氟喹诺酮类抗菌药物不良反应的流行病学及中枢神经毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟喹诺酮类 (fluoroquinolones, FQs) 药物临床上治疗各种感染性疾病具有良好的疗效,但随着其广泛应用,不良反应(adverse drug reaction, ADR)报告日渐增多。尤其引起人们关注的是近年来因连续发生严重ADR从市场撤除、停止申报注册和限制使用的FQs,如替马沙星、曲伐沙星、格帕沙星和克林沙星。因此,为指导临床合理选择该类药物和新品种的开发,亟待对FQs进行安全性评价。
    本研究通过对FQs的ADR进行医院内集中监测,确定临床常用FQs品种在我国人群中的ADR发生率及风险因素(着重观察中枢神经系统反应);研究FQs在清醒大鼠的神经毒性和毒代动力学;利用分子生物学和膜片钳技术探讨FQs 中枢神经毒性机制。主要结果如下:
    
    1. 通过多中心的医院内集中监测对临床常用的FQs抗菌药物进行安全性评价。监测期(2001年5月~2002年6月)有2003例住院患者入选,其中262人发生ADR 279次,发生率为13.93 %。82次为中、重度ADR,222次属A型不良反应。按卫生部ADR监测中心颁发的标准进行因果关系评价,肯定的ADR有22次,占24.01 %。以左氧氟沙星、环丙沙星和氟罗沙星最为常用,ADR发生率分别为9.96 % (110/1104),13.94 % (74/531) 和22.45 % (66/294)。累及胃肠道及中枢神经系统的ADR比例较高,分别占38.71 % (108/2003)和28.67 % (80/2003);其次为皮肤反应, 占20.43 % (57/2003);不同品种ADR的发生有明显差异,环丙沙星以皮肤反应最多见 (P<0.05),氟罗沙星、左氧氟沙星以胃肠道反应较多见 (P<0.01),而6CNS反应明显多见于氟罗沙星 (P<0.01)。ADR的发生与年龄、性别、用药种数、原发疾病的严重程度、既往过敏史及肾功能有关。这些风险因素对临床上预测FQs潜在毒性具有重要作用。
    
    2. 研究诺氟沙星在清醒大鼠的神经毒性和毒代动力学。将大鼠随机分为4组,
    
    每组6~10只,分别i.v. NS,诺氟沙星50,100 和200 mg·kg-1。连续记录自由活动大鼠的脑电图(EEG),并同步用微生物法测定血清药物浓度, 检测菌为大肠杆菌441102。结果显示:(1) 诺氟沙星各组大鼠EEG均出现痫样放电,并伴有局部抽搐和全身强直痉挛发作等行为学改变,脑电功率谱分析主要表现为脑电相对总功率增加 (P < 0.05),呈剂量依赖性。 (2) 诺氟沙星的药时曲线符合二室模型,CL,Vc 和 T1/2β 与给药剂量无关,Cmax 和AUC0→∞呈剂量依赖性。 (3)以脑电相对总功率的增加为效应的定量指标,与剂量,Cmax 和AUC0→∞进行非线性拟合呈Sigmoid-Emax模型 (R2分别为0.92, 0.94, 0.95 )。 提示AUC0→∞和脑电相对总功率的变化可作为FQs中枢毒性效应判定和预测的客观指标。
    
    3. 研究诺氟沙星与芬布芬(fenbufen)的活性代谢物对苯丙氨基苯乙酸(BPAA)合用诱发癫痫样发作与IL-1β、NO的关系。诺氟沙星 (25 mg/kg, i.p.) 与BPAA(100 mg/kg, i.g.)合用可诱发大鼠癫痫样发作。连续记录自由活动大鼠的EEG分析痫样放电,用Racine's标准观察行为学改变,RT-PCR测定给药后大鼠额前区、海马不同时间IL-1β、iNOS mRNA的表达,免疫组化法观察IL-1β蛋白的表达。结果:诺氟沙星合用BPAA可诱导大鼠额前区、海马 IL-1β mRNA快速、暂时性上调。给药后30 min即可在额叶皮层、海马测到IL-1β mRNA 高表达,6 h后基本恢复正常。IL-1β免疫反应阳性细胞染色变浓, 密集程度亦增加。iNOS mRNA 在额叶皮层和海马的表达仅在给药后30 min明显增高(P<0.05),而在其他时间点虽有表达增加,但与对照组相比无显著差异(P>0.05)。生理盐水对照组、诺氟沙星或BPAA单用组不诱发大鼠痫样发作及IL-1β表达、iNOS mRNA表达。结果提示:IL-1β、NO可能参与诺氟沙星合用BPAA所致的痫样发作。
    
    4. 研究FQs抗菌药物(司帕沙星、氟罗沙星、氧氟沙星和左氧氟沙星)对大鼠海马锥体细胞电压门控钾通道的作用。应用全细胞式膜片钳技术在急性打散的海马锥体细胞上分离到电压门控钾电流,主要包括快速失活的IA电流和失活比较缓慢的延迟整流钾电流IK。结果显示:司帕沙星、氟罗沙星、氧氟沙星和左氧氟沙星对电压门控通道IK均有迅速可逆的阻断作用,IC50分别为6.44×10-4 M, 7.09×10-3 M, 8.42×10-3 M和 1.10×10-2 M。司帕沙星、氟罗沙星对电压门控通道IA也有迅速可逆的阻断作用,IC50分别为2.86×10-3 M,4.38×10-3 M,而氧氟沙星、左氧氟沙星在1 mM对IA无明显阻断作用。司帕沙星对IK和IA的抑制具有电压依赖性 (-20 mV~60 mV)。结果表明,FQs抗菌药物抑制海马锥体细胞的两种电压门控性钾通道,可能与其中枢毒性有关。
    
    
Fluoroquinolones (FQs) have been shown to be very effective for the treatment of various bacterial infections. However, with FQs widely used, more and more adverse drug reactions (ADRs) have been reported. Several new FQs have been withdrawn from the market in recent years because of rare or exceptional but life-threatening ADR (e.g. temafloxacin, trovafloxacin, grepafloxacin and clinafloxacin). Thus, it is necessary to evaluate fluoroquinolone safety for the guideline of clinical rational use and the development of new candidates.
    The present studies firstly evaluated the safety in everyday clinical usage of fluoroquinolones by hospital intensive monitoring and determining incidence rates and risk factors of ADR. Secondly, the neurotoxicity and toxicokinetics of norfloxacin in freely moving rats were studied. Finally, the underlying mechanisms of neurotoxicity were investigated using molecular biological techniques and patch-clamp electrophysiological techniques. The results are summarized as follows:
    
    1. The safety in everyday clinical usage of fluoroquinolones in P. R. China was evaluated by multicentre hospital intensive monitoring. The main outcome measures were patient background factors, including age, sex, underlying disease, complications, history, etc.; the indication for prescribing the drug being monitored; the start and stop dates of treatment and the events recorded during and after treatment. 2003 hospitalized patients who took fluoroquinolones were monitored between May 2001 and June 2002. There were 279 ADRs identified in 262 patients. The overall event rate is 13.93% (279/2003). Eighty-two ADRs were characterized as moderate or severe in degree, and 222 ADR were classified as type A reactions. Causality assessment (according to standardized algorithm of ADR Monitoring Centre, Ministry of Public Health, China) revealed that cerain causality was established in 22 (24.01%) of total ADR. The most
    
    commonly used FQs were levofloxacin, ciprofloxacin and fleroxacin. The ADR rates of levofloxacin, ciprofloxacin and fleroxacin were 9.96% (110/1104), 13.94% (74/531) and 22.45% (66/294), respectively. Gastrointestinal, CNS and skin manifestations accounted for 38.71% (108/2003), 28.67% (80/2003) and 20.43%(57/2003) of the ADR, respectively. We found some significant differences in the safety profiles of individual FQs: ciprofloxacin was more frequently associated with skin reactions (P<0.05), fleroxacin and levofloxacin with gastrointestinal reactions (P<0.01), and fleroxacin with CNS reactions (P<0.01). Age, sex, number of concomitant drugs, allergic history and renal function were closely related to ADR. The aforementioned risk factors may play an important role for clinician to predict the potential risk of FQs.
    
    2. The neurotoxicity and toxicokinetics of norfloxacin were studied in freely moving rats . Rats were assigned randomly to four treatment groups that received a single iv dose of 50, 100, 200 mg/kg of norfloxacin and 0.9 % saline, respectively. Electroencephalogram (EEG) was continuously recorded with a computerized system in freely moving rats. Venous blood samples were collected for determination of the norfloxacin concentration using microbioassay method with Escherichia coli 441102 as the test strain. Toxicokinetic parameters were determined from serum concentration-time data with the 3p97 program. Result: (1) The epileptiform discharges appeared in all norfloxacin groups with different latent periods, accompanied with limb twitching and clonic-tonic seizures. The relative total power of the EEG increased. (2) Drug serum concentration-time curves of different doses conformed to two compartment model. The values of clearance, volume of distribution, and terminal half-life were dose-independent, while maximum serum concentrations (Cmax) and the areas under the concentration-time curve(AUC0→∞) of norfloxacin increased with dosage. (3) The increase in relative total power of the EEG was chosen as quantitative measurement of CNS stimulant effect of norfloxacin. Th
引文
1 Acarin, L., Gonzalez, B., Castellano, B., Neuronal, astroglial and microglial cytokine expression after and excitotoxic lesion in the immature rat brain. Eur. J. Neurosci, 2000,12(10):3505-3520
    2 Adamantidis , M.M, Dumotier, B.M., Caron, J.F.,Bordet, R., Sparfloxacin but not levofloxacin or ofloxacin prolongs cardiac repolarization in rabbit Purkinje fibers. Fundam Clin Pharmacol 1998, 12:70-76
    3 Akahane, K., Sekiguchi, M., Une, T., Osada, Y., Structure-epileptogenicity relationship of quinolones with special reference to their interaction with γ-aminobutyric acid receptor sites. Antimicrob. Agents Chemother 1989, 33:1704-1708
    4 Akahane, K., Kimura, Y., Tsutomi, Y., Hayakawa, I., Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits GABA receptor sites. Antimicrob Agents Chemother 1994a, 38:2323-2329
    5 Akahane, K., Tsutomi, Y., Kimura, Y., Kitano, Y., Levofloxacin, an optical isomer of ofloxacin, has attennated epileptogenic activity in mice and inhibitory potency in GABA receptor binding. Chemotherapy 1994b, 40:412-417
    6 Akaike, N., Shirasaki, T., Yakushiji, T., Quinolones and fenbufen interact with GABAA receptor in dissociated hippocampal cells of rat. J Neurophysiol 1991, 66: 497-504
    7 Anastasio, G.D., Menscer, D., Little, J.M., Norfloxacin and seizures. Ann Intren Med 1988; 109: 169-70
    8 Akassoglou, K., Probert, L., Kontogeorgos, G., Kollias, G., Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 1997, 158:438-445
    9 Ball, P., Future of the quinolones. Semin Respir Infect 2001, 16:215-224
    10 Ball, P., Tillotson, G., Tolerability of fluroroquinone antibiotics: past, present and future. Drug Safety 1995,13:343-358
    11 Bartfai, T., Schultzberg, M., Cytokines in neuronal cell types. Neurochem Int 1993, 22:435-444
    12 Batty, K.T., Davis, T.M., Ilett, K.F., Dusci, L.J., Langton, S.R., The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol 1995, 39:305-11
    13 Barman Balfour, J.A., Lamb, H.M., Moxifloxacin. Drugs, 2000, 59:115
    
    
    14 Bertino, J., Fish, D., The safety profile of the fluoroquinolones. Clin Ther 2000; 22: 798-817
    15 Bischoff, U., Schmidt, C., Netzer, R., Pongs, O., Effects of fluoroquinolones on HERG currents. Eur J Pharmacol 2000, 406:341-343
    16 Bonmann, E., Suschek, C., Spranger, M., Kolb-Bachofen, V., The dominant role of exogenous or endogenous interleukin-1 beta on expression and activity of inducible nitric oxide synthase in rat microvascular brain endothelial cells. Neuroscience Letters 1997, 230:109-112
    17 Bowie, W.R., Willetts, V., Jewesson, P.J., Adverse reactions in a dose-ranging study with a new long-acting fluoroquinolone, fleroxacin. Antimicrob Agents Chemother 1989; 33:1778-82
    18 Bryskier, A, Chantot, JF., Classification and srtucture-acitivity relationships of fluoroquinolones. Drugs 1995;49(suppl 2):16-28
    19 Christ, W., Central nervous system toxicity of quinolones: human and animal findings. J Antimicrob Chemother 1990; 26(Suppl B):219-25
    20 Davey, P. G., Charter, M., Kelly, S., Varma, T. R. K., Jacobson, I., Freeman, A., Precious, E., Lambert, J., Ciprofloxacin and sparfloxacin penetration into human brain tissue and their activity as antagonists of GABAA receptor of rat vague nerve. Antimicrob Agents Chemother 1994, 38:1356-1362
    21 De Sarro, A., Cecchetti, V., Fravolini, V., Naccari, F., Tabarrini, O., De Sarro, G., Effects of novel 6-desfluoroquinolones and classic quinolones on pentylenetetrazole-induced seizures in mice. Antimicrob Agents Chemother 1999, 43:1729-36
    22 De Sarro, A., De Sarro, G., Adverse reactions to fluoroquinolones. an overview on mechanistic aspects. Curr Med Chem 2001, 8:371-84
    23 Delon, A., Bouquet, S., Huguet, F., Brunet, V., Courtois, P., Couet, W., Pharmacokinetic-pharmacodynamic contributions to the convulsant activity of fluoroquinolones in rats. Antimicrob Agents Chemother 1999, 43:1511-1515
    24 Domagala, J.M., Structure-activity and structure-side effect relationships for the quinolone antibacterials. J Antimicrob Chemother 1994; 33:685-706
    El-Mahmoudy, A.; Matsuyama, H.; Borgan, M.A.; Shimizu, Y.; El-Sayed, M.G.; Minamoto, N.; Takewaki, T. Thymoquinone suppresses expression of inducible nitric
    
    25 oxide synthase in rat macrophages. International Immunopharmacology, 2002, 2(11):1603-1611
    26 Eriksson, C., Winblad, B., Schltzberg, M., Kainic acid induced expression of interleukin-1 receptor antagonist mRNA in the rat brain. Mol Brain Res 1998, 58:195-208
    27 Fish, D.N., Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy 2001, 21(Suppl.10):253S-272S
    28 Fleisch, F., Hartmann, K., Kuhn, M., Fluoroquinolone-induced tendinopathy:also occurring with levofloxacin. Infection 2000, 28:256-257
    29 Grasela, T.J., Dreis, M.W., An evaluation of the quinolone-theophylline interaction using the Food and Drug Administration spontaneous reporting system. Arch Intern Med 1992 Mar;152(3):617-21
    30 顾瑞金. 药物变态反应的流行病学. 见:顾瑞金, 主编. 药物变态反应. 第1版.北京:科学出版社, 2001.104~105
    31 Halliwell, R.F., Davey, P.G., Lambert, J.J., The effects of quinolones and NSAIDs upon GABA-evoked currents recorded from rat dorsal root ganglion neurons. J Antimicrob Chemother. 1991, 27:209-218
    32 Halliwell, R.F., Davey, P.G., Lambert, J.J., Antagonism of GABAA receptors by 4-quinolones. J. Antimicrob. Chemother 1993, 31:457-462
    33 Halliwell, R.F., Davey, P.G., Lambert, J.J., A patch clamp study of the effects of ciprofloxacin and biphenylacetic acid on rat hippocampal neurone GABAA and ionotropic giutamate receptors. Neuropharmacology 1995, 34:1615-1625
    34 Halliwell, R.F., Su, JP., Demuro, A., Martinez-Torres, A., Miledi, R. Characterization of the interaction between a novel convulsant agent, norbiphen, and GABAA and other ligand-gated ion channels. Neuropharmacology, 2002, 43:778-787
    35 Herx, L.M., Rivest, S., Yong, V.W., Central nervous system initiated inflammation and neuotrophism in trauma: IL-1beta is required for the production of ciliary neurotrophic factor. J Immunol 2000,165:2232-2239
    36 Hewett, S.J., Csernansky, C.A., Choi, D.W., Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 1994, 13:487-494
    37 Hopkins, S.J., Rothwell, N.J., Cytokines in the nervous system 1: expression and recognition. Trends in Neurosciences, 1995, 18:83-88
    
    
    38 Imanishi, T., Akahane, K., Akaike, N., Evidence that a hybrid molecule of norfloxacin and biphenylacetic acid is a potent antagonist at the GABAA receptor. Neuropharmacology 1996, 35:1271-1277
    39 Ito, Y., Miyasaka, T., Fukuda, H., Akahane, K., Kimura, Y., Inhibition of GABAA receptor chloride channel by quinolones and norfloxacin-biphenylacetic acid hybrid compounds. Neuropharmacology, 1996, 35, 1263-1269
    40 Jankowsky, J.L., Patterson, P.H., The role of cytokines and growth factors in seizures and their sequelae. Progress in Neurobiology, 2001, 63:125-149
    41 Kang, J., Wang, L., Chen, X.L., Triggle, D.J., Rampe, D., Interactions of a series of fluoroquinolones antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 2001, 59:122-126
    42 Kawakami, J., Yamamoto, K., Asanuma, A., Yanagisawa, K., Sawada, Y., Iga, T., Inhibitory effect of new quinolones on GABAA receptor-mediated response and its potentiation with felbinac in Xenopus oocytes injected with mouse-brain mRNA: correlation with convulsive potency in vivo. Toxicol Appl Pharmacol 1991, 145: 246-254
    43 Kawakami, J., Ohashi, K., Yamamoto, K., Sawada, Y., Iga, T., Effect of acute renal failure on neurotoxicity of enoxacin in rats. Biol Pharm Bull, 1997, 20: 931-934
    44 Klee, R., Ficker, E., Heinemann, U. Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. J Neurophysiol 1995, 74:1982-1995
    45 Kiss, J.P., Vizi, E.S., Nitric oxide: a novel link between synaptic and nonsynaptic transmission, Trends Neurosci 2001, 24:211-215
    46 Leeuwen, R.V., De Vries, R., Dzoljic, M.R., 7-Nitro indazole, an inhibitor of neuronal nitric oxide synthase, attenuates pilocarpine-induced seizures. Eur J Pharmacol 1995, 287:211-213
    47 Li, A.J., Katafuchi, T., Oda, S., Hori, T., Oomura, Y., Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Res 1997, 748:30-38
    48 Lipsky, B.A., Baker, C.A., Fluoroquinolones toxicity profiles: a review focusing on newer agents. Clin Infect Dis 1999; 28: 352-64
    49 李世荫, 周劲松. 药物变态反应好发因素的临床研究—病人因素. 药物流行病学, 1997, 6:75-78
    
    
    50 Lode, H., Evidence of different profiles of side effects and drug-drug interactions among the quinolones--the pharmacokinetic standpoint. Chemotherapy 2001, 47 (Suppl 3):24-31
    51 Lode, H., Potential interactions of the extended-spectrum fluoroquinolones with the CNS. Drug Safety 1999, 21:123-135
    52 Mandema, J.W., Tukker, E., Danhof, M., Pharmacokinetic-pharmacodynamic modeling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br J Pharmacol 1991, 102: 663-8
    53 Marchand, S., Pariat, C., Bouquet, S., Courtois, P., Couet, W., Pharmacokinetic-pharmacodynamic modelling of the convulsant interaction between norfloxacin and biphenyl acetic acid in rats. Br J Pharmacol 2000, 129:1609-16
    54 Minami, M., Kuraishi, Y., Yamaguchi, T., Nakai, S., Hirai, Y., Satoh, M., Immobilization stress induces interleukin-1β mRNA in the rat hypothalamus. Neurosci Lett 1991, 123:254-6
    55 Morita, K., Kuwada, A., Fujihara, H., Morita, Y., Sei, H. Influence of sleep disturbance on steroid 5α-reductase mRNA levels in rat brain. Neuroscience, 2002, 115:341-348
    56 Murashima, Y.L., Yoschi, M., Suzuki, J., Role of nitric oxide in the epileptogenesis of EL mice, Epilepsia, 2000, 41(Suppl.6):S195-S199
    57 Nagai, A., Miyazaki, M., Morita, T., Furubo, S., Kizawa, K., Fukumoto, H., Sanzen, T., Hayakawa, H., Kawamura, Y., Comparative articular toxicity of garenoxacin, a novel quinolone antimicrobial agent, in juvenile beagle dogs. J Toxicol Sci 2002, 27:219-28
    58 Nakamura, T., Yamada, K., Hasegawa, T., Nabeshima, T., Possible involvement of nitric oxide in quinolinic acid-induced convulsion in mice. Pharmacol Biochem Behav, 1995, 51:309-312
    59 Nguyen, K.T., Deak, T., Owens, S.W., Kohno, T., Fleshner, M., Watkins, L.R., Maier, S.F., Exposure to acute stress induces brain interleukin-1β protein in the rat. J Neurosci 1998; 18:2239-46
    60 Nightingale, C.H., Murakawa, T., Ambrose, P.G., Antimicrobial pharmacodynamics in theory and clinical practise. 2001, Marcel Dekker, Inc, New York, NY, pp.155-173
    61 Nishiyori, A., Minami, M., Takami, S., Satoh, M., Type 2 interleukin-1 receptor mRNA is induced by kainic acid in the rat brain. Mol Brain Res 1997, 50:237-245
    
    
    62 Nistico, G., de Sarro, G.B., Behavioral and electrocortical spectrum power effects after microinfusion of lymphokines in several areas of the rat brain. Ann. NY Acad. 1991, 621:119-134
    63 Numann, R.E., Wadman, W.J., Wong, PKS., Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 1987, 393:331-353
    64 Paton, J.H., Reeves, D.S., Adverse reactions to the fluoroquinolones. Adverse Drug Reaction Bulletin 1992, 153:575-578
    65 Pearson, V.L., Rothwell, N.J., Toulmond, S. Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocyte:correlation with the progression of cell death. Glia 1999, 25:311-323
    66 钱元恕,陆杰,范维正,等. 诺氟沙星的致痫作用及对大鼠脑电功率谱、频率分配的影响. 中国抗生素杂志, 1996a, 21:139-142
    67 钱元恕,陆杰,黄仲荪, 等. 诺氟沙星侧脑室点燃大鼠癫痫及脑超微结构变化. 中国药理学报, 1996b, 17:373-375
    68 钱元恕,陆杰,范维正,等. 诺氟沙星对不同周龄大鼠的致痫作用.中国新药与临床杂志. 1998, 17:72-74
    69 曲静伟, 郎岳明, 李应群, 等. 诺氟沙星注射剂的药代动力学研究. 现代应用药学. 1994, 11:19-20
    70 Redman, B.G., Abubakr, Y., Chou, T.H., Esper, P., Flaherty, L.E., Phase II trial of recombinant interleukin-1β in patients with metastatic renal cell carcinima. J. Immunol. 1994, 16:211-215
    71 Reigner, B.G., Williams, P.E., Patel, I.H., Steimer, J.L., Peck, C., van Brummelen, P., An evaluation of the integration of pharmacokinetic and pharmacodynamic principles in clinical drug development. Experience within Hoffmann La Roche. Clin Pharmacokinet 1997; 33:142-52
    72 Rothwell, N.J., Functions and mechanism of interleukin-1 in the brain. Trends Pharmacol Sci 1991, 12:430-436
    73 Rothwell, N.J., Hopkins, S.J., Cytokines and the nervous system:actions and mechanisms of actions. Trends in Neurosciences, 1995, 18:130-136
    74 Rouveix, B. Antibiotic safety assessment. Int J Antimicrob Agents, 2003; 21(3):215-21
    75 Rubinstein, E., History of quinolones and their side effects. Chemotherapy 2001;47( Suppl 3):3-8
    
    
    76 Rudy, B. Diversity and ubiquity of channels. Neuroscience 1988, 25:729-749
    77 Sanders, WE Jr. Efficacy , safety,and potential economic benefits of oral ciprofloxacin in the treatment of infections. Rev Infect Dis 1988, 10:528-43
    78 Savion, S., Blank, M., Shepshelovich, J., Fishman, P., Shoenfeld, Y., Toder, V., Ciprofloxacin affects pregnancy loss in CBA/JxDBA/2J mice possibly via elevation of interleukin-3 and granulocyte macrophage-colony stimulating factor production. Am J Reprod Immunol 2000, 44:293-8
    79 Schaeffer, A.J., The expanding role of fluoroquinolones. Dis. Mon. 2003, 49:129-47
    80 Scheld, W.M., Quinolone therapy for infections of the central nervous system. Rev Infect Dis 1989, 11(Suppl5) : S1194-202
    81 Schmuck, G., Schurmann, A., Schlüter, G., Determination of the excitatory potencies of quinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother 1998, 42:1831-6
    82 Schobitz, B., De Kloet, E.R., Holsboer, F., Gene expression and function of interleukin 6 and tumor necrosis factor in the brain. Prog Neurobiol 1994, 44:397-342
    83 Segle, M., Rogawski, M. A., Barker, J. L., A transient potassium conductances regulates the excitability of cultured hippocampal and spinal neurons. J Neurosci 1984, 4:604-609
    84 Segev, S., Rehavi, M., Rubinstein, E., Quinolones, theophylline, and diclofenac interactions with the gamma-aminobutyric acid receptor. Antimicrob Agents Chemother 1988, 32:1624-1626
    85 Sharma, AK., Khosla, R., Kela, AK, Mehta, VL., Fluoroquinolones: antimicrobial agents of the 90's. Indian J Pharmacol 1994; 26:249-61
    86 Shirasaki, T., Harata, N., Nakane, T., Akaike, N., Interactions of various non-steroidal anti-inflammatories and quinolone antimicrobials on GABA response in rat dissociated hippocampal pyramidal neurons. Brain Res 1991, 562:329-331
    87 Simpson, K.J., Brodie, M.J., Convulsions related to enoxacin[letter]. Lancet 1985; 2 : 161
    Smolders, I., Gousseau, C., Marchand, S., Couet, W., Ebinger, G., Michotte, Y., Convulsant and subconvulsant doses of norfloxacin in the presence and absence of biphenylacetic acid alter extracellular hippocampal glutamate but not
    
    88 gamma-aminobutyric acid levels in conscious rats. Antimicrobial Agents and Chemotherapy 2002, 46:471-477
    89 Stahlmann, R., Lode, H., Toxicity of quinolones. Drugs 1999, 58(Suppl. 2):37-42
    90 Stahlmann, R., Clinical toxicological aspects of fluoroquinolones. Toxicol Letters 2002, 127:269-77
    91 Storm, J.F., Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 1988, 336:379-381
    92 Storm, J.F., Patassium currents in hippocampal pyramidal cells. Progress in Brain research 1990, 83:161-187
    93 Storm, J.F., Functional diversity of K+ currents in hippocampal pyramidal neurons. Semin Neurosci 1993 5:79-92
    94 Strom, B.L., What is pharmacoepidemiology? In:Strom BL, editor. Pharmacoepidemiology, 3 rd ed. Chichester: John Wiley, 2000:3-15
    95 Sugiyama, Y., Ito, K., Tsuda, M., Horii, I., Future prospects for toxicokinetics: its ability to predict drug adverse events in humans. J Toxicol Sci 1996;21:511-6
    96 Suh, B., Lorber, B., Quinolones. Med Clin North Am 1995; 79:869-94
    97 孙定人.药物相互作用与不良反应.见:孙定人,主编.药物不良反应.第2版.北京:人民卫生出版社,1996.22
    98 Svensson, I., Waara, L., Johansson, L., Bucht, A., Cassel, G., Soman-induced interleukin-1β mRNA and protein in rat brain. Neurotoxicology, 2001, 22:355-362
    99 Takayama, S., Hirohashi, M., Kato, M., Shimada, H., Toxicity of quinolone antimicrobial agents. J Toxicol Environ Health 1995; 45:1-45
    100 Thiel, R., Metzer, S., Gericke, C., Rahm, U., Stahlmann, R., Effects of fluoroquinolones on the locomotor activity in rats. Arch Toxicol 2001, 75:36-41
    101 Tsuji, A., Sato, H., Kume, Y., Tamai, I., Okezaki, E., Nagata, O., et al. Inhibitory effects of quinolone antibacterial agents on aminobutyric acid binding to receptors sites in rat brain membrances. Antimicrob Agents Chemother 1988, 32:190-194
    102 Unseld, E., Ziegler, G., Gemeinhardt, A., Janssen, U., Klotz, U., Possible interaction of fluoroquinolones with the benzodiazepine-GABAA-receptor complex. Br J Clin Pharmacol 1990, 30:63-70
    103 van der Linden, P.D., van Puijenbroek, E.P., Feenstra, J., et al. Tendon disorders attributed to fluoroquinolones: a study on 42 spontaneous reports in the period 1988 to 1998. Arthritis Care Res 2001, 45: 235-239
    
    
    104 Vezzani, A., Moneta, D., Richichi, C., Aliprandi, M., Burrows, S.J., Ravizza, T., Perego, C., De Simoni, M.G. Functional role of inflammatory cytokines and anti-inflammatory molecules in seizures and epileptogenesis. Epilepsia, 2002, 43(Suppl 5):30-35
    105 Wang, S., Cheng, Q., Malik, S., Yang, J., Interleukin-1beta inhibits gamma-aminobutyric acid type A(GABAA) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther 2000, 292:497-504
    106 Wu, V.W., Nishiyama, N., Schwartz, J.P. Aculture model of reactive astrocytes:increased nerve growth factors synthesis and reexpression of cytokine responsiveness. J Neurochem1998, 71:749-756
    107 Ye, Z., Sontheimer, H., Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. NeuroReport 1996, 7:2181-2185
    108 Yuhas, Y., Shulman, L., Weizman, A., Kaminsky, E., Vanichkin, A., Ashkenazi, S., Involvement of tumor necrosis factor alpha and interleukin-1beta in enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae. Infec Immun 1999, 67:1455-60
    109 张莉蓉, 乔海灵, 王海学. 依诺沙星胶囊在健康人体的药物动力学及相对生物利用度. 中国临床药学杂志, 2002; 11(2): 89-91
    110 张莉蓉, 程能能, 陈斌艳, 王永铭. 高效液相色谱法与微生物法测定人血浆中氧氟沙星浓度的比较. 中国新药与临床杂志, 2003; 22(4):201-204