纳米钯/铁/PVDF-g-(聚)丙烯酸催化还原剂制备及其脱氯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代有机物作为一种重要的化工原料,在被广泛应用于工业生产的各个领域的时候,也同时通过各种途径进入环境,成为危害人类健康和生态环境的难降解污染物。以零价铁为代表的高级还原技术的出现和发展,为氯代有机物脱氯去毒性提供了新的视角。相比其他的脱氯方法,零价铁廉价、无毒、无害,还原脱氯反应在常温常压下就可以进行,同时又是零碳排放的环保技术。金属钯催化剂和纳米材料技术引入都使零价铁还原体系的脱氯效率有了质的飞跃,将纳米催化还原剂固定化已经是零价铁高级还原法未来发展的主要趋势。目前膜载纳米双金属颗粒还存在很多问题:现有的PVDF载体膜改性技术有很多缺陷;对小分子含氯少的氯代有机物的去除效果不理想;对膜载双金属催化还原体系还没有系统的机理研究。本文主要研究了通过化学改性法制备新型改性PVDF膜,并用其负载纳米钯/铁双金属颗粒对氯代有机物进行脱氯。
     首先采用了“碱洗脱氟”、“亲核加成”和“接枝丙烯酸”三步法对PVDF膜进行了亲水化改性,制备出PVDF-g-AA膜。通过正交试验优化了“碱洗脱氟”步骤的反应参数:KOH浓度为0.5mol/L,KMnO4质量浓度为2wt.%,温度为40oC,反应时间为15min;并通过对载铁量和一氯乙酸脱氯实验确定了接枝丙烯酸的最佳浸渍浓度为20wt.%。然后,以“碱洗脱氟”为基础,分别通过接枝法和原位聚合法,制备出两种接枝聚丙烯酸的改性膜,PVDF-g-PAA-1和PVDF-g-PAA-2。通过对载铁量和一氯乙酸脱氯实验确定了接枝聚丙烯酸制备PVDF-g-PAA-1膜的最佳浸渍浓度为30wt.%;通过正交试验优化了“原位聚合法”的反应条件:丙烯酸溶液浓度为30wt.%,BPO投加量为50mg,温度为80oC,反应时间为3h。
     通过扫描电镜(SEM)、能谱分析(EDS)、X射线光电子能谱(XPS)、红外光谱(FT-IR)、X-射线衍射图谱(XRD)、比表面积(BET)和亲水角的测定来表征和分析了基体改性过程中的PVDF膜、PVDF-g-AA膜、PVDF-g-PAA-1膜、PVDF-g-PAA-2膜以及三种改性膜负载的钯/铁双金属颗粒的表面形态、表面元素及价态分布、表面基团、比表面积和亲水性进行了表征。结果表明,通过接枝改性,三种改性膜均具备了亲水性,且亲水性的大小依次为PVDF-g-PAA-2膜> PVDF-g-PAA-1膜> PVDF-g-AA膜;钯/铁双金属颗粒负载到了改性膜上后,分散性很好,不易团聚,粒径较均匀,大约50nm。
     考察了三种改性PVDF膜负载纳米钯/铁双金属颗粒的钯化率、投加量、目标污染物初始浓度、反应体系初始pH值和温度对一氯乙酸和2,4-二氯苯酚的脱氯率的影响。对于一氯乙酸的脱氯体系, Pd-Fe/PVDF-g-AA、Pd-Fe/PVDF-g-PAA-1和Pd-Fe/PVDF-g-PAA-2三种膜载催化还原剂的最佳钯化率分别为1.202wt.%、1.197wt.%和1.213wt.%;对于2,4-二氯苯酚的脱氯体系,三种膜载催化还原剂的最佳钯化率分别为0.505wt.%、0.513wt.%和0.576wt.%;当催化还原剂的钯化率小于最佳钯化率时一氯乙酸的脱氯率随着钯化率的增高而增加,钯化率大于最佳钯化率时一氯乙酸脱氯率随着钯化率的增高而减小。增加膜载还原剂的投加量可以促进脱氯反应的进行,增加目标污染物的初始浓度会降低反应体系的脱氯率,增加反应体系的温度可以提高反应体系的脱氯率和速率,与未固定的纳米钯/铁双金属颗粒相比膜载催化还原剂对氯代有机物的催化还原脱氯有较大的pH适用范围。
     膜载纳米钯/铁双金属颗粒催化还原一氯乙酸和2,4-二氯苯酚的脱氯速率要远高于膜载零价铁纳米颗粒和非固定纳米钯/铁双金属颗粒。通过计算脱氯反应的活化能验证了金属钯的催化性能,零价铁腐蚀产生的氢气在金属钯的表面解离成高还原性的氢原子促进了间接还原反应的进行。同时,载体膜在反应体系中不仅仅起到了负载纳米颗粒的作用,同时通过扩大了钯/铁纳米双金属颗粒的分散度、减少了催化还原反应中纳米双金属颗粒表面的氢气过量累积等方面促进了脱氯反应的进行。三种膜载纳米钯/铁双金属颗粒中,由原位聚合法制备的PVDF-g-PAA-2膜负载纳米钯/铁双金属颗粒的催化还原效果是最好的,而且Pd-Fe/PVDF-g-PAA-2连续7次重复使用,对一氯乙酸去除率可以一直保持在90%以上。接枝聚丙烯酸的PVDF膜上的PAA对Fe2+的具有螯合作用,这既可避免铁流失对水体的二次污染,又能防止铁在水相中被化产生钝化层,从而降低膜载纳米钯/铁双金属颗粒失活的几率。
Chlorinated organic compounds (COCs) have been introduced into environmentthrough various channels and become persistent organic pollutant (POPs) which areendangering human health and ecological environment, while been used in every area ofindusty as very important chemical materials. Advanced reduction technology, such aszero-valent iron (ZVI) technology, provides a new way for dechlorination anddetoxification of COCs. ZVI is a cheap, non-toxic and harmless technology, which canreduce and dechlorinate COCs at room temperature and atmospheric pressure, and isalso promising zero carbon emissions. After the introduction of Pd the catalyst andNano-materials technology, the ZVI reduction system appears much betterdechlorination efficiency, and now to be supported as nano-scale catalytic reducingagent is the main trend of the future development of ZVI. The film-supported bimetallicNPs technology is still having several problems to deal with: the modification methodsof PVDF films are defective; the catalytic reductive system is not very effective todechlorinate COCs with smaller molecular and less chlorines; and there aren’t anysystematic studies about the mechanism of dechlorination by film-supported Pd/Fe NPs.In this study, Pd/Fe bimetallic nano-particles were supported by noble modifiedpoly(vinylidene fluoride)(PVDF) films, which were prepared by three-step hydrophilicmodification, and used to dechlorinate COCs.
     First of all, PVDF films were modified to have hydrophilicity and PVDF-g-AAfilms were produced by three modification steps:(1) alkaline treatment to defluorinatethe original PVDF film;(2) nucleophilic addition to hydrophilize the PVDF film; and (3)grafting acrylic acid to change the hydrophilization extent of the modified support film.The reaction parameters of the “alkaline treatment” step were optimized by using anorthogonal test, and the results were: the concentration of KOH was0.5mol/L, theconcentration of KMnO4was2wt.%, reaction temperature was40oC, and reaction timewas15min. The optimal concentration of acrylic acid was experimentally testified as20wt.%by testing Fe loading content of films and dechlorination of monochloroaceticacid (MCAA). Secondly, based on the “alkaline treatment” step, PVDF films weremodified by grafting polyacrylic acid (PAA), and PVDF-g-PAA-1films andPVDF-g-PAA-2films were prepared by grafting method and in situ polymerizationmethod, respectively. The optimal PAA concentration for PVDF-g-PAA-1preparationwas30wt.%, which was testified by testing Fe loading content of films and MCAAdechlorination; and the reaction parameters of the in situ polymerization method wereoptimized by orthogonal experiment, and the results were: the concentration of acrylicacid was30wt.%, the dosage of benzoyl peroxide (BPO) was50mg, reactiontemperature was80oC, and reaction time was3h.
     PVDF films, PVDF-g-AA films, PVDF-g-PAA-1films, PVDF-g-PAA-2films, andPd/Fe nano-particles (NPs) supported by three kinds of modified PVDF films werecharacterized by SEM, EDS, XPS, XRD, FT-IR, BET, and contact angle analysis toidentify morphology, the composition and valence of surface elements, surface groups,the specific surface area, and hydrophilicity. The results suggest that these three kinds ofmodified films had been hydrophilised (PVDF-g-PAA-2> PVDF-g-PAA-1>PVDF-g-AA); and Pd/Fe bimetallic NPs were immobilized in the support films with adiameter about50nm, which had better dispersion and smaller aggregation tendency.
     Effects of Pd loading, NPs addition, initial concentration of the contaminant, initialpH value of reaction system, and reaction temperature on dechlorination efficiency ofMCAA and2,4-dichlorophenol (DCP) were investigated. In the MCAA dechlorinationsystem, the optimal Pd loading contents of Pd-Fe/PVDF-g-AA, Pd-Fe/PVDF-g-PAA-1,and Pd-Fe/PVDF-g-PAA-2were1.202wt.%,1.197wt.%, and1.213wt.%, respectively;and in the DCP dechlorination system, the optimal Pd loading contents were0.505wt.%,0.513wt.%, and0.576wt.%, respectively. Dechlorination efficiency of both MCAA andDCP increased with the increase of Pd loading content when Pd loading was below theoptimal content, while decreased when Pd loading was beyond the optimal content.Increasing NPs addition or reaction temperature resulted in the increase ofdechlorination efficiency, whereas increasing initial concentration of MCAA or DCPcaused the decrease of dechlorination efficiency. The dechlorination system byfilm-supported Pd/Fe NPs were more tolerant in pH change than the system by freesuspended Pd/Fe NPs.
     Film-supported Pd/Fe NPs had better dechlorination efficiency of MCAA or DCPthan both film-supported ZVI NPs and free suspended Pd/Fe NPs. The catalysis of Pdwas testified by calculating the activation energy of the dechlorination reaction. Thehydrogen produced by the ZVI corrosion could dissociate into highly reducinghydrogen atoms on the surface of Pd NPs, which promotes the indirect reductionreaction. On the other side, the support film doesn’t only play the role of loading NPs,but also could promote the dechlorination by increasing the dispersion of Pd/Fe NPs anddecreasing the excessive accumulation of hydrogen on the surface of Pd/Fe NPs.Among three kinds of film-supported Pd/Fe NPs, Pd-Fe/PVDF-g-PAA-2appeared thebest catalytic reductive efficiency. Moreover, The stability of Pd-Fe/PVDF-g-PAA-2were preliminarily studied by a reusing batch experiment where above90%dechlorination efficiency of MCAA was accomplished for7times. The good chelationfor Fe2+of PAA on the PVDF-g-PAA-2would avoid the secondary pollution caused bythe dissolved iron and prevent the formation of iron oxide passivation layer, whichcould avoid the deactivation of immobilized Pd/Fe NPs.
引文
[1] R.W. Gillham, S.F. O’Hannsesin. Enhanced Degradation of HalogenatedAliphatics by Zero-Valent Iron. Ground Water,1994,32:958–967.
    [2] Laine D F, Cheng I F. The Destruction of Organic Pollutants under Mild ReactionConditions: a Review[J]. Microchemical Journal,2007,85(2):183–193.
    [3] Reddy A V B, Madhavi V, Reddy K G, et al. Remediation of ChlorpyrifosContaminated Soils by Laboratory-synthesized Zero-valent Nano Iron Particles:Effect of Ph and Aluminum Salts[J]. Journal Of Chemistry,2013.
    [4] Alexander M. Aging, Bioavailability, and Overestimation of Risk FromEnvironmental Pollutants[J]. Environmental Science&Technology,2000,34(20):4259–4265.
    [5]侯春凤.纳米铁与合成树脂的表征及其活性探讨[D].北京:北京交通大学硕士学位论文,2009.
    [6] Feng J, Lim T T. Iron-Mediated Reduction Rates and Pathways of HalogenatedMethanes with Nanoscale Pd/Fe: Analysis of Linear Free Energy Relationship[J].Chemosphere,2007,66(9):1765–1774.
    [7] Zhang X L, Deng B L, Guo J, et al. Ligand-Assisted Degradation of CarbonTetrachloride by Microscale Zero-valent Iron[J]. Journal of EnvironmentalManagement,2011,92(4):1328–1333.
    [8] Deangelo A B, Daniel F B, Most B M, et al. Failure of Monochloroacetic Acid andTrichloroacetic Acid Administered in the Drinking Water to Produce Liver Cancerin Male F344/N Rats[J]. Journal of Toxicology and Environmental Health. Part A,1997,52(5):425–445.
    [9] Rodriguez M J, Sérodes J-B, Levallois P. Behavior of Trihalomethanes andHaloacetic Acids in a Drinking Water Distribution System[J]. Water Research,2004,38(20):4367–4382.
    [10] Su G J, Liu Y X, Huang L Y, et al. Synergetic Effect of Alkaline Earth MetalOxides and Iron Oxides on the Degradation of Hexachlorobenzene and ItsDegradation Pathway[J]. Chemosphere,2013,90(1):103–111.
    [11] Carberry J B, Yang S Y. Enhancement of Pcb Congener Biodegradation byPreoxidation with Fenton-Reagent[J]. Water Science and Technology,1994,30(7):105–113.
    [12] Kusic H, Koprivanac N, Horvat S, et al. Modeling Dye Degradation Kinetic UsingDark-and Photo-Fenton Type Processes[J]. Chemical Engineering Journal,2009,155(1-2):144–154.
    [13] Canle M, Santaballa J A, Steenken S. Photo-and Radiation-Chemical Generationand Thermodynamic Properties of the Aminium and Aminyl Radicals DerivedFrom N-Phenylglycine and (N-Chloro,N-Phenyl)Glycine in Aqueous Solution:Evidence for a New Photoionization Mechanism for Aromatic Amines[J].Chemistry-A European Journal,1999,5(4):1192–1201.
    [14] Czaplicka M. Photo-Degradation of Chlorophenols in the Aqueous Solution[J].Journal of Hazardous Materials,2006,134(1-3):45–59.
    [15] Stowell J P, Jensen J N. Dechlorination of Chlorendic Acid with Ozone[J]. WaterResearch,1991,25(1):83–90.
    [16] Vera Y M, De Carvalho R J, Torem M L, et al. Atrazine Degradation by in situElectrochemically Generated Ozone[J]. Chemical Engineering Journal,2009,155(3):691–697.
    [17] Lee Y, Bae S, Lee W. Degradation of Carbon Tetrachloride in Modified FentonReaction[J]. Korean Journal of Chemical Engineering,2012,29(6):769–774.
    [18] Gui M H, Smuleac V, Ormsbee L E, et al. Iron Oxide Nanoparticle Synthesis inAqueous and Membrane Systems for Oxidative Degradation of TrichloroethyleneFrom Water[J]. Journal of Nanoparticle Research,2012,14(5).
    [19] Liu H C, Pan Z Y. Visual Observations and Raman Spectroscopic Studies ofSupercritical Water Oxidation of Chlorobenzene in an Anticorrosive Fused-SilicaCapillary Reactor[J]. Environmental Science&Technology,2012,46(6):3384–3389.
    [20] Hooshyar Z, Bardajee G R, Ghayeb Y. Sonication Enhanced Removal of Nickeland Cobalt Ions From Polluted Water Using an Iron Based Sorbent[J]. Journal ofChemistry,2013.
    [21] Malliarou E, Collins C, Graham N, et al. Haloacetic Acids in Drinking Water inthe United Kingdom[J]. Water Research,2005,39(12):2722–2730.
    [22] Hanson M L, Solomon K R. Haloacetic Acids in the Aquatic Environment. Part II:Ecological Risk Assessment[J]. Environmental Pollution,2004,130(3):385–401.
    [23] Dalvi A G I, Al-Rasheed R, Javeed M A. Haloacetic Acids (Haas) Formation inDesalination Processes from Disinfectants[J]. Desalination,2000,129(3):261–271.
    [24] Hanson M L, Solomon K R. Haloacetic Acids in the Aquatic Environment. Part I:Macrophyte Toxicity[J]. Environmental Pollution,2004,130(3):371–383.
    [25]孟昭虹. Al2O3改性Pd/Fe/PVDF催化还原剂制备及去除水中氯乙酸研究[D].哈尔滨工业大学博士学位论文,2011.
    [26] Kastanek F, Maleterova Y, Kastanek P, et al. Complex Treatment of Wastewaterand Groundwater Contaminated by Halogenated Organic Compounds[J].Desalination,2007,211(1-3):261–271.
    [27] Liu Y H, Yang F L, Yue P L, et al. Catalytic Dechlorination Of Chlorophenols inWater by Palladium/Iron[J]. Water Research,2001,35(8):1887–1890.
    [28] Kaivosoja T, Viren A, Tissari J, et al. Effects of a Catalytic Converter on PCCD/F,Chlorophenol and PAH Emissions in Residential Wood Combustion[J].Chemosphere,2012,88(3):278–285.
    [29]邱翠翠.基于纳米结构金、钯-铁薄膜功能界面的构建及其电催化与传感性能研究[D].山东大学博士学位论文,2012.
    [30]张兵,郑明辉,刘芃岩,等.五氯酚在洞庭湖环境介质中的分布[J].中国环境科学,2001,21(2):165–167.
    [31] Huang C P, Chu C S. Indirect Electrochemical Oxidation of Chlorophenols inDilute Aqueous Solutions[J]. Journal of Environmental Engineering-Asce,2012,138(3):375–385.
    [32] Neilson A H, Allard A S, Hynning P A, et al. Distribution, Fate and Persistence ofOrganochlorine Compounds Formed during Production of Bleached Pulp[J].Toxicological and Environmental Chemistry,1991,30(1-2):3–41.
    [33] Hetflejs J. Chemical Destruction of PCBs[J]. Chemicke Listy,1993,87(6):407–417.
    [34] Koukal P, Dvorakova H, Dvorak D, et al. Palladium-Catalysed ClaisenRearrangement of6-Allyloxypurines[J]. Chemical Papers,2013,67(1):3–8.
    [35] Battersby N S. A Review of Biodegradation Kinetics in the AquaticEnvironment[J]. Chemosphere,1990,21(10-11):1243–1284.
    [36] Colberg P J S. Role Of Sulfate In Microbial Transformations of EnvironmentalContaminants-Chlorinated Aromatic-Compounds[J]. Geomicrobiology Journal,1990,8(3-4):147–165.
    [37]常影.纳米pd/Fe双金属催化剂对水中氯代甲烷催化还原脱氯的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [38] Mcrae B M, Lapara T M, Hozalski R M. Biodegradation of Haloacetic Acids byBacterial Enrichment Cultures[J]. Chemosphere,2004,55(6):915–925.
    [39] Cheng T, Dai Y Z, Chen C, et al. Zero-Valent Iron Supported Microbial ReductiveDechlorination of2,4-Dichlorophenol[J]. Asian Journal of Chemistry,2012,24(6):2579–2584.
    [40] Gupta S, Chakrabarti S K, Singh S. Oxi-Bioremediation of Hazardous Biosludgefrom Integrated Pulp and Paper Mill[J]. Ozone-Science&Engineering,2012,34(5):334–341.
    [41] Hu M, Zhang Y, Wang Z G, at al. Influence of Humic Acid on the TrichloroetheneDegradation by Dehalococcoides-Containing Consortium[J]. Journal of HazardousMaterials,2011,190(1-3):1074–1078.
    [42] Tong M, Yuan S H. Physiochemical Technologies for HCB Remediation andDisposal: a Review[J]. Journal of Hazardous Materials,2012,229:1–14.
    [43] Tiernan T O, Wagel D J, Vanness G F, et al. Dechlorination of OrganicCompounds Contained in Hazardous Wastes-Potassium Hydroxide withPolyethylene-Glycol Reagent[J]. ACS Symposium Series,1990,422:236–251.
    [44] Al Momani F, Sans C, Esplugas S. A Comparative Study of the AdvancedOxidation of2,4-Dichlorophenol[J]. Journal of Hazardous Materials,2004,107(3):123–129.
    [45] Ahuja D K, Bachas L G, Bhattacharyya D. Modified Fenton Reaction forTrichlorophenol Dechlorination by Enzymatically Generated H2O2and GluconicAcid Chelate[J]. Chemosphere,2007,66(11):2193–2200.
    [46] Kang N, Hua I, Rao P S C. Enhanced Fenton’s Destruction of Non-Aqueous PhasePerchloroethylene in Soil Systems[J]. Chemosphere,2006,63(10):1685–1698.
    [47] Grzechulska J, Morawski A W. Photocatalytic Decomposition of Azo-Dye AcidBlack1in Water over Modified Titanium Dioxide[J]. Applied Catalysis B:Environmental,2002,36(1):45–51.
    [48] Liu L F, Chen F, Yang F L, Et Al. Photocatalytic Degradation of2,4-Dichlorophenol Using Nanoscale Fe/TiO2[J]. Chemical Engineering Journal,2012,181:189–195.
    [49] Kong J S, Achari G, Langford C H. Dechlorination of Polychlorinated Biphenylsin Transformer Oil Using UV and Visible Light[J]. Journal of EnvironmentalScience and Health Part A-Toxic/Hazardous Substances&EnvironmentalEngineering,2013,48(1):92–98.
    [50] Hsieh W-P, Pan J R, Huang C, et al. Enhance the Photocatalytic Activity for TheDegradation of Organic Contaminants in Water by Incorporating TiO2WithZero-valent Iron[J]. Science of the Total Environment,2010,108(3):672–679.
    [51] Wang R, Chen C-L, Gratzl J S. Dechlorination of Chlorophenols Found in PulpBleach Plant E-1Effluents by Advanced Oxidation Processes[J]. BioresourceTechnology,2005,96(8):897–906.
    [52] Esclapez M D, Tudela I, Díez-García M I, et al. Towards the CompleteDechlorination of Chloroacetic Acids in Water by Sonoelectrochemical Methods:Effect of the Anodic Material on the Degradation of Trichloroacetic Acid and ItsBy-products[J]. Chemical Engineering Journal,2012,197:231–241.
    [53] Sun Z, Wei X, Hu X, et al. Electrocatalytic Dechlorination of2,4-Dichlorophenolin Aqueous Solution on Palladium Loaded Meshed Titanium Electrode Modifiedwith Polymeric Pyrrole and Surfactant[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,414:314–319.
    [54] Sun Z, Ge H, Hu X, et al. Electrocatalytic Dechlorination of Chloroform inAqueous Solution on Palladium/Titanium Electrode[J]. Chemical Engineering&Technology,2009,32(1):134–139.
    [55] Tsyganok A I, Otsuka K. Electrocatalytic Reductive Dehalo genation of2,4-D inAqueous Solution on Carbon Materials Containing Supported Palladium[J].Electrochimica Acta,1998,43(18):2589–2596.
    [56] Sun Z, Ge H, Hu X, et al. Preparation of Foam-Nickel Composite Electrode andIts Application to2,4-Dichlorophenol Dechlorination in Aqueous Solution[J].Separation and Purification Technology,2010,72(2):133–139.
    [57] Sinha A, Bose P. Interaction of2,4,6-Trichlorophenol with High Carbon IronFilings: Reaction and Sorption Mechanisms[J]. Journal of Hazardous Materials,2009,164(1):301–309.
    [58] Parshetti G K, Doong R A. Dechlorination and Photodegradation ofTrichloroethylene by Fe/TiO2Nanocomposites in the Presence of Nickel Ionsunder Anoxic Conditions[J]. Applied Catalysis B: Environmental,2010,100(1-2):116–123.
    [59] Arnold W A, Roberts A L. Pathways and Kinetics of Chlorinated Ethylene andChlorinated Acetylene Reaction with Fe(0) Particles[J]. Environmental Science&Technology,2000,34(9):1794–1805.
    [60] Feng J, Lim T T. Pathways and Kinetics of Carbon Tetrachloride and ChloroformReductions by Nano-scale Fe and Fe/Ni Particles: Comparison with CommercialMicro-scale Fe and Zn[J]. Chemosphere,2005,59(9):1267–1277.
    [61] Keane M A. Supported Transition Metal Catalysts for HydrodechlorinationReactions[J]. Chemcatchem,2011,3(5):800–821.
    [62] Roberts A L, Totten L A, Arnold W A, et al. Reductive Elimination of ChlorinatedEthylenes by Zero Valent Metals[J]. Environmental Science&Technology,1996,30(8):2654–2659.
    [63] Morales J, Hutcheson R, Cheng I F. Dechlorination of Chlorinated Phenols byCatalyzed and Uncatalyzed Fe(0) and Mg(0) Particles[J]. Journal of HazardousMaterials,2002,90(1):97–108.
    [64] Wong M S, Alvarez P J J, Fang Y L, et al. Cleaner Water Using BimetallicNanoparticle Catalysts[J]. Journal of Chemical Technology and Biotechnology,2009,84(2):158–166.
    [65] Ghauch A, Tuqan A. Reductive Destruction and Decontamination of AqueousSolutions of Chlorinated Antimicrobial Agent Using Bimetallic Systems[J].Journal of Hazardous Materials,2009,164(2-3):665–674.
    [66] Xu W Y, Gao T Y. Dechlorination of Carbon Tetrachloride by the Catalyzed Fe-CuProcess[J]. Journal of Environmental Sciences-China,2007,19(7):792–799.
    [67] Xuan X L, Li X Z, Wang C, et al. Effects of Key Reaction Parameters on theReductive Dechlorination of Chloroform with Pd/Fe-0Bimetal in AqueousSolution[J]. Journal of Environmental Science and Health Part A: Toxic/HazardousSubstances&Environmental Engineering,2010,45(4):464–470.
    [68] Tobiszewski M, Namiesnik J. Abiotic Degradation of Chlorinated Ethanes andEthenes in Water[J]. Environmental Science and Pollution Research,2012,19(6):1994–2006.
    [69] Andreas T, Silke K, Yuri K, et al. Chloroethene Dehalogenation withUltrasonically Produced Air-stable Nano Iron[J]. Ultrasonics Sonochemistry,2009,16(5):617–621.
    [70] Zhang W, Li L, Lin K F, et al. Synergetic Degradation of Fe/Cu/C forGroundwater Polluted by Trichloroethylene[J]. Water Science and Technology,2012,65(12):2258–2264.
    [71] Nzengung V A, Castillo R M, Gates W P, et al. Abiotic Transformation ofPerchloroethylene in Homogeneous Dithionite Solution and in Suspensions ofDithionite-Treated Clay Minerals[J]. Environmental Science&Technology,2001,35(11):2244–2251.
    [72] Elsner M, Couloume G L, Mancini S, et al. Carbon Isotope Analysis to EvaluateNanoscale Fe(0) Treatment at a Chlorohydrocarbon Contaminated Site[J]. GroundWater Monitoring and Remediation,2010,30(3):79–95.
    [73] Xiu Z, Jin Z, Li T, et al. Effects Of Nano-scale Zero-valent Iron Particles on aMixed Culture Dechlorinating Trichloroethylene[J]. Bioresource Technology,2010,101(4):1141–1146.
    [74] Balazova A, Slodicka M, Van Keer R. Parameter Determination for ReductiveDechlorination of Chlorinated Solvents[J]. Transport in Porous Media,2006,65(3):411–424.
    [75] Chen C, Wang X, Chang Y, et al. Dechlorination of Disinfection By-productMonochloroacetic Acid in Drinking Water by Nanoscale Palladized IronBimetallic Particle[J]. Journal of Environmental Sciences,2008,20(8):945–951.
    [76] Cheng R, Wang J L, Zhang W X. Reductive Dechlorination of2,4-DichlorophenolUsing Nanoscale Fe-0: Influencing Factors and Possible Mechanism[J]. Science inChina Series B: Chemistry,2007,50(4):574–579.
    [77]何娜,李培军,任婉侠,等.钯/铁双金属对土壤中2,2’,3,4,4’,5,5’-七氯联苯的催化脱氯研究[J].环境科学,2008,29(7):1924–1929.
    [78] Wang H L, Tian H, Hao Z P. Study of DDT and Its Derivatives DDD, DDEAdsorption and Degradation over Fe-SBA-15at Low Temperature[J]. Journal ofEnvironmental Sciences:China,2012,24(3):536–540.
    [79] Li S J, Li T L, Xiu Z M, et al. Reduction and Immobilization of Chromium(VI) byNano-scale Fe-0Particles Supported on Reproducible PAA/PVDF Membrane[J].Journal of Environmental Monitoring,2010,12(5):1153–1158.
    [80] Reddy K R, Darko-Kagya K. Remediation of Contaminated Subsurface UsingNanoscale Iron Particles[C]//India:2008,1:341–357.
    [81] Lien H L, Zhang W X. Nanoscale Pd/Fe Bimetallic Particles: Catalytic Effects ofPalladium on Hydrodechlorination[J]. Applied Catalysis B:Environmental,2007,77(1-2):110–116.
    [82] Xu J, Dozier A, Bhattacharyya D. Synthesis of Nanoscale Bimetallic Particles inPolyelectrolyte Membrane Matrix for Reductive Transformation of HalogenatedOrganic Compounds[J]. Journal of Nanoparticle Research,2005,7(4-5):449–467.
    [83] Mackenzie K, Bleyl S, Georgi A, et al. Carbo-Iron-an Fe/Ac Composite-asAlternative to Nano-Iron for Groundwater Treatment[J]. Water Research,2012,46(12):3817–3826.
    [84] Lacinova L, Kvapil P, Cernik M. A Field Comparison of Two ReductiveDechlorination (Zero-valent Iron and Lactate) Methods[J]. EnvironmentalTechnology,2012,33(7):741–749.
    [85] Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, et al. Remediation ofAtrazine-Contaminated Soil and Water by Nano Zerovalent Iron[J]. Water Air andSoil Pollution,2008,192(1-4):349–359.
    [86] Wang Y, Zhou D M, Wang Y J, et al. Automatic PH Control System Enhances theDechlorination of2,4,4’-Trichlorobiphenyl and Extracted PCBs fromContaminated Soil by Nanoscale Fe-0and Pd/Fe-0[J]. Environmental Science andPollution Research,2012,19(2):448–457.
    [87] Kharisov B I, Dias H V R, Kharissova O V, et al. Iron-Containing Nanomaterials:Synthesis, Properties, and Environmental Applications[J]. RSC Advances,2012,2(25):9325–9358.
    [88] Zhang W X, Wang C B, Lien H L. Treatment of Chlorinated OrganicContaminants with Nanoscale Bimetallic Particles[J]. Catalysis Today,1998,40(4):387–395.
    [89] Chen H J, Liu H W, Liao W S, et al. Highly Active and Reusable PalladiumNanoparticle Catalyst Stabilized by Polydimethylsiloxane for Hydrogenation ofAromatic Compounds in Supercritical Carbon Dioxide[J]. Applied Catalysis B:Environmental,2012,111:402–408.
    [90]高树梅,王晓栋,王宇,等.纳米铁颗粒降解氯代有机污染物的研究进展[J].环境科学与技术,2007,30(3):100–103.
    [91] Zhang W X. Nanoscale Iron Particles for Environmental Remediation: anOverview[J]. Journal of Nanoparticle Research,2003,5(3-4):323–332.
    [92] Yuan S H, Long H Y, Xie W J, et al. Electrokinetic Transport of CMC-StabilizedPd/Fe Nanoparticles for the Remediation of PCP-contaminated Soil[J]. Geoderma,2012,185:18–25.
    [93] Muftikian R, Fernando Q, Korte N. A Method for the Rapid Dechlorination ofLow Molecular Weight Chlorinated Hydrocarbons in Water[J]. Water Research,1995,29(10):2434–2439.
    [94] Grittini C, Malcomson M, Fernando Q, et al. Rapid Dechlorination ofPolychlorinated-Biphenyls on the Surface of a Pd/Fe Bimetallic System[J].Environmental Science&Technology,1995,29(11):2898–2900.
    [95] Wei J J, Xu X H, Liu Y. Kinetics and Mechanism of Dechlorination ofO-Chlorophenol by Nanoscale Pd/Fe[J]. Chemical Research in ChineseUniversities,2004,20(1):73–76.
    [96] David A, Vannice M A. Control of Catalytic Debenzylation and DehalogenationReactions during Liquid-Phase Reduction by H2[J]. Journal of Catalysis,2006,237(2):349–358.
    [97] Choi J-H, Kim Y-H, Choi S J. Reductive Dechlorination and Biodegradation of2,4,6-Trichlorophenol Using Sequential Permeable Reactive Barriers: LaboratoryStudies[J]. Chemosphere,2007,67(8):1551–1557.
    [98] Wu L F, Ritchie S M C. Enhanced Dechlorination of Trichloroethylene byMembrane-supported Pd-coated Iron Nanoparticles[J]. Environmental Progress,2008,27(2):218–224.
    [99] Cho Y, Choi S-I. Degradation of PCE, TCE And1,1,1-TCA by Nanosized FePdBimetallic Particles under Various Experimental Conditions[J]. Chemosphere,2010,81(7):940–945.
    [100]Doong R A, Lai Y J. Dechlorination of Tetrachloroethylene by Palladized Iron inthe Presence of Humic Acid[J]. Water Research,2005,39(11):2309–2318.
    [101]Amir A, Lee W. Enhanced Reductive Dechlorination of Tetrachloroethene byNano-sized Zero Valent Iron with Vitamin B12[J]. Chemical Engineering Journal,2011,170(2–3):492–497.
    [102]He F, Zhao D Y. Hydrodechlorination of Trichloroethene Using Stabilized Fe-PdNanoparticles: Reaction Mechanism and Effects of Stabilizers, Catalysts andReaction Conditions[J]. Applied Catalysis B: Environmental,2008,84(3-4):533–540.
    [103]Elsner M, Chartrand M, Vanstone N, et al. Identifying Abiotic Chlorinated EtheneDegradation: Characteristic Isotope Patterns in Reaction Products with NanoscaleZero-valent Iron[J]. Environmental Science&Technology,2008,42(16):5963–5970.
    [104]Chen J, Xiu Z, Lowry G V, et al. Effect of Natural Organic Matter on Toxicity andReactivity of Nano-scale Zero-valent Iron[J]. Water Research,2011,45(5):1995–2001.
    [105]Sch fer D, K ber R, Dahmke A. Competing TCE and Cis-DCE DegradationKinetics by Zero-valent Iron—Experimental Results and Numerical Simulation[J].Journal of Contaminant Hydrology,2003,65(3–4):183–202.
    [106]卫建军.纳米级Pd/Fe双金属对水中氯酚的催化脱氯研究[D].杭州:浙江大学博士学位论文,2004.
    [107]Zhang Z, Shen Q, Cissoko N, et al. Catalytic Dechlorination of2,4-Dichlorophenol by Pd/Fe Bimetallic Nanoparticles in the Presence of HumicAcid[J]. Journal of Hazardous Materials,2010,182(1-3):252–258.
    [108]Zhang Z, Cissoko N, Wo J J, et al. Factors Influencing the Dechlorination of2,4-Dichlorophenol by Ni-Fe Nanoparticles in the Presence of Humic Acid[J].Journal of Hazardous Materials,2009,165(1-3):78–86.
    [109]Jia H Z, Wang C Y. Adsorption and Dechlorination of2,4-Dichlorophenol(2,4-DCP) on a Multi-Functional Organo-Smectite Templated Zero-valent IronComposite[J]. Chemical Engineering Journal,2012,191:202–209.
    [110]Zahran E M, Bhattacharyya D, Bachas L G. Reactivity of Pd/Fe BimetallicNanotubes in Dechlorination of Coplanar Polychlorinated Biphenyls[J].Chemosphere,.
    [111] Wang Y, Zhou D, Wang Y, et al. Humic Acid and Metal Ions Accelerating theDechlorination of4-Chlorobiphenyl by Nanoscale Zero-valent Iron[J]. Journal ofEnvironmental Sciences,2011,23(8):1286–1292.
    [112]Fang Y, Al-Abed S R. Dechlorination Kinetics of Monochlorobiphenyls by Fe/Pd:Effects of Solvent, Temperature, and PCB Concentration[J]. Applied Catalysis B:Environmental,2008,78(3-4):371–380.
    [113]Hozalski R M, Zhang L, Arnold W A. Reduction of Haloacetic Acids by Fe-0:Implications for Treatment and Fate[J]. Environmental Science&Technology,2001,35(11):2258–2263.
    [114]Kume A, Monguchi Y, Hattori K, et al. Pd/C-Catalyzed Practical Degradation ofPCBs at Room Temperature[J]. Applied Catalysis B:Environmental,2008,81(3-4):274–282.
    [115]Hildebrand H, Mackenzie K, Kopinke F-D. Pd/Fe3O4Nano-catalysts for SelectiveDehalogenation in Wastewater Treatment Processes—Influence of WaterConstituents[J]. Applied Catalysis B: Environmental,2009,91(1-2):389–396.
    [116]Christoforidis K C, Louloudi M, Deligiannakis Y. Complete Dechlorination ofPentachlorophenol by a Heterogeneous SiO2–Fe–Porphyrin Catalyst[J]. AppliedCatalysis B: Environmental,2010,95(3-4):297–302.
    [117]Qiu C C, Dong X Q, Huang M H, et al. Facile Fabrication of NanostructuredPd-Fe Bimetallic Thin Films and Their Electrodechlorination Activity[J]. Journalof Molecular Catalysis A-Chemical,2011,350(1-2):56–63.
    [118]Simagina V, Likholobov V, Bergeret G, et al. Catalytic Hydrodechlorination ofHexachlorobenzene on Carbon Supported Pd-Ni Bimetallic Catalysts[J]. AppliedCatalysis B: Environmental,2003,40(4):293–304.
    [119]张环.负载型纳米铁铜二元金属的合成与改性及其修复地下水中有机氯污染物的基础研究[D].天津:南开大学博士学位论文,2006.
    [120]Zhu B W, Lim T T, Feng J. Reductive Dechlorination of1,2,4-Trichlorobenzenewith Palladized Nanoscale Fe-0Particles Supported on Chitosan and Silica[J].Chemosphere,2006,65(7):1137–1145.
    [121]Xu J, Lv X S, Li J D, Et Al. Simultaneous Adsorption and Dechlorination of2,4-Dichlorophenol by Pd/Fe Nanoparticles with Multi-Walled Carbon NanotubeSupport[J]. Journal of Hazardous Materials,2012,225:36–45.
    [122]Lewis S, Smuleac V, Montague A, et al. Iron-Functionalized Membranes forNanoparticle Synthesis and Reactions[J]. Separation Science and Technology,2009,44(14):3289–3311.
    [123]Ohtaki M, Komiyama M, Hirai H, et al. Effects of Polymer Support on theSubstrate Selectivity of Covalently Immobilized Ultrafine Rhodium Particles as aCatalyst for Olefin Hydrogenation[J]. Macromolecules,1991,24(20):5567–5572.
    [124]Toshima N, Ohtaki M, Teranishi T. Substrate Selectivity by the Polymer Supportin Hydrogenation over Cross-Linked Polymer-Immobilized Metal-Catalysts[J].Reactive Polymers,1991,15:135–145.
    [125]Inoue H, Higashiyama K, Higuchi E, et al. A Dechlorination System for4-Chlorotoluene Using a Two-Compartment Cell Separated by a Palladized IonExchange Membrane[J]. Journal of Electroanalytical Chemistry,2003,560(1):87–91.
    [126]Meyer D E, Wood K, Bachas L G, et al. Degradation of Chlorinated Organics byMembrane-Immobilized Nanosized Metals[J]. Environmental Progress,2004,23(3):232–242.
    [127]Parshetti G K, Doong R A. Dechlorination of Trichloroethylene by Ni/FeNanoparticles Immobilized in PEG/PVDF and PEG/Nylon66Membranes[J].Water Research,2009,43(12):3086–3094.
    [128]Xu J, Bhattacharyya D. Fe/Pd Nanoparticle Immobilization in MicrofiltrationMembrane Pores: Synthesis, Characterization, and Application in theDechlorination of Polychlorinated Biphenyls[J]. Ind. Eng. Chem. Res.,2007,46(8):2348–2359.
    [129]Stengaard F F. Characteristics and Performance of New Types of UltrafiltrationMembranes with Chemically Modified Surfaces[J]. Desalination,1988,70(1-3):207–224.
    [130]Xu J, Bhattacharyya D. Modeling of Fe/Pd Nanoparticle-based FunctionalizedMembrane Reactor for PCB Dechlorination at Room Temperature[J]. Journal ofPhysical Chemistry C,2008,112(25):9133–9144.
    [131]Xu J, Bhattacharyya D. Membrane-based Bimetallic Nanoparticles forEnvironmental Remediation: Synthesis and Reactive Properties[J]. EnvironmentalProgress,2005,24(4):358–366.
    [132]Meng Z, Liu H, Liu Y, et al. Preparation and Characterization of Pd/Fe BimetallicNanoparticles Immobilized in Pvdf·Al2O3Membrane for Dechlorination ofMonochloroacetic Acid[J]. Journal of Membrane Science,2011,372(1–2):165–171.
    [133]Carone E, Felisberti M I, Nunes S P. Blends of Poly(Methyl Methacrylate) andPolyamides[J]. Journal of Materials Science,1998,33(14):3729–3735.
    [134]Nascimento I, Bruns R E, Siqueira D F, et al. Application of Statistical MixtureModels for Ternary Polymer Blends[J]. Journal of the Brazilian Chemical Society,1997,8(6):587–595.
    [135]Ying L, Yu W H, Kang E T, et al. Functional and Surface-Active Membranes FromPoly(Vinylidene Fluoride)-Graft-Poly(Acrylic Acid) Prepared via Raft-MediatedGraft Copolymerization[J]. Langmuir,2004,20(14):6032–6040.
    [136]Akthakul A, Hester J F, Park J Y, et al. Preparation of Hydrophilic PVDFMembranes for Oil/Water Separation via Surface Segregation ofMicrophase-separated PVDF-g-Poem during Immersion Precipitation[J]. Abstractsof Papers of the American Chemical Society,2002,224: U493–U493.
    [137]Ross G J, Watts J F, Hill M P, et al. Surface Modification of Poly(VinylideneFluoride) by Alkaline Treatment1. the Degradation Mechanism[J]. Polymer,2000,41(5):1685–1696.
    [138]邵平海,孙国庆.聚偏氟乙烯微滤膜亲水化处理[J].水处理技术,1995,21(1):26–30.
    [139]Clochard M C, Berthelot T, Baudin C, et al. Ion Track Grafting: a Way ofProducing Low-cost and Highly Proton Conductive Membranes for Fuel CellApplications[J]. Journal Of Power Sources,2010,195(1):223–231.
    [140]Wang P, Tan K L, Kang E T, et a l. Plasma-Induced Immobilization ofPoly(Ethylene Glycol) onto Poly(Vinylidene Fluoride) Microporous Membrane[J].Journal of Membrane Science,2002,195(1):103–114.
    [141]Smolders C A, Reuvers A J, Boom R M, et al. Microstructures in Phase-InversionMembranes.1. Formation of Macrovoids[J]. Journal of Membrane Science,1992,73(2-3):259–275.
    [142]Vandewitte P, Dijkstra P J, Vandenberg J W A, et al. Phase Separation Processes inPolymer Solutions in Relation to Membrane Formation[J]. Journal of MembraneScience,1996,117(1-2):1–31.
    [143]王珊.改性PVDF载钯/铁催化还原剂制备及其对氯乙酸脱氯研究[M].哈尔滨工业大学硕士学位论文,2010.
    [144]Kato K, Uchida E, Kang E-T, et al. Polymer Surface with Graft Chains[J].Progress in Polymer Science,2003,28(2):209–259.
    [145]王向宇.纳米钯/铁双金属体系对氯代有机物催化还原脱氯研究[D]. Harbin:哈尔滨工业大学博士学位论文,2009.
    [146]Layek R K, Samanta S, Chatterjee D P, et al. Physical and Mechanical Propertiesof Poly(Methyl Methacrylate)-Functionalized Graphene/Poly(Vinylidine Fluoride)Nanocomposites: Piezoelectric Beta Polymorph Formation[J]. Polymer,2010,51(24):5846–5856.
    [147]Xia Z, Liu H-L, Wang S, Et Al. Dechlorination of MCAA with Zero-valent IronSupported by PVDF-TiO2Film[J]. Harbin Gongye Daxue Xuebao/Journal ofHarbin Institute of Technology,2012,44(Suppl.2):145–148.
    [148]Kim H S, Kim T, Ahn J Y, et al. Aging Characteristics and Reactivity of TwoTypes of Nanoscale Zero-valent Iron Particles (Fe-Bh And Fe-H2) in NitrateReduction[J]. Chemical Engineering Journal,2012,197:16–23.
    [149]Wang X, Chen C, Liu H, et al. Preparation and Characterization of PAA/PvdfMembrane-Immobilized Pd/Fe Nanoparticles for Dechlorination of TrichloroaceticAcid[J]. Water Research,2008,42(18):4656–4664.
    [150]Matheson L J, Goldberg W C, Bostick W D, et al. Chapter12-Analysis ofUranium-Contaminated Zero Valent Iron Media Sampled from PermeableReactive Barriers Installed at U.S. Department of Energy Sites in Oak Ridge,Tennessee, and Durango, Colorado[G]//David L. Naftz, Stan J. Morrison,Christopher C. Fuller and James A. Davisa2-David L. Naftz S J M, Et Al.Handbook Of Groundwater Remediation Using Permeable Reactive Barriers. SanDiego: Academic Press,2003:343–367.
    [151]Ordo ez M J C, Balkus Jr. K J, Ferraris J P, et al. Molecular Sieving Realized withZif-8/Matrimid Mixed-Matrix Membranes[J]. Journal of Membrane Science,2010,361(1–2):28–37.
    [152]Lin C J, Liou Y H, Lo S L. Supported Pd/Sn Bimetallic Nanoparticles forReductive Dechlorination of Aqueous Trichloroethylene[J]. Chemosphere,2009,74(2):314–319.