Xing, H.; Wong, N.Y.; Lu, Y. Label-free fluorescent functional DNA sensors using unmodified DNA:a vacant site approach. Anal. Chem.2010,82,4122-4129.
    [58]Zhao, Y.; Zhang, Q.; Wang, W.H.; Jin, Y. Input-dependent induction of G-quadruplex formation for detection of lead (Ⅱ) by fluorescent ion logic gate. Biosens. Bioelectron.2013,43,231-236.
    [59]Liu J.W.; Lu, Y. A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu2+ Ions in Aqueous Solution with High Sensitivity and Selectivity. J. Am. Chem. Soc.2007,129,9838-9839.
    [60]Meng, H.M.; Fu, T.; Zhang, X.B.; Wang, N.N.; Tan, W.H.; Shen, G.L.; Yu, R.Q. Efficient fluorescence turn-on probe for zirconium via a target-triggered DNA molecular beacon strategy. Anal. Chem.2012,84,2124-2128.
    [61]Wu, P.W.; Hwang, K.; Lan, T.; Lu, Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc.2013,135,5254-5257.
    [62]Zhou, Z.X.; Du, Y.; Dong, S.J. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal. Chem.2011,83, 5122-5127.
    [63]Li N.; Ho, C.M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J. Am. Chem. Soc.2008,130,2380-2381.
    [64]Zheng, J.; Nicovich P. R.; Dickson, R.M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem.2007,58,409-431.
    [65]Xu H.X.; Suslick, K.S. Sonochemical synthesis of highly fluorescent Ag nanoclusters. Adv. Mater,2010,22,1078-1082.
    [66]Mooradian, A.; Photoluminescence of metals. Phys. Rev. Lett.1969,22,185-187.
    [67]Muhammed, M.A.H.; Pradeep, T. Advanced fluorescence reporters in chemistry and biology Ⅱ. Springer, Berlin, Heidelberg,2010,333-353.
    [68]Wei, W.; Lu, Y.; Chen, W.; Chen, S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc.2011,133,2060-2063.
    [69]Tanaka, S.I.; Miyazaki, J.; Tiwari, D.K.; Jin, T.; Inouye, Y. Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging. Angew. Chem. Int. Ed. 2011,50,431-435.
    [70]Vosch, T.; Antoku, Y.; Hsiang, J.C.; Richards, C.I.; Gonzalez J.I.; Dickson, R.M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. U. S. A.2007,104,12616-12621.
    [71]Sharma, J.; Yeh, H.C.; Yoo, H.; Werner, J.H.; Martinez, J.S. A complementary palette of fluorescent silver nanoclusters. Chem. Commun.,2010,46,3280-3282.
    [72]Ozin G.A.; Huber, H.; Cryophotoclustering Techniques for Synthesizing Very Small, Naked Silver Clusters Agn of Known Size (Where n=2-5). The Molecular Metal Cluster-Bulk Metal Particle Interface. Inorg. Chem.1978,17,155-163.
    [73 Konig, L.; Rabin, I.; Schulze, W.; Ertl, G. Chemiluminescence in the agglomeration of metal clusters. Science 1996,274,1353-1354.
    [74]Rabin, I.; Schulze W.; Ertl, G. Absorption spectra of small silver clusters Agn (n≥3). Chem. Phys. Lett.1999,312,394-398.
    [75]Bellec, M.; Royon, A.; Bourhis, K.; Choi, J.; Bousquet, B.; Treguer, M.; Cardinal, T.; Videau, J.J.; Richardson M.; Canioni, L.3D Patterning at the Nnanoscale of fluorescent emitters in glass. J. Phys. Chem. C.2010,114,15584-15588.
    [76]Royon, A.; Bourhis, K.; Bellec, M.; Papon, G.; Bousquet, B.; Deshayes, Y.; Cardinal T.; Canioni, L. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv. Mater.2010,22,5282-5286.
    [77]Sun T.; Seff, K. Silver clusters and chemistry in zeolites. Chem. Rev.1994,94,857-870.
    [78]De Cremer, G.; Antoku, Y.; Roeffaers, M.B.J.; Sliwa, M.; Van Noyen, J.; Smout, S.; Hofkens, J.; De Vos, D.E.; Sels B.F.; Vosch, T. Photoactivation of silver-exchanged zeolite A. Angew. Chem, Int. Ed.2008,47,2813-2816.
    [79]De Cremer, G.; Sels, B.F.; Hotta, J.I.; Roeffaers, M.B.J.; Bartholomeeusen, E.; Couti-no-Gonzalez, E.; Valtchev, V.; DeVos, D.E.; Vosch T.; Hofkens, J.; Optical encoding of silver zeolite microcarriers. Adv. Mater,2010,22,957-960.
    [80]De Cremer, G.; Coutino-Gonzalez, E.; Roeffaers, M.B.J.; Moens, B.; Ollevier, J.; Van der Auweraer, M.; Schoonheydt, R.; Jacobs, P.A.; De Schryver, F.C.; Hofkens, J.; De Vos, D.E.; Sels B.F.; Vosch, T. Characterization of fluorescence in heat-treated silver-exchanged zeolites. J. Am. Chem. Soc.2009,131,3049-3056.
    [81]Diez I.; Ras, R.H.A. Fluorescent silver nanoclusters. Nanoscale,2011,3,1963-1970.
    [82]Zheng, J.; Dickson, R.M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc.2002,124,13982-13983.
    [83]Zheng, J.; Dickson, R.M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc.2002,124,13982-13983.
    [84]Lesniak, W.; Bielinska, A.U.; Sun, K.; Janczak, K.W.; Shi, X.; Baker, J.R.; Balogh, L.P. Silver/dendrimer nanocomposites as biomarkers:fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 2005,5,2123-2130.
    [85]Zhang, J.; Xu, S.; Kumacheva, E. Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv. Mater.2005,17,2336-2340.
    [86]Shen, Z.; Duan, H.W.; Frey, H. Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as molecular hydrogel templates. Adv. Mater.2007,19, 349-352.
    [87]Shang, L.; Dong, S.J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.2008,1088-1090.
    [88]Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H. E.; Ikkala, O.; Ras. R.H.A. Color tunability and electrochemiluminescence of Silver nanoclusters. Angew. Chem. Int. Ed.2009,48,2122-2125.
    [89]Xu, H.X.; Suslick, K.S. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010,4,3209-3214.
    [90]Liu, S.H.; Lu, F.; Zhu, J.J. Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+ sensing. Chem. Commun.2011,47,2661-2663.
    [91]Wang, X.M.; Xu, S.P.; Xu, W.Q. Synthesis of highly stable fluorescent Ag nanocluster@ polymer nanoparticles in aqueous solution. Nanoscale 2011,3,4670-4675.
    [92]Muhammed, M.A.H.; Aldeek, F.; Palui, G.; Trapiella-Alfonso, L.; Mattoussi, H. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing. ACS Nano 2012,6,8950-8961.
    [93]Wu, Z.k.; Lanni, E.; Chen, W.Q.; Bier, M.E.; Ly, D.; Jin, R.C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc.2009,131,16672-16674.
    [94]Rao, T.U.B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed.2010,49,3925-3929.
    [95]Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescents ilver nanoclusters and Hgll sensing. Chem. Mater.2010,22,4364-437.
    [96]Yuan, X.; Luo, Z.T.; Zhang, Q.B.; Zhang, X.H.; Zheng, Y.G; Lee, J.Y.; Xie, J.P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011,5,8800-8808.
    [97]Xavier, L.G.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione:a promising fluorescent label for bioimaging. Nano Res. 2012,5,379-387.
    [98]Roy, S.; Banerjee, A. Amino acid based smart hydrogel:formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix. Soft Matter 2011,7, 5300-5308.
    [99]Adhikari, B.; Banerjee, A. Short-peptide-based hydrogel:a template for the in situ synthesis of fluorescent silver nanoclusters by using sunlight. Chem. Eur. J.2010,16,13698-13705.
    [100]Izatt, R.M.; Christensen, J.J.; Rytting, J.H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides. Chem. Rev.1971,71,439-481.
    [101]Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-templated Ag nanocluster formation.J. Am. Chem. Soc.2004,126,5207-5212.
    [102]Ritchie, C.M.; Johnsen, K.R.; Kiser, J.R.; Antoku, Y.; Dickson, R.M.; Petty, J.T. Ag nanocluster formation using a cytosine oligonucleotide template.J. Phys. Chem. C.2007,111, 175-181.
    [103]Vosch, T.; Antoku, Y.; Hsiang, J.C.; Richards, C.I.; Gonzalez, J.I.; Dickson, R.M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl.Acad.ScL 2007,104,12616-12621.
    [104]Sengupta, B.; Ritchie, C.M.; Buckman, J.G; Johnsen, K.R.; Goodwin, P. M.; Petty, J. T. Base-directed formation of fluorescent silver clusters.J. Phys. Chem. C 2008,112, 18776-18782.
    [105]Richards, C.I.; Choi, S.; Hsiang, J.C; Antoku, Y; Vosch, T.; Bongiorno, A.; Tzeng, Y.L.; Dickson, R.M. Oligonucleotide-stabilized Ag nanocluster fluorophores.J. Am. Chem. Soc. 2008,130,5038-5039.
    [106]Gwinn, E.G.; O' Neill, P.; Guerrero, A.J.; Bouwmeester, D.; Fygenson, D.K. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater.2008,20, 279-283.
    [107]O' Neill, P.R.; Velazquez, L.R.; Dunn, D.G; Gwinn, E.G.; Fygenson, D.K. Hairpins with poly-C loops stabilize four types of fluorescent Agn:DNA.J. Phys. Chem. C 2009,113, 4229-4233.
    [108]Guo, W.W.; Yuan, J.P.; Dong, Q.Z.; Wang, E.K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc,2010,132,932-934.
    [109]Yu, J.; Patel, S.A.; Dickson, R.M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed 2007,46,2028-2030.
    [110]Xie, J.P.; Zheng, Y.G; Ying, J.Y. Protein-directed synthesis of highly fluorescentg old nanoclusters. J. Am. Chem. Soc. 2009,131,888-889.
    [111]Mathew, A.; Sajanlal, P.R.; Pradeep, T. A fifteen atom silver cluster confined in bovine serum albumin. J. Mater. Chem.2011,21,11205-11212.
    [112]Guo, C.L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem.2011,83,2883-2889.
    [113]Shang, L.; Dorlich, R.M.; Trouillet, V.; Bruns, M.; Nienhaus, G.U. Ultrasmall fluorescent silver nanoclusters:protein adsorption and its effects on cellular responses. Nano Res.2012,5, 531-542.
    [114]Anand, U.; Ghosh, S.; Mukherjee, S. Toggling between blue- and red- emitting fluorescent silver nanoclusters.J. Phys. Chem. Lett.2012,3,3605-3609.
    [115]Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem.2011, 83,1193-1196.
    [116]Narayanan, S.S.; Pal, S.K. Structural and functional characterization of luminescent silver-protein nanobioconjugates.J. Phys. Chem. C 2008,112,4874-4879.
    [117]Zhou, T.Y; Huang, Y.H.; Li, W.B.; Cai, Z.M.; Luo, F.; Yang, J.C.; Chen, X. Facile synthesis of red-emitting lysozyme-stabilized Ag nanoclusters. Nanoscale 2012,4,5312-5315.
    [118]Guo, W.W.; Yuan, J.P.; Wang, E.K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem. Commun.2009,3395-3397.
    [119]Deng, L.; Zhou, Z.X.; Li, J.; Li T.; Dong, S.J. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions. Chem. Commun.2011,47,11065-11067.
    [120]Guo, C.L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor. AnaL Chem.2011,83,2883-2889.
    [122]Tao, Y.; Lin, Y.H.; Huang, Z.Z.; Ren, J.S.; Qu, X.G.. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (Ⅲ) ions. Talanta 2012,88,290-294.
    [123]Yuan, X.; Yeow, T.J.; Zhang, Q.B.; Lee, J.Y.; Xie, J.P. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale 2012,4,1968-1971.
    [124]Wang, C.X.; Xu,L.; Wang, Y.; Zhang, D.; Shi, X.D.; Dong, F.X.; Yu, K.; Lin, Q.; Yang, B. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury (Ⅱ) at parts-per-billion levels. Chem. Asian J.2012,7,1652-1656.
    [125]Shang, L.; Dong, S.J. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ). J. Mater. Chem.2008,18,4636-4640.
    [126]Zhang, M.; Ye, B.C. Label-free fluorescent detection of copper (Ⅱ) using DNA-templated highly luminescent silver nanoclusters. Analyst 2011,136,5139-5142.
    [127]Lan, G.Y.; Huang, C.C.; Chang, H.T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun.2010,46,1257-1259.
    [128]Y.T. Su, G.Y. Lan, W.Y. Chen, H.T. Chang. Detection of Copper Ions Through Recovery of the Fluorescence of DNA-Templated Copper/Silver Nanoclusters in the Presence of Mercaptopropionic Acid. Anal. Chem.2010,82,8566-8572.
    [129]Liu, S.H.; Lu, F.; Zhu, J.J. Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+ sensing. Chem. Commun.2011,47,2661-2663.
    [130]Zhou, T.Y.; Rong, M.C.; Cai, Z.M.; Yang, C.J.; Chen, X. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. Nanoscale 2012,4,4103-4106.
    [131]Chen, W.Y.; Lan, G.Y.; Chang, H.T. Use of fluorescent DNA-templated gold/Silver nanoclusters for the detection of sulfide Ions. Anal. Chem.2011,83,9450-9455.
    [132]Qu, F.; Li, N. B.; Luo, H. Q. Polyethyleneimine-templated Ag nanoclusters:a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem.2012,84,10373-10379.
    [133]Huang, Z.Z.; Ren, J.S.; Qu, X.G. A reversible DNA-silver nanoclusters-based molecular fluorescence switch and its use for logic gate operation. Mol. BioSyst.2012,8,921-926
    [134]Li, T.; Zhang, L.B.; Ai, J.; Dong, S.J.; Wang, E.K. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACSNANO 2011,5,6334-6338
    [135]Qu, F.; Li, N.B.; Luo, H.Q. Highly sensitive fluorescent and colorimetric pH Ssensor based on polyethyleneimine-capped silver nanoclusters. Langmuir 2013,29,1199-1205.
    [136]Shahrokhian, S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem. 2001,73,5972-5978.
    [137]Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D' Agostino, R.B.; Wilson, P.W.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and alzheimer's disease. N. Engl. J. Med.2002,346,476-483.
    [138]Shang, L.; Dong, S.J. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens. Bioelectron.2009,24,1569-573.
    [139]Huang, Z.Z.; Pu, R.; Lin, Y.H.; Ren, J.S.; Qu, X.G. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem. Commun. 2011,47, 3487-3489.
    [140]Zhang, N.; Qu, E.; Luo, H.Q.; Li, N.B. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens. Bioelectron.2013,42,214-218.
    [141]Zhang, M.; Guo, S.M.; Li, Y.R.; Zuo, P.; Ye, B.C. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters:use for detection of adenosine and adenosine deaminase. Chem. Commun.2012,48,5488-5490.
    [142]Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem.2011, 83,1193-1196.
    [143]Shiang, Y.C.; Huang, C.C.; Chang, H.T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun.2009,3437-3439.
    [144]Wen, T.; Qu, F.; Luo, H.Q.; Li, N.B. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal Chim. Acta 2012,749,56-62.
    [145]Ma, K.; Cui, Q.H.; Liu, G.Y; Xu, S.J.; Shao, Y. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. Nanotechnology 2011,22, 305502 (6pp).
    [146]Lan, G.Y; Chen, W.Y.; Chang, H.T. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosens. Bioelectron.2011,26, 2431-2435.
    [147]Yeh, H.C.; Sharma, J.; Han, J.J.; Martinez, J.S.; Werner, J.H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett.2010,10,3106-3110.
    [148]Petty, J.T.; Sengupta, B.; Story, S.P.; Degtyareva N.N. DNA sensing by amplifying the number of near-infrared emitting, oligonucleotide-encapsulated silver clusters. Anal. Chem.2011,83, 5957-5964.
    [149]Petty, J.T.; Story, S.P.; Juarez, S.; Votto, S.S.; Herbst, A.G.; Degtyareva, N.N.; Sengupta, B. Optical sensing by transforming chromophoric silver clusters in DNA nanoreactors. Anal Chem.2012,84,356-364.
    [150]Fernandez-Suarez, M.; Ting, A. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol Cell Biol. 2008,9,929-943.
    [151]Wang, F.; Tan, W.B.; Zhang, Y.; Fan, X.; Wang, M. Luminescent nanomaterials for biological labeling. Nanotechnology 2006,17, R1-R13.
    [152]Yu, J.; Patel, S.A.; Dickson, R.M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed.2007,46,2028-2030.
    [153]Yu, J.H.; Choi, S.; Richards, C.I.; Antoku, Y.; Dickson, R.M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol. 2008,84,1435-1439.
    [154]Antoku, Y.; Hotta, J.; Mizuno, H.; Dickson, R.M.; Hofkens, J.; Vosch, T. Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters. Photochem. Photobiol. ScI. 2010,9,716-721.
    [155]YY Cui, Y.L. Wang, R. Liu, Z.P. Sun, Y.T. Wei, Y.L. Zhao, X.Y Gao. Serial silver clusters biomineralized by one peptide. ACS Nano 2011,5,8684-8689.
    [156]J. Ai, W.W. Guoa, B.L. Li, T. Li, D. Li, E.K. Wang. DNA G-quadruplex-templated formation of the fluorescent silver nanoclusterand its application to bioimaging. Talanta 88 (2012) 450-455.
    [157]Li, J.J.; Zhong, X.Q.; Cheng, F.F.; Zhang, J.R.; Jiang, L.P.; Zhu, J.J. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal. Chem.2012, 84,4140-4146.
    [1]Vupputuri, S.; Longnecker, M.P.; Daniels, J.L.; Guo X.; Sandler, D.P. Blood mercury level and blood pressure among US women:results from the National Health and Nutrition Examination Survey 1999-2000. Environ. Res.2005,97,195-200.
    [2]Virtanen, J.K.; Rissanen, T.H.; Voutilainen S.; Tuomainen, T.P. Mercury as a risk factor for cardiovascular diseases.J. Nutr. Biochem. 2007,18,75-85.
    [3]Baughman, T.A. Environmental health perspectives. Health Perspect 2006,114,147-152.
    [4]Gutknecht, J.J. Inorganic mercury (Hg2+) transport through lipid bi-layer membranes. J. Membr. Biol. 1981,61,61-66.
    [5]Guo, T.; Baasner, J.; Gradl M.; Kistner, A. Determination of mercury in saliva with a flow-injection system. Anal. Chim.Acta 1996,320,171-176.
    [6]H. T. Wang, B. S. Kang, T. F. Chancellor, Jr, T. P. Lele, Y. Tseng, F. Ren, S. J. Pearton, W. J. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner and K. J. Linthicum, Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors. AppL Phys. Lett 2007,91,042114-042116.
    [7]Liu J.W.; Lu, Y. Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chem., Int Ed.2007,46, 7587-7590.
    [8]Li, T.; Li, B.L.; Wang E.K.; Dong, S.J. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem. Commun.2009,3551-3553.
    [9]Vannela R.; Adriaens, P. In vitro selection of Hg(Ⅱ) and As(Ⅴ)-dependent RNA-cleaving DNAzymes. Environ. Eng. Sci. 2007,24,73-84.
    [10]Darbha, GK.; Singh, A.K.; Rai, U.S.; Yu, E.; Yu H.; Ray, R.C. Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles.J. Am. Chem. Soc,2008,130, 8038-8043.
    [11]Jia, S.M.; Liu, X.F.; Li, P.; Kong, D.M.; Shen, H.X. G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2+ -mediated oligonucleotide switching. Biosens. Bioelectron.2011, 26,148-152.
    [12]Li, T.; Dong S.J.; Wang, E.K. Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+ -Modulated G-Quadruplex-Based DNAzymes. Anal. Chem. 2011,80,2144-2149.
    [13]Chen P.; He, C.A. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions.J. Am. Chem. Soc.2004,126,728-729.
    [14]Wegner, S.V.; Okesli, A.; Chen P.; He, C.A. Design of an emission ratiometric biosensor from MerR family proteins:a sensitive and selective sensor for Hg2+.J. Am. Chem. Soc.2007,129, 3474-3475.
    [15]Guo, Y.M.; Wang Z.; Qu, W.S. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron.2011,26, 4064-4069.
    [6]Du, J.J.; Sun Y.H.; Jiang, L. Flexible colorimetric detection of mercuric ion by simply mixing nanoparticles and oligopeptides. Small 2011,10,1407-1411.
    [7]Guo C.L.; Joseph, I. Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor. Anal. Chem. 2011,83,2883-2889.
    [8]Huang, C.C.; Yang, Z.S.; Lee K.H.; Chang, H.T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew. Chem., Int. Ed 2007,46,6824-6828.
    [9]Liu, C.W.; Hsieh, Y.T.; Huang, C.C.; Lin Z.H.; Chang, H.T. Detection of mercury (Ⅱ) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun.2008, 2242-2244.
    [20]Wang, H.; Wang, Y.X.; Jin J.Y.; Yang, R.H. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(Ⅱ) ions in aqueous solution. Anal. Chem.2008,80,9021-9028.
    [21]W. W. Guo, J. P. Yuan and E. K. Wang, Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem. Commun.2009,3395-3397.
    [22]Kim I.B.; Bunz, U.H.F. Modulating the sensory response of a conjugated polymer by proteins:an agglutination assay for mercury ions in water. J. Am. Chem. Soc.2006,128, 2818-2819.
    [23]Cheng, X.H.; Li Q.Q.; Li, C.G. Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(Ⅱ). Chem. Eur. J.2011,26,7276-7281.
    [24]Chiang, C.K.; Huang, C.C.; Liu C.W.; Chang, H.T. Oligonucleotide-Based fluorescence probe for sensitive and selective detection of nercury(Ⅱ) in aqueous solution. Anal. Chem.2008,80, 3716-3721.b
    [25]Descalzo, A.B.; Martinez-Manez, R.; Radeglia, R.; Rurack K.; Soto, J. Coupling selectivity with sensitivity in an integrated chemosensor framework:design of a Hg2+-responsive probe, operating above 500 nm. J. Am. Chem. Soc.2003,125,3418-3419.
    [26]Miller E.M.; Chang, C.J. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr. Opin. Chem. Biol.2007,11,620-625.
    [27]Nolan E.M.; Lippard, S.J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc.2003,125,14270-14271.
    [28]Lee, M.H.; Wu, J.S.; Lee, J.W.; Jung, J.H.; Kim,J.S. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine rluorophore. Org. Lett. 2007,9,2501-2504.
    [29]Yoon, S.; Albers, A.E.; Wong A.P.; Chang, C.J. Screening mercury levels in fish with a selective fluorescent chemosensor. J.Am. Chem. Soc.2005,127,16030-16031.
    [30]Zhang, X.L.; Xiao Y.; Qian, X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells. Angew. Chem., Int. Ed. 2008,47,8025-8029.
    [31]Tsukamoto, K.; Shinohara, Y.; Iwasaki S.; Maeda, H. A coumarin-based fluorescent probe for Hg2+ and Ag+ with an N'-acetylthioureido group as a fluorescence switch. Chem. Commun. 2011,47,5073-5075.
    [32]Koteeswari, R.; Ashokkumar, P.; Padma Malar, E.J.; Ramakrishnan V.T.; Ramamurthy, P. Highly selective, sensitive and quantitative detection of Hg2+ in aqueous medium under broad pH range. Chem. Commun.2011,47,7695-7697.
    [33]Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami T.; Ono, A. Mercuryll-mediated formation of thymine-Hgll-thymine base pairs in DNA duplexes. J. Am. Chem. Soc.2006,128,2172-2173.
    [34]Wu, J.K.; Li, L.Y.; Zhu, D.; He, P.G.; Fang Y.Z.; Cheng, G.F.; Colorimetric assay for mercury (Ⅱ) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles. Anal. Chim.Acta 2011,694,115-119.
    [35]Xu, X.W.; Wang, J.; Jiao K.; Yang, X.R. Biosens. Bioelectron., Label-free colorimetric detection of small molecules utilizing DNA oligonucleotides and silver nanoparticles. Biosens. Bioelectron.2009,24,3153-3158.
    [36]Ono A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(Ⅱ) in aqueous solutions. Angew. Chem., Int. Ed.2004,43,4300-4302.
    [37]Zhu, Z.; Xu, L.; Zhou, X.; Qin J.G.; Yang, C.L. Designing label-free DNA sequences to achieve controllable turn-off/on fluorescence response for Hg2+ detection. Chem. Commun.2011,47, 8010-8012.
    [38]Oh, B.N.; Park, S.J.; Ren, J.; Jang, Y.J.; Kim S.K.; Kim, J. Label-free emission assay of mercuric ions using DNA duplexes of poly(dT). Dalton Trans.2011,40,6494-6499.
    [39]Cai, S.; Lao, K.M.; Lau C.W.; Lu, J.Z. "Turn-on" chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles. Anal. Chem. 2011,83,9702-9708.
    [40]Wu, D.H.; Zhang, Q.; Chu, X.; Wang, H.B.; Shen G.L.; Yu, R.Q. Ultrasensitive electrochemical sensor for mercury (Ⅱ) based on target-induced structure-switching DNA. Biosens. Bioelectron. 2010,25,1025-1031.
    [41]Kumar M。; Zhang, P. Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens. Bioelectron.2010,25,2431-2435.
    [42]Chang, C.C.; Lin, S.Q.; Wei, S.C.; Chen C.Y.; Lin, C.W. An amplified surface plasmon resonance "turn-on" sensor for mercury ion using gold nanoparticles. Biosens. Bioelectron. 2011,26,235-240.
    [43]Zhang, L.B.; Li, T.; Li, B.L.; Li J.; Wang, E.K. Carbon nanotube -DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(Ⅱ) ion. Chem. Commun.2010,46, 1476-1478.
    [44]He, S.J.; Song, B.; Li, D.; Zhu, C.F.; Qi, W.P.; Wen, Y.Q.; Wang, L.H.; Song, S.P.; Fang H.P.; Fan, C.H. Graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Fund. Mater.2010,20,453-459.
    [45]Tang, C.X.; Zhao, Y.; He X.W.; Yin, X.B. A "turn-on" electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)32+into ds-DNA. Chem. Commun.2010,46,9022-9024.
    [46]Zhang, M.; Yi, B.C.; Tan W.H.; Ye, B.C. A versatile graphene-based fluorescence "on/off" switch for multiplex detection of various targets. Biosens. Bioelectron.2011,26,3260-3265.
    [47]Li, H.L.; Zhai J.F.; Sun, X.P. Nano-C60 as a novel, effective fluorescent sensing platform for mercury(Ⅱ) ion detection at critical sensitivity and selectivity. Nanoscale 2011,3,2155-2157.
    [48]Guo, L.Q.; Yin, N.; Nie, D.D.; Gan, J.R.; Li, M.J.; Fu F.F.; Chen, G.N. Label-free fluorescent sensor for mercury(II) ion by using carbon nanotubes to reduce background signal. Analyst 2011,136,1632-1636.
    [48]Liu, X.F.; Miao, L.K.; Jiang, X.; Ma, Y.W.; Fan Q.L.; Huang, W. Highly sensitive fluorometric Hg2+ biosensor with a mercury(Ⅱ)-specific oligonucleotide (MSO) probe and water-soluble graphene oxide (WSGO). Chin. J. Chem.2011,29,1031-1035.
    [50]Li, H.L.; Zhai, J.F.; Tian, J.Q.; Luo Y.L.; Sun, X.P. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury (Ⅱ) ion in aqueous solution. Biosens. Bioelectron. 2011,26,4656-4660.
    [51]Xie, W.Y.; Huang, W.T.; Li N.B.; Luo, H.Q. Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun.2012,48, 82-84.
    [52]Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen X.; Chen, G.N. A graphene platform for sensing biomolecules. Angew. Chem., Int Ed.2009,48,4785-4787.
    [53]Zhao, X.H.; Kong, R.M.; Zhang, X.B.; Meng, H.M.; Liu, W.N.; Tan, W.H.; Shen G.L.; Yu, R.Q. Graphene-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of lead(Ⅱ) with a high selectivity. Anal Chem.2011,83,5062-5066.
    [54]Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P.K.; Sood A.K.; Rao, C.N.R. Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 2009,10, 206-210.
    [1]Hoffmeyer, R.E.; Singh, S.P.; Doonan, C.J.; Ross, A.R.S.; Hughes, R.J.; Pickering, I.J.; George, G.N. Molecular mimicry in mercury toxicology. Chem. Res. Toxicol. 2006,19,753-759.
    [2]Harris,H.H.; Pickering, I.J.; George, G.N. The chemical form of mercury in fish. Science 2003, 301,1203-1203.
    [3]Aragay, G.; Pons, J.; Merkoci, A.2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews 11,3433-3458.
    [4]Lee,M. H.; Wu, J.S.; Lee, J.W.; Jung, J.H.; Kim, J.S. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org. Lett.2007,9,2501-2504.
    [5]Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev.2008, 37,1465-1472.
    [6]Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. J. Am. Chem. Soc.2005,127 (45), pp 15666-15667.
    [7]Neupane, L.N.; Kim, J.M.; Lohani, C.R.; Lee, K.H. Selective and sensitive ratiometric detection of Hg2+ in 100% aqueous solution with triazole-based dansyl probe. J. Mater. Chem.2012,22, 4003-4008.
    [8]Li, C.Y.; Xu, F.; Li, Y.F.; Zhou, K.; Zhou, Y. A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal. Chim. Acta 2012,717,122-126.
    [9]Satapathy, R.; Wu, Y.H.; Lin, H.C. Novel thieno-imidazole based probe for colorimetric detection of Hg2+ and fluorescence turn-on response of Zn2+. Org. lett. 2012,14,2564-2567.
    [10]Kim I.B.; Bunz, U.H.F. Modulating the sensory response of a conjugated polymer by proteins:an agglutination assay for mercury ions in water. J. Am. Chem. Soc.2006,128, 2818-2819.
    [11]Gao, X.Y.; Xing, GM.; Yang, Y.L.; Shi, X.L.; Liu, R.; Chu, W.G; Jing, L.; Zhao, F.; Ye, C; Yuan, H.; Fang, X.H.; Wang, C.; Zhao, Y.L. Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes. J. Am. Chem. Soc.2008, 130,9190-9191.
    [12]Vannela R.; Adriaens, P. In vitro selection of Hg (Ⅱ) and As(Ⅴ)-dependent RNA-cleaving DNAzymes. Environ. Eng. Sci. 2007,24,73-84.
    [13]Li, T.; Dong S.J.; Wang, E.K. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+ -modulated G-quadruplex-based DNAzymes. Anal. Chem.2011,80,2144-2149.
    [14]Wegner, S.V.; Okesli, A.; Chen P.; He, C.A. Design of an emission ratiometric Bbiosensor from MerR family proteins:a sensitive and selective sensor for Hg2+. J. Am. Chem. Soc.2007,129, 3474-3475.
    [15]Yuan, C.; Zhang, K.; Zhang, Z.P.; Wang, S.H. Highly Selective and Sensitive Detection of Mercuric Ion Based on a Visual Fluorescence Method. Anal. Chem.2012,84,9792-9801.
    [16]Du, Y.X.; Liu, R.Y.; Liu, B.H.; Wang, S.H.; Han, M.Y.; Zhang, Z,P, Surface- enhanced raman scattering Cchip for femtomolar detection of mercuric ion(Ⅱ) by ligand exchange. Anal. Chem. 2013,85,3160-3165.
    [17]Ren, W.; Zhu, C.Z.; Wang, E.K. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 2012,4,5902-5909.
    [18]Li, M.; Zhou, X.J.; Ding, W.Q.; Guo, S.W.; Wu, N.Q. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(Ⅱ). Biosens. Bioelectron.2013, 41,889-893.
    [19]Paramanik, B.; Bhattacharyya, S.; Patra, A.; Detection of Hg2+ and F- ions by using fluorescence switching of quantum dots in an Au-cluster-CdTe QD nanocomposite. Chem. Eur. J.2013,19,5980-5987.
    [20]Guo, C.L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem.2011,83,2883-2889.
    [21]Yuan, X.; Yeow, T.J.; Zhang, Q.B.; Lee, J.Y.; Xie, J.P. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale 2012,4,1968-1971.
    [22]Huang, C.C.; Yang, Z.S.; Lee K.H.; Chang, H.T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew. Chem., Int Ed.2007,46,6824-6828.
    [23]Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(Ⅱ) in aqueous solutions. Angew. Chem. Int Ed.2004,43,4300-4302.
    [24]Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y; Sawa, R.; Fujimoto, T.; Machinami T.; Ono, A. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. J. Am. Chem. Soc.2006,128,2172-2173.
    [25]Chiang, C.K.; Huang, C.C.; Liu, C.W.; Chang, H.T. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(Ⅱ) in aqueous solution. Anal. Chem.2008,80, 3716-3721.
    [26]Zhang, L.B.; Li, T; Li, B.L.; Li J.; Wang, E.K. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(Ⅱ) ion. Chem. Commun.2010,46, 1476-1478.
    [27]Tang, C.X.; Zhao, Y.; He X.W.; Yin, X.B. A "turn-on" electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)32+ into ds-DNA. Chem. Commun.2010,46,9022-9024.
    [28]Li, M.; Wang, Q.Y.; Shi, X.D.; Hornak, L.A.; Wu, N.Q. Detection of mercury(Ⅱ) by quantum Dot/DNA/Gold nanoparticle ensemble based nanosensor via Nnanometal surface energy transfer. Anal. Chem.2011,83,7061-7065.
    [29]Xuan, F.; Luo, X.T.; Hsing, I.M. Conformation-dependent exonuclease Ⅲ activity mediated by metal ions Rreshuffling on thymine-rich DNA duplexes for an ultrasensitive electrochemical method for Hg2+ detection. Anal. Chem.2013,85,4586-4593.
    [30]Zhang, L.; Chang, H.X.; Hirata, A.; Wu, H.K.; Xue, Q.K.; Chen, M.W. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano 2013,7,4595-4600.
    [31]Xie, W.Y.; Huang, W.T.; Zhang, J.R.; J.R.; Luo, H.Q.; Li, N.B. A triple-channel optical signal probe for Hg2+ detection based on acridine orange and aptamer-wrapped gold nanoparticles. J. Mater. Chem.2012,22,11479-11482.
    [32]Xie, W.Y.; Huang, W.T.; Li, N.B.; Luo, H.Q. Silver(Ⅰ) ions and cysteine detection based on photoinduced electron transfer mediated by cytosine-Ag+-cytosine base pairs. Analyst 2011, 136,4130-4133.
    [1]U. S. Environmental Protection Agency. (2000). Chromium compound, hazard summary. Retrieved from http//www.epa.gov/ttn/atw/hlthef/chromium.html
    [2]Raul A.; Sanchez-Moreno, M.; Jesus Gismera, M.; Procopio, R. Chromium (Ⅲ) determination without sample treatment by batch and flow injection potentiometry. Analytica Chimica Acta 2009,63468-74.
    [3]Eastmond, D.A.; MacGregor, J.T.; Slesinski, R.S. Trivalent chromium:assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 2008,38,173-190.
    [4]Tripathi, R.M.; Raghunath, R.; Kumar, A.V.; Krishnamoorthy, T.M. Intake of chromium by the adult population of Mumbai city. Environ. Monit. Assess.1998,53,379-389.
    [5]Gomez, V.; Callao, M.P. Chromium determination and speciation since 2000. TrAC Trends Anal. Chem. 2006,25,1006-1015.
    [6]Rakhunde, R.; Deshpande, L.; Juneja, H.D.; Chemical speciation of chromium in water:a review. Crit. Rev. Environ. Sci. Technol.2012,42776-810.
    [7]U. S. E. P. A. List of Drinking Water Contaminants & MCLs, EPA,816-F-03-016, http://www.epa.gov/safewater/contaminants/index html#listmcl.
    [8]California Department of Public Health. Chromium-6 in Drinking Water:Regulation Update. http://ww2.cdph.ca.gov/CERTLIC/DRINKINGWATER/Pages/Chromium6.aspx.
    [9]Bag, H.; Tiirker, A.R.; Lale, M.; eli, A.T. Separation and speciation of Cr(Ⅲ) and Cr(Ⅵ) with Saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS, Talanta 2000,51,895-902.
    [10]Kiran, K.; Kumar, K.S.; Prasad, B.; Suvardhan, K.; Babu, L.R.; Janardhanam, K. Speciation determination of chromium(Ⅲ) and (Ⅵ) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS). J. Hazard. Mater.2008,150,582-586.
    [11]Zhu, X.S.; Hu, B.; Jiang, Z.C.; Li, M.F. Cloud point extraction for speciation of chromiumin water samples by electrothermal atomic absorption spectrometry. Water Res.2005,39, 589-595.
    [12]Zou, A.M.; Chen, X.W.; Chen M.L.; Wang, J.H. Sequential injection reductive bio-sorption of Cr(Ⅵ) on the surface of egg-shell membrane and chromium speciation with detection by electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom,2008,23,412-415.
    [13]Liang, P.; Ding, Q.; Liu, Y. Speciation of chromium by selective separation and preconcentration of Cr(Ⅲ) on an immobilized nanometer titanium dioxide microcolumn. J. Sep. Sci.2006,29,242-247.
    [14]Rahman, G.M.M.; Kingston, H.M.S.; Towns, T.G.; Vitale, R.J.; Clay, K.R. Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials. Anal. Bioanal. Chem.2005, 382,1111-1120.
    [15]Wang, L.L.; Wang, J.Q.; Zheng, Z.X.; Xiao, P. Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium(Ⅲ) and chromium(Ⅵ) in environmental sediment samples. J. Hazard. Mater.2010,177,114-118.
    [16]Tokalioglu, S.; Arsav, S.; Delibas, A.; Soykan, C. Indirect speciation of Cr (Ⅲ) and Cr (Ⅵ) in water samples by selective separation and preconcentration on a newly synthesized chelating resin. Anal. Chim. Acta 2009,645,36-41.
    [17]Memon, J.U.; Memon, S.Q.; Bhanger, M.I.; Khuhawar, M.Y. Use of modified sorbent for the separation and preconcentration of chromium species from industrial waste water. J. Hazard. Mater.2009,163,511-516.
    [18]Kalidhasan, S.:Ganesh, M.; Sricharan, S.; Rajesh, N. Extractive separation and determination of chromium in tannery effluents and electroplating waste water using tribenzylamine as the extractant. J. Hazard. Mater.2009,165,886-892.
    [19]Lin, M.Y.; Whang, C.W. Microwave-assisted derivatization and single-drop microextraction for gas chromatographic determination of chromium(Ⅲ) in water. J. Chromatogr. A 2007,1160, 336-339.
    [20]Saygi, K.O.; Tuzen, M.; Soylak, M.; Elci, L. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J. Hazard. Mater.2008,153,1009-1014.
    [21]Mahmoud, M.E.; Yakout, A.A.; Ahmed, S.B.; Osman, M.M. Speciation, selective extraction and preconcentration of chromium ions via alumina-functionalized-isatin-thiosmicarbazone. J. Hazard. Mater.2008,158,541-548.
    [22]Ding, T.H.; Lin, H.H.; Whang, C.W. Determination of chromium(Ⅲ) in water by solid-phase microextraction with a polyimide-coated fiber and gas chromatography-flame photometric detection.J. Chromatogr. A 2005,1062,49-55.
    [23]Liang, P.; Sang, H.B. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater.2008,154,1115-1119.
    [24]Lin, M.Y.; Whang, C.W. Microwave-assisted derivatization and single-drop microextraction for gas chromatographic determination of chromium (Ⅲ) in water. J. Chromatogr. A 2007,1160, 336-339.
    [25]Kumbasar, R.A. Selective extraction of chromium(Ⅵ) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier. J. Hazard. Mater.2010,178, 875-882.
    [26]Krishna, P.G.; Gladis J.M.;, Rambabu, U.; Rao, P.T.; Naidu, G.R.K. Preconcentrative separation of chromium(Ⅵ) species from chromium(Ⅲ) by coprecipitation of its ethylxanthate complex onto naphthalene. Talanta 2004,63,541-546.
    [27]Kachoosangi, R.T.; Compton, R.G. Voltammetric determination of Chromium(Ⅵ) using a gold film modified carboncomposite electrode. Sens. Actuators B 2013,178,555-562.
    [28]Kumar Jena, B.; Retna Raj. C. Highly sensitive and selective electrochemical detection of sub-ppb level chromium(Ⅵ) using nano-sized gold particle. Talanta 2008,76,161-165.
    [29]Tsai, M.C.; Chen, P.Y. Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta 2008,76,533-539.
    [36]Hosseini, M.S.; Belador, F. Cr(Ⅲ)/Cr(Ⅵ) speciation determination of chromium in water samples by luminescence quenching of quercetin. J. Hazard. Mater.2009,165,1062-1067.
    [30]Liu, S.H; Lu F.; Zhu, J.J. Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+sensing. Chem. Commun.2011,47,2661-2663.
    [31]Yang, W.P.; Zhang, Z.J.; Deng, W. Speciation of chromium by in-capillary reaction and capillary electrophoresis with chemiluminescence detection. J. Chromatogr. A 2003,1014, 203-214.
    [32]Kanwal, S.; Fu, X.H.; Su, X.G. Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium(Ⅲ) detection. Microchim Acta 2010, 169,167-172.
    [33]Liu, X.; Xiang, J.J.; Tang, Y.; Zhang, X.L.; Fu, Q.Q.; Zou, J.H.; Lin, Y.H. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal. Chim. Acta 2012,745,99-105.
    [34]Wilcoxon, J.P.; Abrams, B.L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc.Rev.2006,35,1162-1194.
    [35]Xu, H.; Suslick, K.S. Water-soluble fluorescent silver nanoclusters. Adv. Mater.,2010,22, 1078-1082.
    [36]Peyser, L.A.; Vinson, A.E.; Bartko, A.P.; Dickson, R.M. Photoactivated fluorescence from individual silver nanoclusters. Science 2001,291,103-106.
    [37]Zheng, J.; Petty, J.T.; Dickson. R.M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc,2003,125,7780-7781.
    [38]Xie, J.; Zheng, Y.; Ying, J.Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+ -Au+interactions. Chem. Commun.2010, 46,961-963.
    [39]Annie Ho, J.A.; Chang, H.C.; Su, W.T. DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem.2012,84, 3246-3253.
    [40]Roy, S.; Palui, G.; Banerjee, A. The as-prepared gold cluster-based fluorescent sensor for the selective detection of AsⅢ ions in aqueous solution. Nanoscale 2012,4,2734-2740.
    [41]Chen, W.; Tu, X.; Guo, X. Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Conmmun.2009,1736-1738.
    [42]Yuan, Z.; Peng, M.; He, Y.; Yeung, E.S. Functionalized fluorescent gold nanodots:synthesis and application for Pb2+ sensing. Chem. Commun.2011,47,11981-11983.
    [43]Zhang, H.Y.; Liu, Q.; Wang, T.; Yun, Z.J.; Li, G.L.; Liu, J.Y; Jiang, G.B. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (Ⅲ) and chromium (Ⅵ) in environmental water samples. Anal. Chim. Acta 2013,770,140-146.
    [44]Wang, C.X.; Xu,L.; Wang, Y; Zhang, D.; Shi, X.D.; Dong, F.X.; Yu, K.; Lin, Q.; Yang, B. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury (Ⅱ) at parts-per-billion levels. Chem. Asian J.2012,7,1652-1656.
    [45]Zhou, T.Y.; Huang, Y.H.; Li, W.B.; Cai, Z.M.; Luo, F.; Yang, J.C.; Chen, X. Facile synthesis of red-emitting lysozyme-stabilized Ag nanoclusters. Nanoscale 2012,4,5312-5315.
    [46]Guo, W.W.; Yuan J.P.; Wang, E.K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem. Commun.2009,3395-3397.
    [47]Deng, L.; Zhou, Z.X.; Li, J.; Li T.; Dong, S.J. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions. Chem. Commun.2011,47,11065-11067.
    [48]Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescents ilver nanoclusters and Hg II sensing. Chem. Mater.2010,22,4364-437.
    [49]Guo, C.L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor. Anal. Chem.2011,83,2883-2889.
    [50]Tao, Y.; Lin, Y.H.; Huang, Z.Z.; Ren, J.S.; Qu, X.G. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (Ⅱ) ions. Talanta 2012,88,290-294.
    [51]Yuan, X.; Yeow, T.J.; Zhang, Q.B.; Lee, J.Y; Xie, J.P. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale 2012,4,1968-1971.
    [53]Shang, L.; Dong, S.J. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ). J. Mater. Chem.2008,18,4636-4640.
    [53]Zhang, M.; Ye, B.C. Label-free fluorescent detection of copper (Ⅱ) using DNA-templated highly luminescent silver nanoclusters. Analyst 2011,136,5139-5142.
    [54]Lan, G.Y.; Huang, C.C.; Chang, H.T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun.2010,46,1257-1259.
    [55]Y.T. Su, G.Y. Lan, W.Y. Chen, H.T. Chang. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal. Chem.2010,82,8566-8572.
    [56]Qu, F.; Li, N. B.; Luo, H. Q. Polyethyleneimine-templated Ag nanoclusters:a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem. 2012,84,10373-10379.
    [57]Huang, C.C.; Yang, Z.; Lee K.H.; Chang, H.T. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem., Int. Ed., 2007,46,6824-6828.
    [58]Morishita, K.; MacLean, J.L.; Liu, B.W.; Jiang H.; Liu, J.W. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale,2013,5,2840-2849.
    [59]Zhang, N.; Qu, F; Luo, H. Q.; Li, N. B. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Biosens. Bioelectron.2013,42,214-218.
    [60]Wen, T.; Qu, R.; Luo, H.Q.; Li, N.B. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal. Chim. Acta 2012,749,56-62.
    [61]El-Shahawi, M.S.; Al-Saidi, H.M.; Bashammakhc, A.S.; Al-Sibaai, A.A.; Abdelfadeel, M.A. Spectrofluoromietric determination and chemical speciation of trace concentrations of chromium (Ⅲ&Ⅵ) species in water using the ion pairing reagent tetraphenyl-phosphonium bromide. Talanta 2011,84,175-179.
    [62]Qu, F.; Li, N.B.; Luo, H.Q. Polyethyleneimine-templated Ag nanoclusters:a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal Chem. 2012,84,10373-10379.
    [1]Mi, Y.; Liu, Y.; Feng, S.S. Formulation of docetaxel by folic acid-conjugated D-a-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials 2011,32,4058-4066.
    [2]Hoegger, D.; Morier, P.; Vollet, C; Heini, D.; Reymond, F.; Rossier, J.S. Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Anal. Bioanal. Chem. 2007,387,267-275.
    [3]Guo, H.X.; Li, Y.Q.; Fan, L.F.; Wu, X.Q.; Guo, M.D. Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochim. Acta 2006,51, 6230-6237.
    [4]Mulinare, J.; Cordero, J.F.; Erickson, J.D.; Berry, R.J. Periconceptional use of multivitamins and the occurrence of neural tube defects. J. Am. Med. Assoc.1988,260,3141-3145.
    [5]Milunsky, A.; Jick, H.; Jick, S.S.; Bruell, C.L.; MacLaughlin, D.S.; Rothman, K.J.; Willett, W. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. J. Am. Med. Assoc.1989,262,2847-2852.
    [6]Gujska, E.; Kuncewicz, A. Detemination of folate in some cereals and commercial cereal-grain products consumed in poland using trienzyme extraction and high-performance liqueid chromatography methods. Eur. Food Res. Technol.2005,221,208-213.
    [7]Xiao, F.; Ruan, C.; Liu, L.; Yan, R.; Zhao, F.; Zeng, B. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sens. Actuators B 2008,134,895-901.
    [8]Lucock, M. Folic acid:nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab,2000,71,121-138.
    [9]Duthie, S.J. Folic acid deficiency and cancer:mechanisms of DNA instability. Br Med Bull 1999, 55,578-592.
    [10]Jennings, E. Folic acid as a cancer-preventing agent. Med. Hypotheses 1995,45,297-303.
    [11]Food and Drug Administration, Food Standards:Amendment of Standards of Identity for Enriched Grain Products to Require Addition of Folic Acid. Food and Drug Administration, Rockville 1996.
    [12]Wright, A.J.A.; Finglas, P.M.; Southon, S. Proposed mandatory fortification of the UK diet with folic acid:have potential risks been underestimated. Trends Food Sci. Tech.2001,12,313-321.
    [13]Zhang, T.C.; Xue, H.Y.; Zhang, B.; Zhang, Y.; Song, P.; Tian, X.; Xing, Y.; Wang, P.; Meng, M.; Xi, R.M. Determination of folic acid in milk, milk powder and energy drink by an indirect immunoassay. J. Sci. FoodAgric.2012,92,2297-2304.
    [14]Nelson, B.C.; Sharpless, K.E.; Sander, L.C. Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2006,1135,203-211.
    [15]Pawlosky, R.J.; Flanagan, V.P. A quantitative stable-lsotope LC-MS method for the determination of folic acid in fortified foods. J. Agric. Food Chem. 2001,49,1282-1286
    [16]Zhao, S.L.; Yuan, H.Y.; Xie, C.; Xiao, D. Determination of folic acid by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. A 2006,1107,290-293.
    [17]Aurora-Prado, M.S.; Sliva, C.A.; Tavares, M.F.M.; Altria, K.D. Determinaion of folic acid in tablets by microemulsion electrokinetic chromatography. J. Chromatogr. A 2004,1051, 291-296.
    [18]Rodriguez Bernaldo de Quir6s, A.; Castro de Ron, C; Lopez Hernandez, J.; Lage Yusty, M.A. Determination of folates in seaweeds by high-performance liquid chromatography. J. Chromatogr. A.2004,1032,135-139.
    [19]Ouyang, H.X.; Wang, L.S.; Tian, J.N.; Liang, A.H.; Jiang, Z.L. A simple and sensitive nanocatalytic fluorescence method for the determination of folic acid in foods using Fe3O4 nanoparticle-K2S2O8 system. Food Anal. Method 2013,6,76-81.
    [20]Wang, Y.; Zhu, P.H.; Tian, T.; Tang, J.; Wang, L.; Hu, X.Y. Synchronous fluorescence as a rapid method for the simultaneous determination of folic acid and riboflavin in nutritional beverages. J.Agric. Food Chem.2011,59,12629-12634.
    [21]Zhang, B.T.; Zhao, L.X.; Lin, J.M. Determination of folic acid by chemiluminescence based on peroxomonosulfate-cobalt(II) system. Talanta 2008,74,1154-1159.
    [22]Manzoori, J.L.; Jouyban, A.; Amjadi, M.; Soleymani, J. Spectrofluorimetric determination of folic acid in tablets and urine samples using 1,10-phenanthroline-terbium probe. Luminescence 2011,26,106-111.
    [23]Beitollahi, H.; Sheikhshoaie, I. Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochim. Acta.2011,56,10259-10263.
    [24]Zare, H.R.; Shishehboreb, M.R.; Nematollahi, D. A highly sensitive and selective sensor on the basis of 4-hydroxy-2-(triphenylphosphonio)phenolate and multi-wall carbon nanotubes for electrocatalytic determination of folic acid in presence of ascorbic acid and uric acid. Electrochim. Acta.2011,58,654-661.
    [25]Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Abdollahi-Alibeik, M.; Benvidi, A. Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sens Actuators B 2012,171-172,380-386.
    [26]Bandzuchova, L.; Selesovska, R.; Navratil, T.; Chylkova, J. Electrochemical behavior of folic acid on mercury meniscus modified silver solid amalgam electrode. Electrochim. Acta 2011,56, 2411-2419.
    [27]Weng, J.; Zhang, Z.; Sun, L.; Wang, J.A. High sensitive detection of cancer cell with a folic acid-based boron-doped diamond electrode using an AC impedimetric approach. Biosens. Bioelectron.2011,26,1847-1852.
    [28]Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol-gel-modified pencil graphite electrode. Sens. Actuators B 2010,146,321-330.
    [29]Empedocles, S.; Bawendi, M. Spectroscopy of single CdSe nanocrystallites. Ace. Chem. Res. 1999,32,389-396.
    [30]Schaaff, T.G; Knight, G.; Shafigullinet, M.N.; Borkman, R.F.; Whetten, R.L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 1998, 102,10643-10646.
    [31]Lee, T.H.; Gonzalez, J.I.; Zheng, J.; Dickson, R.M. Single-molecule optoelectronics. Acc. Chem. Res.2005,38,534-541.
    [32]Zheng, J.; Nicovich, P.R.; Dickson, R.M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem.2007,58,409-431.
    [33]Peyser, L.A.; Vinson, A.E.; Bartko, A.P.; Dickson, R.M. Photoactivated fluorescence form individual silver nanoclusters. Science 2001,291,103-106.
    [34]Wen, R.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem.2011, 83,1193-1196.
    [35]Yang, S.W.; Vosch, T. Rapid detection of microRNA by a silver nanoclusters DNA probe. Anal. Chem.2011,83,6935-6939.
    [36]Xu, H.X.; Suslick, K.S. Water-soluble fluorescent silver nanoclusters. Adv. Mater.2010,22, 1078-1082.
    [37]Zhou, T.Y.; Rong, M.C.; Cai, Z.M.; Yang, C.J.; Chen, X. Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. Nanoscale 2012,4, 4103-4106.
    [38]Guo, C.L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor. Anal. Chem. 2011,83,2883-2889.
    [39]Chen, W.Y.; Lan, G.Y.; Chang, H.T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011,83,9450-9455.
    [40]Qu, F.; Li, N.B.; Luo, H.Q. Polyethyleneimine-templated Ag nanoclusters:a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem. 2012,84,10373-10379.
    [41]Zhang, N.; Qu, F.; Luo, H.Q.; Li, N.B. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters, Biosens. Bioelectron.2013,42,214-218.
    [42]Qu, F.; Li, N.B.; Luo, H.Q. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir 2013,29,1199-1205.
    [43]Wen, T.; Qu, F.; Li, N.B.; Luo, H.Q. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose. Anal. Chim. Acta 2012,749,56-62.
    [44]Wang, H.; Wang, Y.L.; Yan, H.K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimine in aqueous solution at different pH values. Langmuir 2006,22,1526-1533.
    [45]Zhang, Y.; Liu, J.M.; Yan, X.P. Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted tum-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal. Chem. 2013,85,228-234.
    [46]Chakraborti, S.; Joshi, P.; Chakravarty, D.; Shanker, V.; Ansari, Z.A.; Singh, S.P.; Chakrabarti, P. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin. Langmuir 2012,28,11142-11152.
    [47]Song, W.J.; Du, J.Z.; Sun, T.M.; Zhang, P.Z.; Wang, J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 2010,6,239-246.
    [48]Liu, Z.Z.; Zheng, M.; Meng, F.H.; Zhong, Z.Y. Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. Biomaterials 2011,32, 9109-9119.
    [49]Kim, H.; Namgung, R.; Singha, K.; Oh, I.K.; Kim, W.J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjugate Chem.2011,22, 2558-2567.
    [50]Zhang, L.B.; Zhu, J.B.; Guo, S.J.; Li, T.; Li, J. Wang, E. K. Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J. Am. Chem. Soc.2013,135,2403-2406.
    [51]Al Attar, H.A.; Monkman, A.P. Effect of surfactant on FRET and quenching in DNA sequence detection using conjugated polymers. Adv. Funct. Mater.2008,18,2498-2509.
    [52]Xu, Q.H.; Wang, S.; Korystov, D.; Mikhailovsky, A.; Bazan, G.C.; Moses, D.; Heeger, A.J. The fluorescence resonance energy transfer (FRET) gate:a time-resolved study. Proc Natl Acad Sci U S A 2005,102,530-535.
    [53]Chatterjee, S.; Lee, J.B.; Valappil, N.V.; Luo, D.; Menon, V.M. Investigating the distance limit of a metal nanoparticle based spectroscopic ruler. Biomed. Opt. Express 2011,2,1727-1733.
    [54]Wu, M.Y.; Mukherjee, P.; Lamont, D.N.; Waldeck, D.H. Electron transfer and fluorescence quenching of nanoparticle assemblies. J. Phys. Chem. C 2010,114,5751-5759.
    [55]Winnik, M.A.; Bystryak, S.M.; Liu, Z.; Siddiqui, J. Synthesis and characterization of pyrene-labeled poly(ethylenimine). Macromolecules 1998,31,6855-6864.
    [56]Lindquist, G.M.; Stratton, R.A. The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine. J. Colloid Interface Sci.1976,55,45-59.
    [57]Kokufuta, E. Colloid titration behavior of poly(ethyleneimine). Macromolecules 1979,12, 350-351.
    [58]Van Treslong, C.J.B.; Staverman, A.J. Poly(ethylenimine) Ⅱ. Potentiometric titiration behaviour in comparison with other weak polyelectrolytes. RecL Tra. Chim. Pays-Bas 1974,93, 171-178.
    [I]Steinfeld, J.I.; Wormhoudt, J. Explosives detection:a challenge for physical chemistry. Annu. Rev. Phys. Chem.1998,49,203-232.
    [2]Rose, A.; Zhu, Z.G.; Madigan, C.F.; Swager, T.M.; Bulovic, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 2005,434,876-879.
    [3]Pushkarsky, M.B.; Dunayevskiy, I.G.; Prasanna, M.; Tsekoun, A.G.; Go, R.; Patel, C.K.N. High-sensitivity detection of TNT. Proc. Natl. Acad. Sci. U.S.A.2006,103,19630-19634.
    [4]Xia, Y.S.; Song, L.; Zhu, C.Q. Turn-on and near-infrared fluorescent sensing for 2,4, 6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Anal. Chem.2011, 83,1401-1407.
    [5]Zou, W.S.; Sheng, D.; Ge, X.; Qiao, J.Q.; Lian, H.Z. Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots. Anal. Chem.2011,83, 30-37.
    [6]Zhang, K.; Zhou, H.B.; Mei, Q.S.; Wang, S.H.; Guan, G.J.; Liu, R.Y.; Zhang, J.; Zhang, Z.P. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc.2011,133,8424-8427.
    [7]Goldman, E.R.; Medintz, I.L.; Whitley, J.L.; Hayhurst, A.; Clapp, A.R.; Uyeda, H.T.; Deschamps, J.R.; Lassman, M.E.; Mattoussi, H. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc.2005,127,6744-6751.
    [8]Zhao, Y.; Ma, Y.; Li, H.; Wang, L.Y. Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal. Chem.2012,84, 386-395.
    [9]Deng, M.L.; Tu, N.; Bai, F.; Wang, L.Y. Surface functionalization of hydrophobic nanocrystals with one particle per micelle for bioapplications. Chem. Mater.2012,24,2592-2597.
    [10]Deng, M.L.; Ma, Y.X.; Huang, S.; Hu, G.F.; Wang, L.Y. Monodisperse upconversion NaYF4 nanocrystals:syntheses and bioapplications. Nano Res.2011,4,685-694.
    [11]Gao, D.M.; Zhang, Z.P.; Wu, M.H.; Xie, C.G.; Guan, G.J.; Wang, D.P.A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc.2007,129,7859-7866.
    [12]Gao, D.M.; Wang, Z.Y.; Liu, B.H.; Ni, L.; Wu, M.H.; Zhang, Z.P. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Anal. Chem.2008,80,8545-8553.
    [13]Tu, R.Y.; Liu, B.H.; Wang, Z.Y.; Gao, D.M.; Wang, F.; Fang, Q.L.; Zhang, Z.P. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal. Chem.2008, 80,3458-3465.
    [14]Xie, C.G.; Liu, B.H.; Wang, Z.Y.; Gao, D.M.; Guan, G.J.; Zhang, Z.P. Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Anal. Chem.2008,80, 437-443.
    [15]Xie, C.G.; Zhang, Z.P.; Wang, D.P.; Guan, G.J.; Gao, D.M.; Liu, J.H. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal. Chem. 2006,78,8339-8346.
    [16]Zhou, H.B.; Zhang, Z.P.; Jiang, C.L.; Guan, G.J.; Zhang. K.; Mei, Q.S.; Liu, R.Y.; Wang, S.H. Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array. Anal. Chem. 2011.83,6913-6917.
    [17]Geng, J.L.; Liu, P.; Liu, B.H.; Guan, G.J.; Zhang, Z.P.; Han, M.Y. A reversible dual-response fluorescence switch for the detection of multiple analytes. Chem. Eur. J.2010,16,3720-3727.
    [18]Guan. G.J.; Liu, R.Y.; Mei, Q.S.; Zhang, Z.P. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres. Chem. Eur. J.2012,18,4692-4698.
    [19]Anderson, G.P.; Moreira, S.C.; Charles, P.T.; Medintz, I.L.; Goldman, E.R.; Zeinali, M.; Taitt, C.R. TNT detection using multiplexed liquid array displacement immunoassays. Anal. Chem. 2006,78,2279-2285.
    [20]Medintz, I.L.; Goldman, E.R.; Lassman, M.E.; Hayhurst, A.; Kusterbeck, A.W.; Deschamps, J.R. Self-assembled TNT biosensor based on modular multifunctional surface-tethered components. Anal. Chem. 2005,77,365-372.
    [21]Jiang, Y.; Zhao, H.; Zhu, N.N.; Lin, Y.Q.; Yu, P.; Mao, L.Q. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem., Int. Ed 2008,47,8601-8604.
    [22]Guerra-Diaz, P.; Gura, S.; Almirall, J.R. Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives. Anal Chem. 2010,82,2826-2835.
    [23]Roscioli, K.M.; Davis, E.; Siems, W.F.; Mariano, A.; Su, W.S.; Guharay, S.K.; Hill, H.H. Modular ion mobility spectrometer for explosives detection using corona ionization. Anal Chem. 2011,83,5965-5971.
    [24]Steuckart, C.; Bergerpreiss, E.; Levsen, K. Determination of explosives and their biodegradation products in contaminated soil and water from former ammunition plants by automated multiple development high-performance thin-layer chromatography. Anal Chem. 1994,66,2570-2577.
    [25]Astratov, M.; Preiss, A.; Levsen, K.; Wunsch, G. Identification of pollutants in ammunition hazardous waste sites by thermospray HPLC/MS. Int. J. Mass Spectrom.1997,167,481-502.
    [26]Moghimi, M.; Arvand, M.; Javandel, R.; Zanjanchi, M.A. Picrate ion determination using a potentiometric sensor immobilized in a graphite matrix. Sens. Actuators B 2005,107,296-302.
    [27]Vyskocil, V.; Navratil, T.; Danhel, A.; Dedik, J.; Krejcova, Z.; Skvorova, L.; Tvrdikova, J.; Barek, J. Voltammetric determination of selected nitro compounds at a polished silver solid amalgam composite electrode. Electroanalysis 2011,23,129-139.
    [28]Xu, Y.Q.; Li, B.H.; Li, W.W.; Zhao, J.; Sun, S.G.; Pang, Y. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media. Chem. Commun.,2013,49, 4764-4766.
    [29]Barman, S.; Garg, J.A.; Blacque, O.; Venkatesan, K.; Berke, H. Triptycene based luminescent metal-organic gels for chemosensing. Chem. Commun.2012,48,11127-11129.
    [30]Venkatramaiah, N.; Kumar, S.; Patil, S. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics. Chem. Commun.2012,48,5007-5009.
    [31]Bhalla, V.; Gupta, A.; Kumar, M. Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media. Org. Lett.2012,14,3112-3115.
    [32]Venkatramaiah, N.; Kumar, S.; Patil, S. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors. Chem. Eur. J.2012,18,14745-14751.
    [33]Bhalla, V.; Gupta, A.; Kumar, M.; Rao, D.S.S.; Prasad, S.K. Self-assembled pentacenequinone derivative for trace detection of picric acid. Appl. Mater. Interfaces 2013,5,672-679.
    [34]Li, D.D.; Liu, J.Z.; Kwok, R.T.K.; Liang, Z.Q.; Tang, B.Z.; Yu, J.H. Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials. Chem. Commun.,2012,48,7167-7169.
    [35]Kumar, M.; Reja, S.I.; Bhalla, V. A charge transfer amplified fluorescent Hg2+ complex for detection of picric acid and construction of logic functions. Org. Lett. 2012,14,6084-6087.
    [36]Lu, J.Z.; Zhang, Z.J. A reusable optical sensing layer for picric acid based on the luminescence quenching of the Eu-thenoyltrifluoroacetone complex. Anal. Chim.Acta 1996,318,175-179.
    [37]He, G.; Peng, H.N.; Liu, T.H.; Yang, M.N.; Zhang Y.; Fang, Y. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J. Mater. Chem,2009,19,7347-7353.
    [38]Sohn, H.; Calhoun, R.M.; Sailor, M.J.; Trogler, W.C. Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles. Angew. Chem. Int. Ed.2001, 40,2104-2105.
    [39]Sanchez J.C.; Trogler, W.C. Efficient blue-emitting silafluorene-fluorene -conjugated copolymers:selective turn-off/turn-on detection of explosives. J. Mater. Chem,2008,18, 3143-3156
    [40]Long, Y.Y.; Chen, H.B.; Wang, H.M.; Peng, Z.; Yang, Y.F.; Zhang, G.Q.; Li, N.; Liu, F.; Pei. J. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Anal. Chim. Acta 2012,744,82-91.
    [41]Liu, J.Z.; Zhong, Y.C.; Lam, J.W.Y.; Lu, P.; Hong, Y.N.; Yu, Y.; Yue, Y.N.; Faisal, M.; Sung, H.; Williams, I.D.; Wong, K.S.; Tang, B.Z. Hyperbranched conjugated polysiloles:synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 2010,43,4921-4936.
    [42]Martinez, H.P.; Grant, C.D.; Reynolds J.G.; Trogler, W.C. Silica anchored fluorescent organosilicon polymers for explosives separation and detection.J. Mater. Chem. 2012,22, 2908-2914.
    [43]Xu, B.W.; Wu, X.F.; Li, H.B.; Tong, H.; Wang, L.X. Selective Detection of TNT and Picric Acid by Conjugated Polymer Film Sensors with Donor-Acceptor Architecture. Macromolecules 2011,44,5089-5092.
    [44]Li, X.G.; Liao, Y.Z.; Huang, M.R.; Strong V.; Kaner, R.B. Ultra-sensitive chemosensors for Fe(III) and explosives , based on highly fluorescent oligofluoranthene. Chem. Sci,2013,4, 1970-1978.
    [45]Vij, V.; Bhalla, V.; Kumar, M. Attogram detection of picric acid by hexa-peri-hexaben-zocoronene-based chemosensors by controlled aggregation-induced emission enhancement. AppL Mater. Interfaces 2013,5,5373-5380.
    [46]Ni, R.; Tong, R.B.; Guo, C.C.; Shen, G.L.; Yu, R.Q. An anthracene/porphyrin dimer fluorescence energy transfer sensing system for picric acid. Talanta 2004,63,251-257.
    [47]Ma, Y.X.; Li, H.; Peng, S.; Wang, L.Y.; Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal Chem. 2012,84,8415-8421.