基于声表面波的轮胎压力监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮胎压力测量是保证汽车安全运行的一个重要因素之一,轮胎性能好坏直接影响到汽车的性能,保持正常的轮胎气压可以提高汽车行驶安全性、改善操纵性能;同时有利于延长轮胎使用寿命,降低汽车使用成本。但由于轮胎是在旋转的运动中,给测量带来了很大的挑战,既要保证测量的精确性和实时性,又要推测出它的变化趋势,为下一步的预测控制做好准备,所以必须要求有很高测量精度和响应速度。
     本文就是通过对国内外的轮胎气压实时监测系统(Tire Pressure Monitoring System,以下简称TPMS)的研究,提出一种新型的无源无线轮胎气压监测系统,来解决目前现有系统存在的结构复杂、分辨率低、电池寿命有限、成本高等问题。
     声表面波传感器具有无源无线传感的优势,可用于对旋转物体,快速移动等非接触测量。本文研究的是基于声表面波原理的无源无线轮胎压力监测系统,它可以实现高分辨率、小体积、无电池的简化结构。
     文章详细介绍了无源无线轮胎压力监测系统中的声表面波传感器工作原理、回波信号组成、数字信号处理和软件开发方法;并讨论了轮胎压力报警模型的建立方法,得到更加接近实际的压力模型;同时还给出了新的系统的硬软件设计方案,最后构造传感器仿真实验平台,进行仿真。主要包括以下内容:
     (1) 无源无线声表面波传感器系统的构成。分别介绍了延迟型和谐振型传感器的结构和工作原理,并分析了谐振型压力测量系统的构成和工程方法。
     (2) 系统激励信号研究。通过分析声表面波谐振器对不同激励信号的响应,本文选用正弦脉冲串作为激励信号,来提高系统工作效率和传感距离。
     (3) 建立轮胎压力报警模型。通过对轮胎爆炸的机理分析,得出温度、负载对轮胎的影响,得到更加贴近实际的轮胎压力模型,给出轮胎报警的状态。
     (4) 系统主机的设计及系统激励信号和系统电磁兼容的设计。分别选用了MSP430F系列的16位微控制器来进行控制,实现数据采集、激励信号发送、激励信号接收、动态显示、异常报警、数据存储等功能。
     (5) 显示和键盘模块的设计。使用液晶显示器(LCD)来显示各个轮胎的状态,时间等信息,并且通过键盘,可以实现系统参数设置等功能。
     (6) 对声表面波传感器等效电路模型进行仿真实验。
Tire pressure monitoring is an importance factor of guaranteeing automobile safety. The performance of tire plays a directly role of automobile's performance. Keeping right tire pressure makes automobile to be more comfortable, more safely, more smoothly. It has been proved that tire takes the well-balanced air pressure and the right temperature is very important to the tire life and to cut the using cost. But it isn't easy to measure the tire pressure because it works at a rolling place. We also should ensure the accuracy and timing tire and to guess the trend for the next forecast control. So the tire pressure measure must be high accuracy and speediness.The paper improve a new passive and wireless tire pressure monitoring system base on the analyses of the existent tire pressure monitor system, which can settle the problem in structure, accuracy, power-life and cost in existent monitoring system.The surface acoustic wave (SAW) sensors can be used to measure parameters of fast moving or rotating objects which are difficult to contact, because of the predominance of wireless passive sensing. The paper studies in passive and wireless tire pressure monitoring system base on surface acoustic wave which can realize small passive and high accuracy in simple structure.The paper introduce the theory of surface acoustic wave sensor, the digital signal treatment, the method of soft design in the passive and wireless tire pressure monitoring system in detail. It also depicts the function of different model in this system. The paper discusses the method of building on the tire pressure alarm model to get a more practical pressure model, and give a new design project about system hardware and to stimuli on the building laboratory platform. Following is the main content of the paper:(1) Structure of the passive and wireless surface acoustic wave sensor system. The paper introduces the structure and the principle of the delay and resonator surface acoustic wave sensor, and analyzes the structure of the surface acoustic wave resonator system and the project measurement.(2)The study on system ignite signal. Through the analysis of the response of resonator base on different pumping signals, sine burst is used for pumping signal of the system to improve the efficiency and detecting-distance.(3)Make up the alarm model of tire pressure. Through the analyses of the tire explosion theory we can know the infection on tire by the temperature and load. So we can build a more practical tire pressure model, and to alarm accurately.(4)Design of the host system part, the sine burst signal and the system Electromagnetic Compatibility. The micro controller is a chip of the 16bits MSP430F series controller. It samples the signal, sends the sine burst, receives the response of resonator, and shows the data in real time, alarms and memories the abnormal data.(5)Design the showing data part. Tire data is showed to the driver by using liquid crystal display (LCD), time is also showed in the LCD. It can change the system setting by a small keyboard.(6) Make a simulation using the building surface acoustic wave sensor model.
引文
[1] 尹凝霞,赵金先,王吉忠.轮胎气压实时监测与报警系统的研究现状及发展趋势.轮胎工业,2005年,第3期25卷:137~139
    [2] 许洪国,周立,鲁光泉.中国道路交通安全现状、成因及其对策[J].中国安全科学学报,2004.14(8):34~38
    [3] 轮胎安全监测网站http://www.tpms.com.cn/zI_dir.asp
    [4] Motorola.轮胎压力监测系统一个“承受压力”的行业.通信与计算机,2003年,第3期:50~52
    [5] 高东平,李承民.气压是轮胎的生命.轮胎工业,1999年第19卷:37~39
    [6] 许昌昆,孟秀林,林江,许文义.声表面波器件及其应用.北京:科学出版社,1984.1~5,14~20
    [7] 李忠诚.声表面波技术的应用.系统工程与电子技术,1990.9:67~77
    [8] 母开明.我国声表面波技术三十年回顾与展望.世界电子元器件,2001.5:65~69
    [9] 徐介平.声光器件的原理、设计和应用(第一版).北京:科学出版社,1985.205~212,344~348
    [10] 袁小平.国外声表面波传感器开发近况.压电与声光,1995.8:63~76
    [11] 轮胎安全监测网站http://www.tpms.com.cn/hy_detail.asp?hy_id=206&page=1,2006.2.19
    [12] 何仁等.汽车轮胎气压监测系统发展综述.中国暗渠科学学报,2005.10:105~109
    [13] 王生江,董永贵,冯冠平.基于声表面波谐振器的无线测量系统.测控技术,1999年第18卷第10期:9~12
    [14] 韩韬,施文康.声表面波器件在无线传感系统中的应用.光学精密工程,2001年第19卷6期:576~578
    [15] 文玉梅等.声表面波无源无线多传感器信号接收处理装置.中国实用新型专利.ZL0222116022.2002
    [16] 陈明等.声表面波传感器的发展与现状.航空计测技术,1992:1~2,26~30
    [17] 许昌昆,孟秀林,林江,许文义.声表面波器件及其应用第一版.北京:科学出版社,1984.14~20
    [18] 文玉梅,周志坤,李平,杨进.声表面波无源无线传感器研究.传感器世界,2004年第10期:6~10
    [19] 肖鸣山.声表面波器件基础第一版.山东:山东科学技术出版社,1979.60~71,312~319
    [20] 辛长宇,施文康.DDS系统在SAW传感器中的应用.仪表技术与传感器2004年第3期:22~23
    [21] 李平,文玉梅,王军峰,黄尚廉.声表面波谐振器的时域响应特性研究.压电与声光,2003年第2期:87~91
    [22] 凌有家等.轮胎的使用特性及其应用技术.中南汽车运输,1999年第3期:16~17
    [23] 徐恭勤等.声表面波传感器的集总参数等效电路.传感技术学报,1997年第3期:48~51
    [24] 乔俊.高速公路上轮胎爆破的原因和防范措施.轮胎工业,1999年19(9):551~555
    [25] 俞淇等.轮胎的承载能力分析.轮胎工业,2000年20卷第11期:653~659
    [26] 高东平等.气压是轮胎的生命.轮胎工业,1999年19卷第1期:37~39
    [27] 庄继德.现代汽车轮胎技术[M].北京:北京理工大学出版社,2001.121~236
    [28] 陈邦嫒.射频通信电路.北京:科学出版社,2002.133~144,197~198
    [29] 肖永清,杨忠敏.东风系列载货汽车使用维修525问.北京:人民邮电出版社,2001.244~253
    [30] 白同云等.吕晓德.电磁兼容设计.北京:北京邮电大学出版社,2001.1~130
    [31] 陈顺生等.天线原理.南京:东南大学出版社,1989.82~88
    [32] 刘白雁等.机电系统动态仿真—基于MATLAB/Simulink.北京:机械工业出版社,2005.128~145
    [33] Ken-ya,Hahsimoto.声表面波器件模拟与仿真(王景山,刘天飞,孙玮译)第一版.北京:国防工业出版社,2002.
    [34] 刘双临.无源无线SAW谐振器型传感器信号检测研究:[硕士学位论文].重庆:重庆大学,2003
    [35] 周志坤.无源无线声表面波传感器硬件系统研究:[硕士学位论文].重庆:重庆大学,2005
    [36] S. Klett, M. Binhack, et al. Progress in Modeling of Sensor Function for Matched SAW Resonators. IEEE Ultrasonics Symposium, 2002: 471~474
    [37] Richard L. Baer. Phase Noise in surface acoustic wave filters and resonators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1988Vol. 35No. 3: 421~425
    [38] Kiyoshi Inagawa et al. Equivalent networks for SAW interdigital transducers. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1994, Vol. 41, No. 3, pp. 402~411
    [39] H. Engan. Excitation of Elastic Waves by Spatial Harmonics of Inter digital Transducers. IEEE Trans Electron Device, 1969. 16: 1014~1017
    [40] SmarTire 公司 [EB/OL]. http://www.chesheng.com.cn/124/zga.htm, 2004.07.24
    [41] Gehm R. FEA improves Smar Tire's tire-monitoring system [J]. Automotive Engineer, 2002 (9): 1
    [42] Freescale Semiconductor[EB/OL] Inc. http://www.freescale.com.cn/, 2004.07.26
    [43] GE Sensor[EB/OL]. http://gesensing.com/products/resources/datasheets/NPX1_prelim_0104
    [44] Infineon Sensor 公司[EB/OL].http://www.infineon.com.cn/, 2004.08.01
    [45] A. Springer, R. Weigel, A. Pohl, F. Seifert. Wireless identification and sensing using surface acoustic wave devices. Mechatronics, 1999(9): 745~756
    [46] Alfred Pohl. A Review of Wireless SAW sensors. IEEE Trans. Ultrason. Ferroelectr. Freq.Control, 2000vol. 47(2): 317~331
    [47] Leonhard Reindl, Gerd Scholl, Thomas Ostertag et al. Theory and Application of Passive SAW Radio Transponders as Sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1998vol45 (5): 1281~1291
    [48] AshD. L. Optimal application of SAW devices in spread spectrum and other RF systems. IEEE 1989 Ultrasonics Symposium Proceedings, 1989Vol: 1248
    [49] Schelbert P. Synthesis of SAW correlator with integrated spectrum-shaping. IEEE Ultrasonics Symposium Proceedings. Date 1989Vol.
    [50] D. Amati. S. M. RF and Selectivity of Surface Acoustic Wave Sensors for Organic Solvent Vapour Detection. Sensors and Acuators B, July 1992: 45~62
    [51] Suwei Zhou, et al. Review of embedded particle tagging methods for NDC of composite material and structure. Proc. of Smart Structures and Materials, 1995Vol. 24: 39
    [52] Alfred Pohl, Reinhard Steindl, Leonhard Reindl. Measurements of Vibration and Acceleration Utilizing SAW sensors, Proc. SENSOR, Germany, 1999vol. 2: 53~58
    [53] Werner Buff. SAW Sensor System Application. IEEE Microw. Syst. Confe, 1995: 215~218
    [54] Alfred Pohl, Reinhard Steindl, et al. Measurements of Vibration and Acceleration Utilizing SAW Sensors. IEEE Ultrasonics Symposium, 2000Vol. 34: 235~242
    [55] V. K. Varadan, et al. Design and fabrication of wireless remotely readable MEMS aecelerometer. SPIE, 1997Vol. 3242: 36~45
    [56] L. Reindl, et al. Monitoring the Tire Pressure at Cars Using Passive SAW Sensors. IEEE Ultrasonics Symposium: 471~474
    [57] Pohl, F. Seifert, L. Reindl. Radio Signals for SAW ID Tags and Sensors in Strong Electromagnetic Interference. IEEE Ultrasonics Symposium, 1994: 195~198
    [58] M. Rusko, W. Buff, M. Binhack. Passive Resonator Identification Tag for Narrow-band Wireless Telemetry. IEEE Ultrasonics Symposium, 1999: 377-380