特高压钢管输电塔插板连接K型节点的受力性能及承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于特高压输电塔和大跨越输电塔的塔身较高,这种高柔结构在较大程度上受到各种荷载的控制。相对角钢塔,钢管塔迎风面积小截面回转半径大,因而在我国特高压和大跨越输电线路中被广泛采用。为了施工方便,目前钢管塔节点形式普遍采用插板连接。国内外对受力比较复杂的插板节点研究较少,现有设计理论还不完善,且存在一些不合理性。针对这一现象本文对输电钢管塔插板连接的K型节点的受力性能进行了研究,具体进行了以下几个方面工作:
     (1)对钢管-插板连接的K型节点进行了足尺试验,探讨了节点在极限状态下的破坏机理。有限元法分析了影响节点承载力的绝对参数和无量纲参数的关系,确定了影响K型节点承载力的主要参数。利用能量法对基于主管控制和环板控制的节点承载力的求解过程进行了推导,得到了估算此类节点承载力的解析模型,该模型考虑了环板和钢管的共同作用,能较准确反映节点局部屈服时塑性铰的发展,简化了节点复杂的受力状态。在试验和有限元分析结果的基础上,提出了两种控制的K型节点极限承载力简化计算公式,为实际工程的设计提供理论依据。
     (2)通过试验和有限元分析对插板连接的节点板承载力进行了研究,明确了节点板的受力性能和破坏模式;分析了不同破坏模式下宽厚比、无支长度以及节点板构造等主要参数对节点板承载力的影响,在此基础上提出了节点板承载力建议计算公式。节点板中部加肋和十字插板连接改变了节点板失稳的破坏模式及失效路径,大大提高了节点板的承载力。节点板自由边卷边的措施对基于局部屈曲模式的节点板的承载力提高更加有效。
     (3)对基于负偏心作用的K型节点的承载力进行了试验研究,在此基础上利用有限元分析了不同破坏模式下负偏心对节点承载力的影响。根据等效受力模型分析了在负偏心作用下主管轴力、主管管壁剪力和弯矩三者之间的相互关系并提出了反映三者关系的建议公式。
The transmission tower is flexible due to the large height of ultra-high voltage transmission tower and large span tower, thus the internal force is controlled by all load at a certain extend. Compared to the steel angle tower, the steel tubular tower is applied commonly much more because of its smaller windward area, bigger cross-section gyration radius .At present, the tube-gusset joint type is applied mainly owing to the convenience of construction. But there are just a few scholars home and abroad to research the tube-gusset joint which resist complicated force and there are some irrationalities in the theory existence at present. The behavior and strength of tube-gusset joint was explored primarily and the following researches are performed:
     (1) Full-scale tubular K-joints with tube-gusset plate connections are constructed and tested under static loads.The failure modes and failure mechanism are analyzed.Based on experimentation and FEM , tubular energy theory about the ultimate strength of K-joints was deducted and a limit analysis model for determining the ultimate loads of tube-gusset plate connections is established using ring-generator separation model.In this model, tubular and ribbed-plate were considered and the model reflected the development of the plastic range of K-joints and simplified the performance of mechanics. This paper proposes the calculation method of the ultimate strength of the tube-gusset K-joint under different failure modes.It reveals that the method has theoretical and practical significance for design.
     (2) The parameters which influence the ultimate strength of gusset-plate and the failure type of the plate was analyzed roundly based on a mass of full size model experiment data and FEM. The failure modes and failure mechanism were analyzed about the plate.The ultimate strength of plate depends on width-thickness ratio, non-limb length and conformation of the plate.The proposal calculation method of the ultimate strength of the plate was put forward based on an inelastic plate buckling equation .The plate was ribbed in the middle part and along splice member,which can alter the failure model and the invalidation avenue and improved the ultimate strength of the plate. Adding free edge stiffeners can increase the buckling strength of gusset-plate connections efficiently.
     (3) A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connections subjected to axial and axial brace force. The parameters which influence the ultimate strength of tube-gusset joint and the failure type of joints was analyzed. To suggest a formula for the strength of tube-gusset joint, axial brace forces are replaced by equivalent wall moment and eccentric vertical component force of axial brace force. Non-dimensionalized ultimate strength interaction relations between the wall moment of tube ,vertical axial force ,and eccentric vertical component force of axial brace force were formulated through parametric study.
引文
[1]曹建萍.国家电网报[N]. 2008.11.13(第五版).
    [2]王肇民,马人乐.塔式结构[M].北京:科学出版社,2004.
    [3]日本铁塔协会.输电线路钢管塔制作基准[S].日本:日本铁塔协会,1985,6.
    [4]日本建筑学会.钢管结构设计施工指南及解说.丸善株式会社,东京,1990.
    [5] Saeko S. Experimental study on strength of tubular steel structures[J]. J Japanese Soc Steel Construct 1974,10(112): 37-68.
    [6]赵熙元.钢管结构设计[J].钢铁技术,1997,第一期.
    [7]吴昌栋,陈云波.钢管结构在建筑工程的应用[J].工业建筑,1997,27(2):10-15.
    [8] Yura J.A, Edwards I. F and Zettlemoyer.N. Ultimate capacity of circular tubular joints[J]. J. Struct. Division, ASCE, 1981, 107(10):1965-1984.
    [9] Kurobane, Y, MakinoY and Ochi K.Ultimate resistance of unstiffened tubular joints[J]. J. Struct. Engrg, ASCE, 1984,110(2):385-400.
    [10] Paul J.C, et al. Ultimate resistance of Unstiffened Multiplanar Tubular TT-and KK-joints[J].J. Struct. ASCE,1994,120(10):2854-2870.
    [11] Cofer W.F. et al.Analysis of Welded Tubular Connections Using Continuum Damage Mechanics[J].J. Struct. Engrg, ASCE, 1994,118(3):828-845.
    [12] Makino Y, Kurobane Y, Ochi K, Vegte G.J, Wilmshurst S.R. Database of Test and Numerical Analysis Results for Unstifened Tubular joints[J].ⅡW Doc. XV-E-96-220,1996.
    [13] Kang C.T, Moffat D.G and Ministry J. Strength of DT tubular joints with brace and chord compression[J]. J. Struct. Engrg.ASCE, 1998, 124(7):775-783.
    [14] C.K.Soh, T.K.Chan, S.K.Yu. Limit Analysis of ultimate strength of tubular X-joints[J].J. Struct. Engrg., ASCE, 2000,126(7):790-797.
    [15]陈继祖,陆化谱.焊接管节点设计承载力公式研究[J].大连工学院学报,1986, 25 (2):47-52.
    [16]杨国贤,陈延国.受拉T型管节点静承载力分析的实用计算法[J].大连工学院学报,1987,26(2):101-106.
    [17]陈铁云,朱正宏,吴水云.塑性节点法的研究及其在薄壳结构中的应用[J].计算结构力学及其应用,1991, 8(3):34-42.
    [18]陈以一,沈祖炎,詹深等.直接汇交节点三重屈服线模型及试验验证[J].土木工程学报,1999, 32(6):26-31.
    [19]陈以一,陈扬骥.钢管结构相贯节点的研究现状.管结构技术交流会论文集.北京:中国土木工程学会,2001.11.
    [20]刘建平,郭彦林,陈国栋.方圆相贯节点极限承载力研究[J].建筑结构,2001, 31(8):21-24.
    [21]刘建平,郭彦林.K型方、圆相贯节点的极限承载力非线性有限元分析[J].建筑科学,2001,17(2):50-53.
    [22]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报,2001,22(6):38-44.
    [23]詹深.空间直接焊接圆钢管节点足尺试验研究[D].上海:同济大学,2000.
    [24]陈金凤.空间异型钢管相贯节点的理论与试验研究[D].武汉:华中科技大学,2005.
    [25]陈以一等.圆钢管空间相贯节点试验研究[J].土木工程学报,2003,36(8):88-97.
    [26]陈以一,虞晓华.大直径钢管节点极限承载力的试验及分析[J].工程力学,1996, 15(3):51-53.
    [27]刘建平等.圆管相贯节点极限承载力有限元分析[J].建筑结构,2002, 32(7):55-57.
    [28]虞晓华.大型直接汇交焊接K型圆钢管节点极限承载力研究[D].上海:同济大学,1996.
    [29] Y Kurobane, Y Makino and Koji Ogawa. Further ultimate limit criteria for design of tubular K-joints.Tubular Structures .The 3rd Int. Symposium, Finland, 1990
    [30] N.Kosteski, J.A.Packer. A finite element method based load determination procedure for hollow structural section connections[J].Journal of Constructional Steel Research, 2003,59(2):101-104.
    [31]朱邵宁.圆钢管相贯节点极限承载力分析与足尺试验研究[D].湖南:湖南大学,2003.
    [32] M.B.Gibstein. Stress Concentration in Tubular K-Jionts with Diameter Ratio Equal to One[M].Steel in marine Structures, 1987.
    [33] Ai-Kah Sob, Che Kiong Soh. 'Hotspot' stresses of tubular joints subjected to Combined loadings[J].J.Structural Engineering, 1993,119(2):91-96.
    [34] Spyros A. Karamanos, et al. Stress Concentrations in tubular gap K -joints [J] .mechanics and fatigue design, 2000, 22(4):102-106.
    [35]李明浩.钢管塔插板节点与相贯线节点及试验设备的研究[D].上海:同济大学,2003.
    [36]郑鸿志.空间大尺度圆管节点性能研究[D].上海:同济大学,2003.
    [37]武胜.直接焊接K型、N型间隙钢管节点静力工作性能的研究[D].哈尔滨:哈尔滨工业大学,2002.
    [38]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状[J].哈尔滨建筑大学学报,1996, 29(6):102-109.
    [39] J.沃登尼尔.钢管截面的结构应用[M].张其林,刘大康译.同济大学出版社,2002.
    [40]陈誉,彭兴黔,赵宪忠.钢管搭接节点的研究现状[J].基建优化,2007年10月.
    [41]应建国,叶尹.大跨越输电线路钢管塔结点分析[J].电力建设,2003年9月.
    [42]西北电网750kV输变电工程关键技术研究:750kV新型钢管塔的研究——法兰连接试验研究报告[R].国电电力建设研究所,2002.
    [43]周卫,何敏娟,马人乐等. 500kV变电所架构柔性法兰的试验研究[J].电力建设, 2004, 25(1): 24-32.
    [44]马人乐等. 500kV变电所架构柔性法兰试验报告[J].同济大学建筑工程系, 1999.
    [45]郭建,孙炳楠.钢管塔中管—板连接节点的破坏全过程分析[J].工业建筑,2006.
    [46]余世策,孙炳楠,叶尹,高耸钢管塔结点极限承载力的试验研究与理论分析[J].工程力学,2004,21(3):155~161.
    [47]鲍侃袁,沈国辉,孙炳楠,叶尹,杨骊先.高耸钢管塔K型结点极限承载力的试验研究与理论分析[J].工程力学,2008,25(12):114-122.
    [48]吴龙升,孙伟民,张大长. U型插板钢管连接节点承载力特性的非线性有限元分析[J].南京工业大学学报(自然科学版),2008,1.
    [49]金晓华,傅俊涛,邓洪洲.输电塔十字插板连接节点强度分析[J].钢结构,2006,21(5):33-37.
    [50]傅俊涛.大跨越钢管塔节点强度理论与试验研究[D].上海:同济大学,2006.
    [51]朱庆科,舒宣武.平面K型钢管相贯节点极限承载力有限元分析[J].华南理工大学学报(自然科学版),2002,30(12):10-16.
    [52]刘建平,郭彦林.管节点弹塑性大挠度有限元分析[J].青海大学学报(自然科学版),2001,19(1):38-42.
    [53]王梅.T型方圆相贯节点非线性分析[D].合肥:合肥工业大学,2002.
    [54] GB50135-2006,高耸结构设计规范[S].北京:中国计划出版社, 2007.
    [55] DT/T 5154-2002,架空送电线路杆塔结构设计技术规定[S].中国电力出版社, 2002.
    [56]赵熙元.建筑钢结构设计手册[M].北京:冶金工业出版社,1985年10月.
    [57]中华人民共和国建设部.GB 50017-2003钢结构设计规范.北京:中国计划出版社,2003.
    [58] Wang B,Hu N,Kurobane Y.Damage criterion and safetyassessment approach to tubular joints [J].Engineering Structure,Elsevier,2000,22(5):424-434.
    [59] Kim Woo-Bum.Ultimate strength of tube-gusset plateconnections considering eccentricity[J]. Engineering Structures,Elsevier,2001,23(11):1418-1426.
    [60] Lie S T,Lee C K,Wong S M.Modeling and meshgeneration of weld profile in tubular Y-joint [J].Journalof Constructional Steel Research,Elsevier,2001,57(5):547-567.
    [61] Soh C K,Chan T K,Yu S K.Limit analysis of ultimate strength of tubular X-Joints[J].Journal of Structural Engineering,ASCE,2000,126(7):790-797.
    [62]陈以一,沈祖炎,詹琛.直接汇交节点三重屈服线模型及试验验证[J].土木工程学报,1999,32(6):26-31.
    [63] Wierzbicki T,Suh M S.Indentation of tubes undercombined loading[J].International of Mechanical Sciences,Elsevier,1988,30(3-4):229-248.
    [64] Zeinoddini M,Harding J E,Parke G A R.Contribution ofring resistance in the behavior of steel tubes subjected toa lateral impact[J]. International Journal of Mechanical Sciences, Elsevier, 2000,42(12):2303-2320.
    [65] Suh M S.Plastic analysis of dented tubes subjected tocombined loading[D].Massachusetts: MassachusettsInstitute of Technonlogy,1987.
    [66] Wierzbicki T,Bhat S U.A moving hinge solution foraxisymmetric crushing of tubes[J]. vInternational Journal of Mechanical Sciences,Elsevier,1986,28(3):135―151.
    [67]王小丽,翁雁麟,关富玲.X型圆管相贯结点极限承力分析[J].市政技术, 2006, 24(1):34―36.
    [68] Elchalakani M,Zhao X L,Grzebieta R H.Plasmechanism analysis of circular tubes under pure bend[J].International Journal of Mechanical SciencElsevier,2002,44(6):1117―1143.
    [69] Hopkins H G.On the behavior of infinitely long rigid-plastic beams under transverse concentrated load[J].Journal of the Mechanics and Physics of Solids,Elsevier,1985, 4(1):38-52.
    [70] Zeinoddini M,Harding J E,Parke G A R.Contribution of ring resistance in the behavior of steel tubes subjected to a lateral impact[J].International Journal of Mechanical Sciences, Elsevier,2000,42(12):2303―2320.
    [71] Saeko S.Experimental study on strength of tubular steel structures[J].Journal of Society of steel construction,1974,10(112):37―68.
    [72] Recommendations for the design and fabrication of tubular structures in steel[S]. Institute Of Japan,1990.
    [73] Packer J A,Henderson J E.Design guide for hollow structural section connections[S]. Canadian Institute of Steel Construction,1992.
    [74] Williams GC,Richard RM.Steel connection design based on inelastic finite element analysis.Rep to Dept of Civil Engrg and Engrg Mech,the University of Arizona,1986.
    [75] Bjorhovde R,Chakrabarti SK.Tests of full-size gusset plate connections[J].J Struct Div,ASCE,1985,111(3):667–686.
    [76] Yam MCH,Sheng N,Iu VP,Cheng JJR.Analytical study of the compressive behaviour and strength of steel gusset plate connections.In:Proceedings of the CSCE 1998 Annual Conference.1998 (Halifax,Nova Scotia).
    [77] Cheng JJR,Yam M,Hu SZ.Elastic buckling strength of gusset plate connections[J].J Struct Eng,ASCE, 1994,120(2):538–559.
    [78] Gross JL.Experimental study of gusseted connections[J].Eng J,AISC 1990,27(3):89–97.
    [79] Chakrabarti SK,Richard RM.Inelastic buckling of gusset plates[J].Struct Eng Rev1990,2:12–29.
    [80] Brown VL.Stability of gusseted connections in steel structures[D].PhD thesis.Department of Civi Engineering,Widener University,1990.
    [81] Yamamoto K,Akiyama N,Okumura T.Buckling strength of gusseted truss joints.J Struct Div ASCE 1988,114(3):575–90.
    [82] Hu SZ,Cheng JJR.Compressive behavior of gusset plate connections.Struct Engrg Rep No 153Dept of Civl Engrg,Univ.of Alberta,1987,p.148.
    [83] AISC.Load and resistance factor design specification for structural steel buildings Chicago,IL American Institute of Steel Construction(AISC),1999.
    [84] CSA.CSA-S16.1-94—limit states design of steel structures.Rexdale, Ontario, Canada: Ontario,Canada:Canadian Standards Association,1994.
    [85] Kulak GL,Fisher JW,Struik JHA.Guilde to design criteria for bolted and riveted joints, Second.New York:Wiley-Interscience,1987.
    [86] Hardash SG,Bjorhovde R.New design criteria for gusset plates in tension[J].Eng J,AISC 1985;22(2):77–94.
    [87] CSA.CSA-G40.21-M92—structural quality steel.Rexdale,Ontario,Canada:Canadian Standard Association,1992.
    [88] Gaylord EH,Gaylord CH,Stallmeyer JE.Design of steel structures,third ed.New York: McGraw Hill,1992.
    [89] Whitmore RE.Experimental investigation of stresses in gusset plates.Bulletin No 16, Engineering Experiment Station,University of Tennessee,1952.
    [90] Thornton WA.Bracing connections for heavy construction[J].Eng J,AISC 1984, 21(3):139–148.
    [91] Architectural Institute of Japan. Recommendations for the designand fabrication of tubular structures in steel,1990.
    [92] KEPCO.Specification for electric transmission tower design,1991.
    [93] Packer JA,Henderson JE.Design guide for hollow structural sec-tion connections.Canadian Inst Steel Construct,Markham,Onta-rio,1992.
    [94] Kurobane Y.New developments and pratices in tubular joint design.Int Inst Welding,Annual Assembly,Doc XV-488-81,1981.
    [95] Wardeneir J.Hollow section joints.Delft:Delft UniversityPress,1982.
    [96] Ariyoshi M,Makino Y,Choo YS.Introduction to the database of gusset-plate to CHS tube joints[M].Proc.of 8th Int.Symposium onTubular Structures,Singapore 1998,4(13).
    [97] Kim WB.A study on connections of circular hollow section with gusset plate[J]. JArchitectural Inst Korea 1997, 13(3):263–271.
    [98] Kim WB.A study on the local deformation of tubular connectionin Truss.Conf.Korean Society of Steel Construct,1995,7(2):135–140.