大跨越高压输电线路高耸塔高强钢钢管节点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国电力事业高速发展,就电压等级而言,从原先的110kV、220kV向超高压330kV、500kV发展。目前,我国电网正在开展1000kV特高压输电线路的规划研究工作。1000kV输电塔的塔重与现有的相比,塔重将增加4-5倍。这就对输电塔的结构设计、钢材强度提出了更高的要求。为了使输电塔经济合理,钢材强度就必须大幅提高,需要使用Q390、Q420、Q460等低合金高强度钢材。
     钢管结构对大跨度公共建筑与中高层建筑来说是一种具有较强性能优势和广泛应用前景的结构形式。虽然钢管节点的静力与疲劳性能研究已经取得较多成果,但与大型结构工程实践提出的要求相比,仍存在许多不足。
     钢管结构设计的一个重要指标就是其节点的静力承载力性能。由于钢管节点的受力特性、几何形状等因素都比较复杂,所以本文对钢管节点进行了静力承载力性能研究,既考虑了材料非线性和几何非线性,又考虑了钢管节点的整体塑性发展。
     本文在评述国内外本课题相关领域研究现状的基础上,以国内首次使用Q420圆管作为钢管塔主材的十堰变-襄樊变大跨越铁塔工程中的节点为研究对象,对钢管塔K型、T型和h型圆钢管节点进行了真型试验研究和有限元分析。
     本文的主要研究内容是:
     1.试验研究是研究钢管节点应力、位移和极限承载力性能最重要的方法之一。本文设计了5组10个足尺寸节点试件,在节点域布置三向应变花,在主管和支管上布置百分表,采用单调加载方式进行试验。在试验过程中,逐级采集节点域应变值和主、支管的位移值,对节点域进行应力分布规律以及承载力等的分析。同时,还构造出一套通过压力加载转化为拉力荷载的试验加载装置,为复杂节点试验的加载装置设计提供了有价值的参考实例。
     2.本文假设材料是理想弹塑性体,考虑材料非线性和几何非线性,运用ANSYS有限元系统的6节点弹塑性壳单元对K1型、K2型、K3型、T型、h型节点进行了计算分析。非线性有限元分析与试验进行对比表明,节点试件有限元模型的分析结果与试验得到的节点强度、破坏模式、应力应变状况基本吻合。通过结果比较说明,运用数值模拟方法确定K型相贯节点的工作性能和极限承载力是一种有效的方法。并分析了试验结果与有限元分析结果产生偏差的主要原因是:试件加工制作的尺寸误差、材质特性的误差、焊接残余应力的影响、边界处理的差异以及测点定位偏差等等。
     3.通过足尺试验研究,本文得到了K型相贯节点的破坏模式和极限承载力等相关试验数据。试验研究表明,在主管轴力较高的情况下,节点的破坏以主管的局部塑性变形破坏为主;由节点域的变形分析表明,在荷载作用下,节点域主管会发生较大的塑性变形,从而在该处出现外鼓或内陷,所以节点的破坏很大程度是由节点域主管的变形来表现的。K3型节点加劲板的设置,能有效地将两支管上的力均匀传给主管,亦可以延缓主管的径向变形,增大了节点的径向刚度,从而改善节点支管与主管相贯线区域的受力性能。这就是K3型节点的实测承载力较K2型节点提高了12.4%的原因。
     4.K型节点的计算极限承载力随着主管钢材强度等级的提高而增大,但节点极限承载力的提高幅度要小于钢材强度的增加幅度;其它参数不变时,K3型节点的极限承载力受节点板厚度的影响不大,工程中选用与主管或者支管等厚度的节点板即可。本文还借用我国钢结构设计规范中的计算方法进行了比较和推析,发现对K型高强钢节点简单地套用现有的简化公式和计算公式是不可取的。
     5.对直接焊接带环板的T型节点的静力工作性能进行了研究,结果表明:T型节点的设计承载力较高,完全能够满足设计方的要求,具有良好的工作性能。这种节点结构具有较大的刚度,环板对主管发挥了一定的套箍作用,有效地限制了管壁的变形或延缓了塑性变形的发展。
     另外,采用有限元方法还研究了钢材强度和几何参数对T型节点承载力的影响,结果表明:主管的材料强度是决定其承载力的主要因素,而环板钢材的强度对节点极限承载力的影响能力极为有限;提高环板的厚度对增加节点强度意义不大。对本工程而言,相对比较适合的环板厚度取值约为主管厚度的2倍。
     6.在输变电线路工程的高耸塔中,钢管—耳板连接节点应用较多,但国内外对其研究很少。通过对这类典型的h型节点进行的足尺试验研究和有限元数值分析,准确掌握了h型节点的力学行为及应力分布特征。同时,根据节点的受力特点,建立了节点的受弯力学模型。
     研究结果表明:在整个试验加载过程中,距离耳板与主管连接焊缝最近的测点1是各测量截面上的应力控制点;耳板由相对狭小的区域向主管传递弯矩,致使主管管壁发生局部屈曲,所以主管的局部强度是此类典型节点结构设计最重要的控制因素之一;主管、耳板强度等级的提高或耳板厚度增大,都将提高节点承载力,但厚度增大(或减小)25%,对应承载力增大(或减小)不超过10%。
     鉴于h型节点的耳板与主管交汇区容易出现应力集中现象,进而提出了一些改进措施,如增设半外环板、全外环板和内环板以及将耳板修改成光滑的凹角等。
     总之,本文通过计算与试验研究,揭示了杆塔采用Q420钢管材料相贯区域的应力场分布状况和变化趋势,检验了杆塔设计的可靠性和安全性,并为优化高强钢钢管塔结构设计提出了有参考价值的建议。总的来看,Q420钢管结构节点形式值得在输电线路工程设计中应用推广。
In recent years, electric Power Projects of our country has developed quickly. With regard to electric voltage, its class has risen from 110kV、220kV to extra high voltage of 330kV、500kv. Nowadays, our country's electric network line is launching the plan and research work of ultra high voltage of 1000kV. Compared with that of today, weight of one tower in this transmission line will increase about 4-5 times. Then it will call for higher requirement on steel intensity and structural design of electric transmission towers. In order to make building cost of towers more economic, steel intensity must be strengthened on a large scale, which includes intensity class of Q390、Q420、Q460.
     Steel tubular structure has lots of advantages and is widely used for large span public structures and medium-to-high-rise buildings. Although significant progress has been made in the study of static and fatigue behavior of tubular joints, many deficiencies still exist if compared with the demands of engineering practices.
     The study on ultimate strength of steel tubular joints is very important to the design of steel tubular structures. Because of the influence of the behavior of joints and various complicated geometric shape, not only material and geometrical nonlinear but also the inelastic property of joints should be included in the analysis regarding the ultimate strength of tubular joints.
     The thesis is based on the reviewing state-of-the-art of tubular joints, Combining the steel tubular tower joints in river crossing transmission power from Shiyan to Xiangfan, K-joints, T-joints and h-joints are studied by full scale model experiment research and non-linear finite element analysis, in which steel tubular Q420 is main material of the tower at first in China. It's revealed whether it's feasible to the utilization of steel tubular tower with high-strength steel in 500kV double-circuit transmission line.
     The main contents include:
     1. Test study is the one of most important research method of the stress, the displacement and the ultimate bearing capacity of tubular joints. Five groups and ten full size are designed to be tested,3-d strain rosette set in the joint region and dial indicator on the chord and branches, applying the one-way loading methods to test. The stress value in the joint region and the chord and branches deflection can be got through step stress test, the stress distribution regularity in the joint region and ultimate bearing capacity also analyzed.
     And a complex of testing equipment is constructied, which can change stress to pressure.It provides valuable suggestion for the design of test facility.
     2. An ideal elastic-plastic material is assumed, along with the material and geometry being considered nonlinear, a six-nodes shell element in ANSYS is employed to simulate the K1-joint, K2-joint, K3-joint, T-joint, h-joint in the analysis. Non-linear finite element analysis was also been done. By comparing the experimental data with the results of the analysis, it's shown that the joint t strength, the failure mechanism, the stress and strain are very close to each other of joints. It is found that the numerical simulation is a effective method to make sure of the working performance and ultimate bearing capacity. Then by comparing with the tests result and results of finite-element analysis, the difference of them is founded that manufacturing error of specimen size, error of material characteristic, the effect of welding residual stresses, the treatment of boundary conditions, location of observation point and so on.
     3. Full scale tests on K-joint samples are carried out in this dissertation, which some experimental date is obtained about the failure mechanism, the stress and strain, ultimate strength.The test results indicate that under high axial force, local plastic deformation of the chord may become the main failure mode of K-joints. It shows through the deformation analysis in joint region that large plastic deformation may occur under the repetitive load, becoming convex or sunken in this position, so the deformation of chord in region responds a lot to the failure. Installation of stiffened plate in K3-joints can transferr the load form branch to chord effectively, which plays an important role in delaying the process of chord deformation and increasing stiffness of joints, so as to improve the mechanics performance of structure in joint region. It is reason that the ulimate capacity of K3-joint is higner than that of K2-joint by 12.4%.
     4. The bearing capacity has increase with the inhance of strength of steel in chord of K-joints, but the increase speed of the bearing capacity was slower than those of strength of steel. When other parameter is similar, the influence of stiffed plate thickness on the bearing capacity of K3-joints is weak, and it's feasible that thickness of stiffed plate is equated with that of the chord or the branch in practice project.
     Moreover, these results are calculated according to GB50017-2003 code for design of steel structures of Chinese code in line with our code, which finds out the existing formula cannot be applied mechanically in K-type high strength steel joint.
     5. The experimental study of T-joint directly welded with ring plate is conducted, attach and the experimental are compared with that acquired by the numerical analysis. The results show that subjected to the specific load, the T-joint perform well, and the ultimate bearing capacity can meet the design requirement. This kind of joint has larger rigidity. The ring plate might play a positive role in the restriction of chord deformation and delaying development of plastic deformation.
     In addition, finite element method is used in this research to study the effect of the steel strength and the geometrical parameters on the ultimate capacity of tubular T-joints. The results indicate that the material intensity of chord is the determining factor of the ultimate capacity to T-joints. However, the bearing capacities of joints increase slightly with a improving of the material intensity or thickness of ring plate. For this project, it is fit and economical that the thickness of ring plate is about two times thickness of chord.
     6. The tube and ear-plate joint is widely applied in tall steel tubular tower of transmission line, but rarely at home and abroad to research. By experimental study on typical h-joints with full scale model and analysis based on FEM calculation, this research finds out mechanics behavior and distribution of stress on the kind of joint. Furthermore, based on the stress features of the connections, the bending stress model can be established.
     The results show that the first point on steel tube nearing ear-plate is a stress control point on the measure section during this experimental loading process; bending moment transferred by ear plate beyond nallow region leads to local buckling on the chord, so local strength of chord is one of the most important control factors in the design of this typical joint; the bearing capacity might be improve with inhancing the strength of steel or increasing the thickness, but it increases or decreases no more than 10% when the thickness increases or decreases by 25%.
     Combining the achievements on dangerous section of chord in touch of ear-plate through test and infinite element analysis, improvement measures of the connects is put forward as stress concentration is easy to emerge, such as adding outer half-ring stiffening plate, adding outer-ring plate, adding inner-ring plate, and ear-plate revising as the very smooth nook and so on.
     In summary, based on the results of experiment and numerical analysis, the distribution and changing trends of stress state is found out in steel tubular joints, and it is proven that the design of steel tubular tower is reliable and safe. Some useful suggestions for the optimization-design of steel tubular tower with high-strength steel Q420 are presented. Generally speaking, Q420 tubular-type joint can be applied and extended in design of tall steel tubular tower in transmission line.
引文
[1]吴昌栋,陈云波.钢管结构在建筑工程中的应用[J].工业建筑.1997,27(2),10-15
    [2]J.沃登尼尔著,张其林、刘大康,译.钢管截面的结构应用(第一版)[M].上海:同济大学出版社,2004
    [3]Fessler, H., Mockford,P.B.,etc.al. Parametric for the Flexibility Matrices of Multi-brace Tubular Joints in Offshore Structure. Proc.Instn Civ.Engrs, Part2,1986(81):659-673
    [4]F.GA.Albermani, S. Kitipornchai. Numerical Simulation of Structural Behaviour of Transmission Towers. Thin-Walled Structures.2003(41):167-177
    [5]钱若均,杨联萍,胥传熹.空间格构结构设计[M].南京:东南大学出版社,2007
    [6]李喜来,廖宗高,李晓光.中国输电塔钢结构现状及市场情况[J].中国钢铁业.2005
    [7]郭健,孙炳楠.钢管塔中管-板连接节点的破坏全过程分析[J].工业建筑,2006,36(12):83-85
    [8]Wilson A D. Current Status of High Performance Steel Program [A]. TRB 83rd Annual Meeting [C], 2004
    [9]沈建平,林致添,杨云.高强钢在输电线路铁塔中的应用[J].江苏电机工程(增刊).2006,11(25):29
    [10]CAO J J,'PACKER J A, YANG G J. Yield Line Analysis of RHS Connections with Axial Loads. Journal of Constructional Steel Research.1998,48(6):1-25.
    [11]沈才元,章志鸿.110kV钢管杆设计的几点思考[J].华东电力.2003(12)
    [12]陈以一,陈扬骥.钢管结构相贯节点的研究现状[C].管结构技术交流会论文集,2001
    [13]秦永坚,王登科,唐其练,刘华洲,孙哲夫,姚志刚.500kV双回路输电线路铁塔采用Q420高强钢的研究[J].电力勘察设计,2007(3)
    [14]Fessler H, Mockford P B, Webster J J. Parametric Equations for the Flexibility Matrices of Single Brace Tubular Joints in Offshore Structures. Proc.Civ. Engrs. Part 2,1986,81:659-673
    [15]中华人民共和国电力行业标准.DL/T5154—2002.架空送电线路杆塔结构设计技术规定[S].北京:中国电力出版社,2000:18-39
    [16]中华人民共和国电力行业标准.110-500kV架空送电线路设计技术规程(DL/T5092—1999)[S].北京:中国电力出版社,1999:29-32
    [17]Efthymiou M. Local Rotational Stiffness of Unstiffened Tubular Joints. KSEPL Report.1985:
    85-199
    [18]国家电网公司.国家电网公司输变电工程典型设计500kV输电线路分册[S]
    [19]何长华.高强冷弯型钢在输电铁塔上应用可行性的探讨[J].钢结构,2004,19(74):35-37
    [20]DEXTER E M, LEE M M K. Static Strength of Axially Loaded Tubular K-joints Behavior. Journal of Structural Engineering, ASCE.1999,125(2):194-201.
    [21]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状[J].哈尔滨建筑大学学报.1996,29(6):102-109
    [22]吴昌栋,陈云波.钢管结构在建筑工程中的应用[J].工业建筑.1997,27(2):10-15
    [23]李茂华.Q420和Q460高强钢在输电线路铁塔应用的研究[R].北京:国网北京电力建设研究院,2006
    [24]顾石川.热轧单角钢轴心受压构件整体稳定性能研究[D].西安:西安建筑科技大学,2004
    [25]N.5.Trahair. Bearing、Shear、and Torsion Capacities of Steel Angle Sections. Journal of Engineering. 2002,28(11):1394-1397
    [26]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报.2001,12
    [27]陶广亚.直接焊接圆钢管XK型空间节点非线性有限元分析[D].合肥:合肥工业大学,2004
    [28]Yura, ASCE, J. A., et al. Ultimate Capacity of circular Tublar Joints[J] 1981,107(10),1965-1984
    [29]Yoshiaki Kurobane, etal.Ultimate Resistance of Unstiffened Tublar Joints[J]J. struct. Engrg,1984, 110(2),385-400
    [30]Paul, J. C, Ultimate Resistance of Unstiffened Multiplanar Tubular TT-and KK-Joints[J]J. Struct. ASCE,1994,120 (10):2853-2870
    [31]Cofer, W f. Analysis of Welded Tubular Connection Continum damage Mechanics Using [J] J. Struct. Engrg, ASCE,1994,118 (3),828-845
    [32]陈继祖,陆化谱.焊接管节点设计承载力公式研究[J].大连工学院学报1986,25(2),47-52
    [33]Kuang J QPotrin A B,Leick R PIStress Concentration in Tubular JointlJournal of Structural Engineering,1975 (4)
    [34]Reimer R B. Improved Finite Elements for Analysis of Welded Tubular Jointsl In:Procl Offshore Technology Conference,1976
    [35]陈其业,梁乃刚.多分支管节点的有限元分析.中国钢结构协会海洋钢结构专业委员会.第一次学术交流论文集,1985
    [1]中华人民共和国建设部.GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003
    [2]SOH C K, CHAN T K. Limit Analysis of Ultimate Strength of Tubular X-joints. Journal of Structural Engineering, ASCE.2000,126(7):790-797.
    [3]Leen S B, Hyde T H. On the Prediction of Elastic-plastic Generalized Load-displacement Responses for Tubular Joints. Journal of Strain Analysis.2000,35(3):205-219
    [4]钱若均,杨联萍,胥传熹.空问格构结构设计[M].南京:东南大学出版社,2007
    [5]中华人民共和国国家标准GB6397-86[S].金属拉伸试验试样.1986
    [6]美国ANSYS公司.ANSYS非线性分析指南[M].美国ANSYS公司北京办事处,1998
    [7]刑静忠..ANSYS7.0分析实例与工程应用[M].北京:机械工业出版社,2004
    [8]中华人民共和国国家标准.高耸结构设计规范(GBJ135-90)[S].北京:中国建筑工业出版社,1991
    [9]王啸.方钢管相贯节点转动刚度性能研究[D].西安:西安建筑科技大学,2005
    [10]American Society of Civil Engineers. Design of Latticed Steel Iransmis-lion Structures, ASCE Standard,1992
    [11]杨俊芬,顾强.方管平面X型相贯节点承载力的影响因素分析[J].西安建筑科技大学学报(自然科学版).2006,8(38)
    [12]祝效华,余志祥等.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004
    [13]王呼佳,陈洪军.ANSYS工程分析进阶实例[M].北京:中国水利水电出版社,2006
    [14]Hyde TH, Leen S B. Prediction of Elastic-plastic Displacement of Tubular Joints under Combined Loading Using an Energybased Approach. Journal of Strain Analysis.1997,32(6):435-454
    [15]J.沃登尼尔,著,张其林、刘大康,译.钢管截面的结构应用(第一版)[M].上海:同济大学出版社,2004
    [1]Makino, Y, Kurobane, Y, Oehi, K., Vegte, GJ, Wilmshurst, S.R. Database of Test and Numerieal Analysis Results for Unstiffened Tubular Joints. IIWDoc.1996
    [2]中华人民共和国电力行业标准.110-500kV架空送电线路设计技术规程(DL/T5092—1999)[S].北京:中国电力出版社,1999
    [3]中华人民共和国国家标准.钢结构设计规范(GB50017—2003)[S].北京:中国计划出版社,2003
    [4]J.A.Packer, J.E.Henderson,曹俊杰.空心管结构连接指南[M].北京:科学出版社,1997
    [5]J.沃登尼尔,张其林等.钢管截面的结构应用(第一版)[M].上海:同济大学出版社,2004
    [6]詹琛.空间直接焊接圆节点足尺试验研究[D].上海:同济大学,2000.
    [7]Liang Fayun, Chen Longzhu, Shi Xuguang. Numerical Analysis Of Composite Piled Raft with Cushion Subjected to Vertical load. Computers and Geotechnics.2003,30:443-453
    [8]陈以一,沈祖炎,陈扬骥,虞晓华,林颖如.直接汇交节点三重屈服线模型及试验验证[J].土木工程学报.1999,32(6)
    [9]MareusM.K.Lee, Arwel Llewelyn-parry. Strength Prediction for Ring-stiflfened DT-joints in Offshore Jacket Struetures. Engineering Struetures.2005 (27):421-430
    [10]王伟,陈以一,赵宪忠.钢管节点性能化设计的研究现状与关键问题[J].土木工程学报.2007,40(11)
    [11]M.Lalani. Development in Tubular Joints Technology for Offshore Structures. Proc.of.2nd.Int. Offshore and Polar Engineering Conference.1992
    [12]舒宣武,朱庆科.空间KK型钢管相贯节点极限承载力有限元分析[J].华南理工大学报.2002,30(10)
    [13]H B Jayaraman. A Curved Element for the Analysis of Cable Structures. Computers and Structures. 1981(14):325-333
    [14]马人乐,曾根生,何敏娟,陈俊岭.388m高河南塔异型钢管X型节点的有限元分析[J].特种结构.2007,24(1)
    [15]吴静,邓洪洲,傅俊涛.输电塔圆钢管相贯节点强度分析[J].特种结构.2006(3)
    [16]王阁.内置加强板加强型空间圆钢管相贯节点静力性能试验研究[D].广州大学硕士论文,2007
    [17]王伟,陈以一.圆钢管相贯节点的非刚性能与计算公式[J].工业建筑.2005,35(11):5-9
    [18]王伟,陈以一.圆钢管相贯节点局部刚度的参数公式[J].同济大学学报(自然科学版).2003,31(5):515-519
    [19]陈明祥.弹塑性力学[M].北京:科学文献出版社,2007
    [20]Van der Vegte GJ. The Static Strength of Uniplanar and Multiplanar Tubular T-and X-Joints. Netherlands:Delft University Press,1995
    [21]赵熙元.建筑钢结构设计手册(下册)[M].北京:冶金工业出版社,1995,42-44
    [22]韩钰,徐德录,陈玉成,武英利.输电铁塔用Q420高强钢及焊接材料的性能评价[J].热加工工艺.2007,36(3):44
    [23]曹俊杰.空心管结构连接设计指南[M].北京:科学出版社,1997
    [24]M.M.K.Lee, S.R.Wilmshurst. Strength of MultiPlanar Tubular KK-Joints under Antisymetrieal Axial Loading, J.Struet. Engrg. ASCE,1997,123(6):755-764
    [25]Prakoso W A, Kulhawy F H. Contribution to Piled Raft Foundation Design. Journal of Geotechnical and Geoenvironmental Engineering.2001,127(1):17-24.
    [26]刘佳丽.矩形钢管相贯加强节点的承载力性能研究[D].北京:中国矿业大学,2006
    [27]陈以一,沈祖炎,陈扬骥,虞晓华,林颖如.直接汇交节点三重屈服线模型及试验验证[M].上木工程学报.1999,32(6)
    [28]刘建平,郭彦林,陈国栋.圆管相贯节点极限承载力有限元分析[J].建筑结构,2002,32(7):56-60
    [29]坂本杰,岛仲男.角形钢管K形分析力学性能[M].日本建筑学会大会学术演讲梗概集,1979
    [30]刘鹏.方圆钢管汇交节点的抗弯刚度[D].上海:同济大学,2001
    [31]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报.2001,12
    [32]钱若均,杨联萍,胥传熹.空间格构结构设计[M].南京:东南大学出版社,2007
    [33]张荣山.空间钢结构设计与施工[M].北京:中国石化出版社,2001
    [34]李成玉,郭耀杰.钢框架节点刚性的力学特性[J].武汉大学学报(工学版).2005,2
    [1]陈以一,王伟等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报.2001,22(6):25-30
    [2]易建伟,张望喜等.建筑结构试验[M].北京:中国建筑工业出版社,2005
    [3]Saeed Moaveni,王菘,刘丽娟,董春敏.有限元分析ANSYS7.0理论与应用(第三版)[M].北京:电子工业出版社,2004
    [4]Wang Xiuli, Liang Yaxiong, Yin zhanzhong, Li qingfu. Experimental Research on Cyclic Behavior of Beam-column T-type Connections Inmulti-story Light Gauge Steel Frame. IABSE Symposium, Shanghai,2004:334-335.
    [5]王建,魏陆顺,张永山.高耸圆钢管装饰塔整体及节点有限元分析[J].广州大学学报(自然科学版).2005,4(1)
    [6]J.沃登尼尔,张其林,等.钢管截面的结构应用[M].上海:同济大学出版社,2008
    [7]夏志皋.塑性力学[M].上海:同济大学出版社,2002
    [8]Li-ChunBian, Jae-Kyoo Lim. Fatigue Strength and Stress Concentration Factors of CHS-to-RHS T-joints [J]. Journal of Construetional Steel.2003,59:627-640.
    [9]舒兴平,郑伯兴.KT型相贯节点极限承载力非线性有限元分析[J].湖南大学学报(自然科学版).2006,33(6):1-5
    [10]Y S Choo, J X Liang, J Y R Liew. Static Strength of Doubler Plate Reinforeed X-joints under Out-of-plane Bending. Proceeding of the twelfth International Offshore and Polar Engineering Conference[C],2003:250-254
    [11]Xiuli, Liang Yaxiong, Yin zhanzhong, Li qingfu. Experimental Research on Cyclic Behavior of Beam-column T-type Connections in Multi-story Light Gauge Steel Frame [R]. IABSE Symposium, Shanghai,2004:334-335
    [1]P. Gandhi, G. Raghava and D. S. Ramachandra Murthy. Fatigue Behavior of Internally Ring-stiffened Welded Steel Tubular Joints. Journal of Structural Engineering.2000,12(67):809-815
    [2]AISC, (2000). Load and Resistance Factor Design Specification for Steel Hollow Structural Sections.American Institute of Steel Construction, Chicago, USA:2-3,27-29
    [3]Sheng N, Yam C H, Iu V P. Analytical Investigation and Design of the Compressive Strength of Steel Gusset Plate Connections. Journal of Construction Steel Research.2002,58:1473-1493
    [4]Roger L.Brockenrough Frederick S.Merritt,陈以一.美国钢结构设计手册[M].上海:同济大学出版社,2006
    [5]薛伟辰,黄永嘉,王贵年.500kV吴淞口大跨越柔性法兰原型试验研究[J].工业建筑.2004,34(3):68-70
    [6]郭耀杰,徐芸,刘汉生,陈焰周.十堰变~襄樊变大跨越铁塔Q420圆钢管K形节点试验研究[J].武汉大学学报(增刊).2008(7)
    [7]郭健,孙炳楠.钢管塔中管-板连接节点的破坏全过程分析[J].工业建筑.2006,36(112)
    [8]J.A.Packer, J.E.Henderson,曹俊杰.空心管结构连接指南[M].北京:科学出版社,1997
    [9]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状[J].哈尔滨建筑大学学报.1996,29(6):102-109
    [10]余世策,孙炳楠,叶尹,应建国.高耸钢管塔结点极限承载力的试验研究与理论分析[J].工程力学.2004,21(3):155-161
    [11]刘建平,郭彦林.管节点弹塑性大挠度有限元分析[J].青海大学学报.2001,19(1)
    [12]Rasmussen K J R. Young B.Tests of X- and K-joints in SHS Stainless Steel Tubes. Journal of Structural Engineering.2001,127(10):1173-1182.
    [13]Recommendations for the Design and Fabrication of Tubular Structures in Steel[S]. Architectural Institute of Japan.1990
    [14]Saeko S. Experimental Study on Strength of Tubular Steel Structures. Japanese Soc Steel Construct. 1974,10(112):37-68
    [15]Packer JA, Henderson JE. Design Guide for Hollow Structural Section Connections[S] Canadian Inst Steel Construct, Markham, Ontario.1992
    [16]严正凯.低合金高强钢的焊接工艺研究.机械工程与自动化[J].2007(2):172
    [1]钱若均,杨联萍,胥传熹.空间格构结构设计[M].南京:东南大学出版社,2007
    [2]秦永坚,王登科,唐其练,刘华洲,孙哲夫.500kV双回路输电线路铁塔采用Q420高强钢的研究[J].电力设计.2007,6(3):60-65