Blumlein型纳秒脉冲发生器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲功率技术不仅在国防军事和科技研究中起着非常重要的作用,而且在工业应用、生物医学和环境保护等民用领域中展现出了强大的应用潜力。但迄今为止还没有一台比较适合于商用的纳秒脉冲发生器,因此研制出高性能的纳秒脉冲发生器具有重要的科学意义和应用价值。本文结合脉冲功率技术和火花开关技术,研制出了一套基于Blumlein传输线的纳秒脉冲发生装置。
     分别从波过程和等值电路的角度分析了利用Blumlein传输线产生高压脉冲的工作原理,并用电路仿真软件Pspice的仿真结果验证了理论分析,同时还仿真研究了杂散参数对Blumlein型脉冲发生器输出波形的影响。结果表明,放电回路的杂散电感、负载两端间杂散电容和负载前端对地杂散电容使脉冲前沿和后沿变缓,且上升时间和下降时间近似与杂散参数成正比;放电回路电阻使脉冲后沿出现严重的拖尾现象;输出回路杂散电感使脉冲前沿和后沿产生过冲;负载后端对地杂散电容也使脉冲前沿产生过冲,但后沿下降到1/2电压处发生严重畸变。
     研究了场畸变火花开关的气压、间距、电场类型和电极结构,通过合理地设计绝缘结构,减小了开关尺寸;应用电场仿真软件Femlab对开关间隙的电场分布进行仿真,验证了开关电气设计的合理性,从理论上计算了开关的性能参数;还对开关的机械结构进行了设计和加工。开关试验研究了击穿时延与抖动和欠压比、触发电压之间的关系,以及开关的触发范围和触发阈值,结果表明开关工作在气压大于2atm,欠压比大于80%,触发电压大于15kV的状态下,开关击穿时延小于100ns,抖动小于10ns,触发范围大于55%,触发阈值小于10kV,满足设计要求。
     对Blumlein型纳秒脉冲发生器的各部分进行了具体设计,完成了样机的装配。对元器件进行了选择和参数计算,设计出了用于测量开关触发脉冲的电阻分压器以及分压器的标定脉冲源,并对分压器进行了阶跃响应实验。对Blumlein型纳秒脉冲发生器进行了实验室总体调试和输出波形的测量,结果表明该装置满足设计要求,为实际应用奠定了基础。
Pulse power technology not only plays more and more important role in military and high-tech research, but also exhibit good application potential in many fields,such as industry, biomedicine and environment protection and so on. But so far, there is no one commercial nanosecond pulse generator. Therefore, it has vital scientific significance and the application value to develop nanosecond pulse generator with high performance. This thesis developed a nanosecond pulse generator based on blumlein transmission line according to pulse power technology and the spark switch technology
     The principle that Blumlein transmission line generates high-voltage pulse was analyzed theoretically from the view of points of transmission of electromagnetic wave and its equivalent circuit. The circuit simulation result with software Pspice validates the theoretical analysis. The influence of stray parameters in Blumlein-type pulse generator on the output pulse was also simulated. The results have show that stray inductance in discharge loop, stray capacitance between the two terminals of load and the stray capacitance between the front end of load and the earth slow the rise rate of front edge and fall rate of back edge, and the rise time and fall time are approximately in direct proportion to the stray parameters. The stray resistance in discharge loop leads to fall step by step at the end of pulse. The stray inductance in output loop results in overshoots at the front and back edge. Although the stray capacitance between the back end of load and the earth can also cause overshoot at the rise edge of pulse, the back edge of pulse is distorted and the fall time increases greatly. The simulation provides reference for the development of pulse generator and improving the rise edge of pulse.
     The air pressure, gap distance, field type and electrode structure of field distortion spark switch were studied in detail. Reasonable insulation structure reduced the size of the switch. The field distribution in the gap was simulated with software Femlab, and the result validates the rationality of electrical design. The characteristic of the switch were calculated theoretically. The switch was design concretely in mechanical size and then machined. The experiments were carried out to study the influence of working voltage ratio and triggering voltage on breakdown time delay as well as its jitter. The triggering range and triggering threshold were also studied. The experimental results indicated that the time delay was less than 100ns and jitter less than 10ns when the air pressure less than 2atm, voltage ratio larger than 80% and triggering voltage larger than 15kV. Moreover, the triggering range was larger than 55% and triggering threshold less than 10kV. The experimental results indicated that the switch can meet the design demand.
     In the last part, the design of each part of the Blumlein-type nanosecond pulse generator and the prototypical assembly were completed. The components were selected and their parameters were calculated. A resistor divider for measuring triggering voltage and its corresponding pulse source for step response experiment of divider were designed. The Blumlein-type nanosecond pulse generator was debugged overall and the output waveform was measured in laboratory. The result shows the equipment can satisfy the design requirements, which indicates the equipment lays a foundation for practical application.
引文
[1] 刘锡三. 高功率脉冲技术. 北京:国防工业出版社, 2005
    [2] 王莹. 高功率脉冲电源. 北京:原子能出版社, 1991
    [3] 李正瀛. 脉冲功率技术. 北京:水利电力出版社, 1992
    [4] 韩旻. 脉冲功率技术基础(胶印). 北京:清华大学电气工程与应用电子技术系, 2005
    [5] 周璧华, 陈彬, 石立华. 电磁脉冲及其工程防护. 北京:国防工业出版社, 2003
    [6] 王莹, 肖峰, 姚文凯. 脉冲功率与电磁炮.全国高功率粒子束十年文集, 绵阳, 1995: 674-686
    [7] 黄莹, 赵佳. 电磁炮的基本原理及在军事上的应用. 现代物理知识,2004, (6): 38-40
    [8] 储德林, 江海燕, 张强华. 导弹克星——粒子束武器. 现代物理知识,2005, (2): 38-39
    [9] 米夏兹. 大功率毫微秒脉冲的产生. 北京:原子能出版社, 1975
    [10] 曾乃工. 强流脉冲电子束加速器用 Marx 发生器. 高电压技术, 1996, 22(2): 78-79
    [11] 张军, 中辉煌, 杨汉武. 高功率微波脉冲功率驱动源研究进展. 高电压技术, 2004, 30(6): 45-48
    [12] 李文卓, 赵万生, 王振龙, 等. 我国微小型电火花加工装置最新研究与进展. 电加工与模具, 2001(2): 5-9
    [13] 李洪涛, 吕玉岩, 邱春诚, 等. 电磁成型放电间隙实验研究. 电加工, 1997, (4): 24-27
    [14] 孙凤举, 曾正中, 邱毓昌. 一种用于油水井解堵的脉冲大电流源, 高电压技术, 1999, 25(2): 47- 49
    [15] 韩旻, 韩波, 王新新, 等. 脉冲大电流技术在疏通油井上的应用. 电工电能新技术, 1998, 17(1): 36-40
    [16] 孙学兵, 方胜, 陆守道. 高压脉冲电场杀菌技术研究进展. 食品科学, 2001, 22(8): 84-86
    [17] 葛松华. 高压脉冲电场技术在液体食品杀菌中的应用. 物理与工程, 2005, 15 (1): 42-44
    [18] Humberto V M, Olga M B, Bai Linqin, et al. Non-thermal food preservation: pulsed electric fields. Food Science & Technology, 1997, 8(2): 151-157.
    [19] Min S, Jin Z T, Zhang Q H. Commercial scale pulsed electric field processing of tomato juice. Journal of Agriculture and Food Chemistry, 2003, 51(4): 3338-3344
    [20] 陈亚珠, 肖登明, 周德新. 强脉冲技术应用于肾结石体外粉碎机. 高电压技术, 1997, 23(1): 34-36
    [21] James C. Weaver. Electroporation: a dramatic, nonthermal electric field phenomenon. Proceedings of the first world congress for electricity and magnetism in biology and medicine, Lake Buena Vista, Florida: Academic Press, 1992: 14-19
    [22] James C. Weaver. Electroporation of cells and tissues. IEEE Transaction on Plasma Science, 2000, 28(1): 24-33
    [23] Sukhendu B. Dev, Dietmar P. Rabussay and Georg Widera, Medical applications of electroporation. IEEE Transactions on Plasma Scienc, 2000, 28(1): 206-223.
    [24] Karl H. Schoenbach, Stephen J. Beebe and E. Stephen Buescher, Intracellular effect of ultrashort electrical pulses. Bioelectromagnetic, 2001, 22: 440-448.
    [25] Karl H. Schoenbach, Ravindra P. Joshi, et al. Ultrashort electrical pulses open a new gateway into biological cells. Proceedings of the IEEE, 2004, 92: 1122-1137.
    [26] Nianyong Chen, Karl H. Schoenbach, Juergen F. Kolb, et al. Leukemic cell intracellular responses to nanosecond electric fields. Biochemical and Biophysical Research Communications, 2004, 317: 421-427.
    [27] Stephen J. Beebe, P. M. Fox, L. J. Rec. et al. Nanosecond Pulsed Electric Field (nsPEF) Effects on Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition. IEEE Transactions on plasma science, 2002, 30(1): 286-292
    [28] Stephen J. Beebe, Paula Fox, Laura Rec. et al. Nanosecond pulsed electric field effects on human cells. Proceedings of 25th International Power Modulator Symposium, 2002: 652-656.
    [29] Schoenbach K. H., Sunao Katsuki, Stark Robert H. et al. Bioelectrics—New applications for pulsed power technology. IEEE Transactions on Plasma Science, 2000, 30(1): 293-300
    [30] P. Thomas Vernier, Yinghua Sun, Laura Marcu, Sarah Salemi, et al. Calcium bursts induced by nanosecond electric pulses. Biochemical and Biophysical Research Communications, 2003, 310: 286-295.
    [31] 姚陈果. 可控陡脉冲对恶性肿瘤细胞不可逆性电击穿的实验和机理研究[博士学位论文]. 重庆: 重庆大学, 2003.
    [32] 孙才新, 姚陈果, 熊兰, 等. 陡脉冲电场对恶性肿瘤细胞杀伤效应的研究. 生物物理学报, 2002, 18(4): 474-477
    [33] 姚陈果, 孙才新, 米彦, 等. 陡脉冲不可逆性电击穿恶性肿瘤细胞的研究. 高电压技术, 2003, 29(1): 45-47
    [34] 姚陈果, 孙才新, 米彦, 等. 陡脉冲对恶性肿瘤细胞不可逆性电击穿的实验研究. 中国生物医学工程学报, 2004, 23(1): 92-97
    [35] 刘长军,王保义,张弘,等. 低强度快速电磁脉冲导致细胞电穿孔的研究. 科学通报, 1999, 44(11): 1157-1161
    [36] 戚栋,李春荣,阎颖,等. 用高压脉冲电晕技术脱硫脱硝的研究进展. 高电压技术,2003, 29(2): 32-34
    [37] Young S M and In-Sik Nam. Positive pulsed corona discharge process foe simultaneous removal of SO2 and NOx from iron-ore sintering flue gas. IEEE Trans. Plasma Sci., 1999, 27(4): 1188-1196
    [38] Tetsuji O, Kei Y, Tadashi T. decomposition if dilute trichloroethylene by nonthermal plasma processing—gas flow rate, catalyst and ozone effect. IEEE Transaction on Industry Application, 2004, 40(2): 430-436
    [39] 王方铮, 李杰, 吴彦, 等. 高压脉冲放电等离子体溶液中苯酚的降解. 高电压技术,2007, 33(2): 124-127
    [40] 李坚, 李洁, 梁文俊, 等. 等离子体法去除甲醛的实验研究. 高电压技术, 2007, 33(2): 171-173
    [41] Alton Chaney and Raji Sundararajan. Simple MOSFET-based high-voltage nanosecond pulse circuit. IEEE Transactions on Plasma Science, 2004, 32(5): 1919-1924.
    [42] Ulrike Hahn, Matthias Herrmann, Frank Leipold, et al. Nanosecond, kilovolt pulse generators. Digest of Technical Papers, 2001, 2: 1575-1578
    [43] 贺元吉, 张亚洲, 李传胪. 一种高压ns级脉冲形成电路. 高电压技术, 2000, 26(4): 13-15
    [44] John Mankowski, Magne Kristiansen. A review of short pulse generator technology. IEEE Transactions on Plasma Science, 2000, 28(1): 102-108.
    [45] C. P. Hancock, A. R. Owens, K. O’ Grady. Simple voltage generator for producing well-defined nanosecond pulses of amplitudes in excess of 1kV. IEE Proc. Sci. Meas. Technol., 1997: 229-233
    [46] 罗承沐, 赵秀山, 高英. 一种紧凑的高压毫微秒脉冲发生器. 高电压技术. 1994, 20(2): 77-80
    [47] 张乔根, 邱毓昌, 冯允平. 亚纳秒前沿高压脉冲信号发生器. 电工电能新技术. 1996, 2: 1-5
    [48] 吕亮, 方亮, 刘蕾, 等. 小型纳秒级电压脉冲发生器的研制. 高电压技术. 2003, 29(3): 42-45
    [49] 范敏, 鲁敬平, 吴关女, 等. 驱动等离子体电极电光开关脉冲发生器研究. 强激光与粒子束, 1996, 8(1): 112-116
    [50] S. Katsuki, K. Moreira, F. Dobbs et al. Bacterial decontamination with nanosecond pulsed electric fields. Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop, July, 2002: 648-651
    [51] Matthew Behrend, Andras Kuthi, Xianyue Gu, et al. Pulse generators for pulsed electric field exposure of biological cells and tissues. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(5): 820-825.
    [52] Andras Kuthi, Tom Vernier, Xianyue Gu, et, al. Compact nanosecond pulse generator for cell electroperturbation experiments, Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. 30 June-3 July: 354-357
    [53] Xianyue Gu, Panduka Wijetunga, Andras Kuthi, et al. Nanosecond rise time minipulser for cell electroperturbation. Pulsed Power Conference, Digest of Technical Papers, 2003, (2): 943-945
    [54] Juergen F. Kolb, Susumu Kono and Karl H. Schoenbach, Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics, 2006, 27: 1-16.
    [55] Mohamed, M. Moselhy and Karl H. Schoenbach. Nanosecond pulse generators for microdischarge excimer lamps. 2003 Pulsed Power Conference, 2003, 2: 1317-1320
    [56] 马连英, 曾正中, 费国强, 等. 基于绝缘薄膜开关的快前沿高压方波发生器. 电工电能新技术, 2001(3): 38-40
    [57] 任先文, 涂国锋, 王保健, 等. 一种用于废气处理的 BPFN 型窄脉冲电源. 高电压技术, 2003, 29(11): 35-37
    [58] 任先文, 吴彦, 赵君科, 等. 脉冲电晕等离子体反应器能量注入效率研究. 高电压技术, 2004, 30(10): 56-58
    [59] 吴辉, 吴国强, 于俊华. Blumlein 快放电电路传输线电容和储能电容的研制. 激光技术, 2005, 29(6): 582-585
    [60] 廖敏夫, 邹积岩, 段雄英. 高性能真空触发开关技术的研究综述. 高压电器, 2006, 42(1): 51-54
    [61] 谢建民, 陈景亮, 邱毓昌. 伪火花放电开关的实验研究. 西安交通大学学报, 2002, 36(2): 1227-1231
    [62] 孙成民, 谢建民, 邱毓昌. 伪火花开关的设计与实验研究. 高电压技术, 2003, 39(5): 4-6
    [63] 徐国美. 电晕稳定开关性能的初步研究. 高电压技术, 2001, 27(1): 41-42
    [64] 曾正中. 实用脉冲功率技术引论. 西安:陕西科学技术出版社, 2003
    [65] 张仁豫, 陈昌渔, 王昌长. 高电压试验技术(第二版). 北京:清华大学出版社, 2002
    [66] 吴宗泽. 机械设计实用手册. 北京:化学工业出版社, 2003
    [67] 梁曦东, 陈昌渔, 周远翔. 高电压工程. 北京:清华大学出版社, 2003
    [68] 翁明, 王桂芹. 用火花电阻计算高压毫微秒脉冲放电参量. 真空电子技术, 1996(3): 23-26
    [69] 张乔根, 邱毓昌. 高压纳秒脉冲开关转换电路的分析与设计. 电工电能新技术, 1993(3): 11-16
    [70] 范丽思, 刘丽珍, 张希军, 等. 纳秒级电磁脉冲模拟器的研制. 军械工程学院学报, 2004, 16(6): 58-61
    [71] 冯慈璋. 电磁场(第二版). 北京:高等教育出版社, 1983
    [72] 邱关源. 电路(第四版). 北京:高等教育出版社, 1999