与新型百叶集热墙结合的复合太阳能炕系统实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑能耗在国家能源总消费量中占到三分之一左右,其中建筑采暖、制冷、热水耗能约占整个建筑耗能达40%。因此,如何降低建筑采暖、制冷、热水等的能耗和改变能源供应方式对于降低我国能源总消耗具有十分重要的意义。太阳能由于其可再生性以及其对环境友好的优点,是重要的化石能源替代物。将太阳能在建筑中一体化应用,是规模化产业化利用可再生能源、减少建筑能耗中常规能源消耗的重要途径。
     在中国北方农村火炕作为采暖的方式得到广泛的应用,使用人口占农村85%(约1.75亿人口)。传统火炕通常利用炕体对炊事时间燃烧稻草、秸秆、柴木等生物质燃料产生的余热进行蓄热,然后对房间进行逐步释放热量以对房间供暖。但在采暖季节大量燃烧生物质燃料不但消耗了大量能源,而且产生了严重的空气污染。因此,对传统火炕采暖方式进行创新是我国北方农村建筑供暖技术改进的关键。本文基于北方太阳能资源丰富和传统火炕的特点,提出了充分吸收传统火炕特点的太阳能炕系统,并将其与新型百叶集热墙结合。该系统充分利用太阳炕的蓄热作用以保证夜晚人们睡眠热舒适度,同时利用百叶集热墙减少白天室内的采暖负荷。论文针对与新型百叶集热墙结合的复合太阳能炕系统进行了实验研究和理论分析,其主要学术工作如下:
     首先,设计并搭建与新型百叶集热墙结合的复合太阳能炕系统实验平台。对单独太阳能炕工作模式及太阳能炕与百叶集热墙被动采暖耦合运行模式的热工性能进行了实验研究。依据实验结果深入分析太阳能炕、百叶集热墙及建筑的动态热响应过程,从而揭示出太阳能炕、百叶集热墙的换热机理。实验分析为理论建模提供参考依据。
     其次,针对实验台系统建立动态数学模型并编制相应程序用于模拟。将模拟结果与实验数据进行比较,验证所建立的动态数学模型的准确性。该程序可以动态分析系统热性能及其作用下建筑室内热环境和人在炕上睡眠热舒适度,为太阳能炕蓄放热特性、太阳能集热系统和百叶集热墙优化分析提供工具。
     再次,选取典型的气象参数,采用通过验证的理论模型,理论分析在单独太阳能炕运行模式下室内热环境和人体睡眠热舒适度的情况,并对太阳能炕运行模式、太阳能集热系统进行优化分析。另一方面,利用与百叶集热墙结合的太阳能炕系统理论模型对百叶集热墙系统进行优化分析。结果表明:炕入口温度大于等于50℃(即:如果储热水箱温度大于50℃不进行辅助加热)、加热时间为早上八点至下午五点的太阳能炕运行模式为比较优化的炕运行模式,在该运行模式下人在炕上睡眠热舒适度PM值维持在-0.52至0.41之间,太阳能贡献率为0.598,室内空气波动维持在7.8℃至13.7℃之间而室外空气平均温度为0℃;由于太阳能炕的蓄热作用,太阳能集热系统中的水箱越小越好;百叶集热墙系统中百叶与南墙之间的空气通道间距大约为0.05米时最为合适。
     综上所述,本文工作为太阳能炕的热性能研究及其在北方农村的应用提供了科学依据和理论基础。
Energy consumed in buildings accounts for approximately one third of the whole national energy consumption; and about40%of them are in lighting, ventilating, space heating/cooling, and water heating. Therefore, how to reduce energy consumption of space heating, cooling and hot water and how to transform energy supply methods are of great significance for reducing the energy consumption of our country. Solar energy, due to its advantages of renewable and environmentally friendly, is an important alternatives to fossil fuels. The applications of solar energy technology in buildings are important ways to reduce the conventional energy consumption and use renewable energy on a large-scale.
     In the rural areas of northern China, Chinese Kangs are widely used in nearly85%of rural homes or175million people for home space heating. Traditional fire Kangs usually keep the residual heat from stove combustion by burning biomass fuels such as straw, stalks and wood during the firing time, and then gradually release heat to heat up a bedroom through thermal storage of Kang body after firings. Because the large number of Chinese Kangs in rural buildings burning biomass fuels, a lot of energy is consumed and there is always serious air pollution during space heating season every year. So, the innovations of the traditional Kangs are crucial for improving of heating technologies for rural residences in northern China. Based on characteristics of solar energy resource-rich and traditional fire Kangs in the rural areas of northern china, solar Chinese Kang system combined with novel shutter-trombe wall is proposed. It makes full use of solar Kang's heat storage to ensure the thermal comfort of sleep environment at night, while taking advantage of shutter wall to reduce heating load in a bedroom during the day. In this thesis, the following work was accomplished by both experimental studies and theoretical analysis for the system.
     Firstly, a test rig about Chinese Kang system alone and solar Chinese Kang system combined with shutter-trombe wall is built. An experimental study on thermal performance of them is carried out to analyze the dynamic thermal response process of solar Chinese Kang, shutter-trombe and building and understand the heat transfer mechanisms of solar Chinese kang and shutter-trombe wall. Experimental analysis provides a reference for theoretical modelling.
     Secondly, dynamic mathematical models are presented for test rig and programs are developed for simulation. Models are validated by compare the theoretical results with the experiment results. The programs may analyze the thermal performance of system and the effects on indoor thermal environment and sleep thermal comfort dynamically. It provides the optimized analysis tools for thermal storage and heat discharge of solar Chinese Kang system, solar thermal systems and shutter-trobme wall.
     Thirdly, based on the validated model and typical meteorological data, indoor thermal environment and thermal comfort of sleep environment are studied when solar Kang system operating alone. At the same time, optimization analysis is carried out about operating mode of solar Kang and thermal collector system. On the other hand, optimization analysis is also accomplished about shutter-trombe wall. Results show that prioritization scheme is:pre-set inlet temperature of circulating water is greater than or equal to50℃(auxiliary power is turned off if inlet temperature is greater than50℃) and solar Kang is kept being heating from8am to5pm. And in this operating mode, PMV of sleeping environment value is between-0.52and0.41and solar fraction is0.598. Room air temperature keeps between7.8℃and13.7℃while average environment temperature is about0℃. For thermal storage of solar Kang, solar hot water tank of thermal collector system is the smaller the better. The air passages between shutter and south wall is best when the spacing is approximately0.05m.
     In summary, the studies in this thesis have provided some scientific basis and theories for study on the thermal performance of solar Kang and the application of solar Kang in the rural areas of northern China.
引文
1.陈荣耀,吕良.1985(1).关于民用炕连灶热性能测试方法浅探[J].应用能源技术,36-40.
    2.崔玉清,季杰,何伟,裴刚.2011.太阳能炕和Trombe墙相结合的新型太阳能采暖系统的数值研究[J].太阳能学报,(1),32(1)
    3.陈滨,庄智,杨文秀.2006.被动式太阳能集热墙和新型节能灶炕耦合运行模式下农村住宅室内热环境的研究[J].暖通空调,36(2):20-24.
    4.岑幻霞,王兆霖.1982.太阳能供热设计[M].北京:中国建筑工业出版社.
    5.方贤德.1994.被动式太阳房的通用模拟程序[J].太阳能学报,15(4):363-367.
    6.弗兰克P.英克鲁佩勒.2009.传热和传质基本原理[M],化学工业出版社.
    7.国家统计局能源统计司.2012.中国能源统计年鉴[J].中国统计出版社,2月出版.
    8.葛新石,孙孝兰.1981.多层透明盖板-吸热板系统的辐射换热问题[J].太阳能学报,2(1):51-58.
    9.裹军林,朱吉顶,刘玉山.2006(5).太阳能热水系统与建筑一体化的工程实践[J].能源与环境,106:108.
    10.郭继业.2002.省柴节煤灶炕fM].北京:中国农业出版社.
    11.胡彬,李静,钟国友.2008.被动式采暖的居住建筑设计研究[J].34(15),P1:2.
    12.何梓年,将富林,葛洪川,李炜.1994.热管式真空管集热器的热性能研究[J].太阳能学报,1(15).
    13.季杰,易桦等.2006.PV新型Trombe墙光电光热性能数值模拟[J],太阳能学报,27(9)
    14.竞峰,王婧,张旭.2006(3).寒冷地区太阳能炕采暖系统[J].低温建筑技术,113—115.
    15.罗运俊,何梓年,王长贵.2008.太阳能利用技术[M].北京:化学工业出版社.
    16.李元哲,狄洪发,吴雁宁.1989.被动式太阳房设计三要素的最优化配比[J].太阳能学报,10(3):312-315
    17.芦潮,唐汝宁.2005.高寒地区附加阳光间式太阳房的节能分析[J].节能,276,7:28-30
    18.刘加平,杨柳.1999.零辅助能耗窑居太阳房热工设计[J].太阳能学报,20(3):302-310
    19.龙文志.2009.太阳能光伏建筑一体化(续1)[J].建筑技术,10;40(10);p935:937.
    20.龙文志.2009.太阳能光伏建筑一体化(续2)[J].建筑技术,11;40(11);p1030:1301.
    21.罗成龙.2010.与建筑一体化太阳能双效集热器系统的实验和理论研究,中国科学技术大学博士论文[D].
    22.刘立国,王丽.2006.我国节能建筑现状综述[J].山西建筑,32(3):31—32
    23.裴清清,张国墙.寒冷地区保温哨楼主被动太阳能采暖与室内热环境[C].全国暖通空调制冷2002年学术年会,P267-270
    24.潘阳.2011.计算传热学理论及其在多孔介质中的应用[M],科学出版社[D].
    25.司小雷.2008,2.我国的建筑能耗现状及解决对策[J].建筑节能,P41-75;36(204)
    26.孙鹏,陈滨,等.2005.新建被动式太阳房冬季热性能的实验研究[J].建筑热能通风空调,24(1):22-27
    27.王秀明.2006.建筑节能的重要途径:太阳能利用与建筑一体化.建筑节能[J],3:38-39.
    28.王崇杰,赵学义.2002(7).太阳能与建筑一体化设计[J]。建筑学报,p28:29.
    29.韦亮.2008.谈主动式太阳能技术在建筑中的应用[J].山西建筑,34(9):260—261.
    30.王庆一.2006.我国能源密集产品单位能耗的国际比较及启示[J].国际石油经济,No.2,24-30.
    31.王俊,徐伟,林海燕,曾捷.2006.中国科技成果[J],第19期,P14-17.
    32.王玉香,赵玉新.2007,11.乌鲁木齐建筑能耗现状与节能途径[J].山西建筑,33(31)
    33.杨世铭,陶文铨.2006.传热学[M],高等教育出版社.
    34.叶宏,葛新石.2000.几种集热-贮热墙式太阳房的动态模拟及热性能比较[J].太阳能学报,21(4):349-357.
    35.杨绍海.1963.火炕的调查与实测[C],北方土木建筑学会.北方土木建筑学会论文集.
    36.张正本.2007.太阳能热水在建筑上的应用.建筑节能,第七期,35(197)p49:52.
    37.郑曜昭.2007.太阳能集热器与建筑的一体化设计方法初探[J].山西建筑,33(9)230231.
    38.张军杰.2007,4.高层住宅与太阳能热水器一体化结合研究[J].建筑科学,23(4)
    39.赵春江,崔容强.2003,6.太阳能建材技术的研究与开发(I):光伏屋顶热性能的调查[J].太阳能学报,24(3);P353:356.
    40.周燕,谢军龙,沈国民.2003(1).建筑热能通风空调.主动式太阳房的应用技术,P19:19.
    41.郑瑞澄,郭晓光.1989.直接受益集热窗热特性分析[J].太阳能学报10(2):157-166.
    42.中国气象局太阳能风能资源评估中心http://cwera.cma.gov.cn/cn/.
    43.庄智.2009.中国炕的烟气流动与传热性能研究[D].大连理工大学博士论文.
    44.张志涌.2003.精通MATLAB6.5[M]北京航天航空大学出版社.
    45.中华人民共和国农牧渔业部.GB/T 7651-1987民用炕连灶热性能测试方法[S].
    46.庄智,李玉国,陈滨.2009.暖通空调HV&AC[J],第39卷第1期.
    47.朱颖心.2010.建筑环境学(第三版)[M].中国建筑工业出版社.
    48. Athienitis.2001.Building Thermal Analysis (Mathcad e-text).Concordia University,49.
    49. ASHRAE Handbook rundamentas[M]. Atlanta,USA:ASHRAE,1993
    50. A.K.Athienitis.1994.NumericalModel of Floor Heating system[J]. ASHRARE Transactions, 13(3):1024-1029;
    51. Afif Hasan.1999.SIZING SOLAR SPACE HEATING SYSTEM:A CASE STUDY, Renewable Energy [J],16:72G724
    52. Argiriou*, N. Klitsikas, C.A. Balaras, D.N. Asimakopoulos.1997.Active solar space heating of residential buildings in northern Hellasa-a case study[J]; Energy and Buildings,26:215-221.
    53. Bin Jiang, Jie Ji, Hua Yi.2008. The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall[J], Renewable Energy,33(11):2491-2498.
    54. B. J. Huang,S. C. DU.1991. A Performance Test Method of Solar Thermosyphon Systems[J]. Transactions of the ASME,113:172-179.
    55. Chen Xi, Yang Hongxing, Lu Lin, Wang Jinggang, Liu Wei.2011.Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating[J],energy, 36:5292-5300.
    56. Chen Xi, Lu Lin, Yang Hongxing.2011.Long term operation of a solar assisted ground coupled heat pump system for space heating and domestic hot water[J]. energy and buildings,43:1835-1844.
    57. D.L. Zhao, Y. Li, Y.J. Dai, R.Z. Wang.2011.Optimal study of a solar air heating system with pebble bed energy storage,energy conversion and management[J],52:2392-2400.
    58. D.M.Utzinger,S.A.Klein,J.W.Mitchell,.1980.The effect of air flow rate in collector storage walls [J], solar energy,25:511:519.
    59. Engebretson, C.D.1964.The use of solar energy for space heating:MIT solar house, Proceedings of the UN conference on new sources of energy[J], Vol.5, UN, New York,159.
    60. Govind N. Kulkarni, Shireesh B. Kedare, Santanu Bandyopadhyay.2007,Determination of design space and optimization of solar water heating systems[J],Solar Energy,81:958-968.
    61. Govind N. Kulkarni, Shireesh B. Kedare, Santanu Bandyopadhyay.2009.Optimization of solar water heating systems through water replenishment.Energy Conversion and Management [J],50:837-846.
    62. Hesselschwert, A.L.1950.Performance of the MIT solar house, Proceedings of the sympsosimu on space heating with solar energy [J], Massachusetts Institute of Technology.
    63. Hottel,H.C. and Woertz,B.B..1942.Performance of flat-plate solar heat collectors[J], Trans. ASME,Vol.64,91.
    64. Huang, B J.1993. Performance rating method of thermosyphon solar water heaters [M], Solar Energy 50(5),435-440.
    65. J.A.Duffie and W.A. Beckman.1980.Solar Engineering of Thermal Process, Wiley-Interscience[M], New York, pp.541.
    66. J. W. MacArthur and E. W.1989.Grald. Unsteady compressible two-phase 67.flow model for predicting cyclic heat pump performance and a comparison with experimental data[J]. Int. J. Refrig,12(1).
    67. J.A.2001.Clarke.Energy simulation in building design(2nd edition)[M]. Butterworth-Heinemann, pp.254.
    68. J. P. Chyng, C. P. Lee and B. J. Huang.2003.Performance analysis of a solar-assisted heat pump water heater[J]. Solar Energy,74(1):33-44.
    69. Ji Jie, Jiang Bin, Yi Hua, Chow Tin-tai, He Wei, Pei Gang.2008.An experimental and mathematical study of efforts of a novel photovoltaic-Trombe wall on a test room[J]. International Journal of Energy Research,32(6):531-542.
    70. Jie Ji, Hua Yi, Wei He, Gang Pei.2007. PV-Trombe wall design for buildings in composite climates[J]. Journal of Solar Energy Engineering, Transactions of the ASME,129(4):431-437.
    71. J. D. Balcomb,R. D. Mcfarland,Simulmion Anaysis of Passive Heated Buildings[C]-the Infuence of climate and Geometry on Performance.Los Alamos NM87545
    72. Ji Jie, Yi Hua, Pei Gang, Jiang Bin, He Wei.2007.Study of PV-Trombe wall assisted with DC-fan[J]. Building and Environment,42(10):3529-3539.
    73. Ji Jie, Yi Hua, Pei Gang, Lu Jianping.2007.Study of PV-Trombe wall installed in a fenestrated room with heat storage[J]. Applied Thermal Engineering,27(8-9):1507-1515.
    74. Ji Jie, Yi Hua, He Wei, Pei Gang, Lu Jianping, Jiang Bin.2007.Modeling of a novel Trombe wall with PV cells[J]. Building and Environment,42 (3):1544-1552.
    75. J Jie, Y Hua, P Gang, H Hanfeng, H Chongwei, L Chenglong.2007. Numerical study of the use of photovoltaic-Trombe wall in residential buildings in Tibet[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 221(8):1131-1140.
    76. J. D Balcomb etc.1980.Passive Solar Design HandBook[M].
    77. k.P.Randall, J.W.Mitchell,M.M.El-Wakil.1979. Natural convetion heat transfer characteristics of flat plate enclosures [J], heat transfer 101,120-125.
    78. Kyung-Hoi Lee,Dong-Wook Han,Ho-Jin Lin.1996.Passive design principles and techniques for folk houses in Cheju Island and Ullung Island go Korea[J]. Energy and Buildings,23:207-216.
    79. Khalifa A J N, Marshall R H.1990.Validation of Heat transfer coefficients on interior building surfaces using a real-sized indoor test cell[J]. Heat mass transfer,33:2219-2236.
    80. Miura H. Hokoi S,Kondo S.2004.Development of simple commissioning toolS for floor heating systems in residences-performance evaluation of floor heating systems[J]. Journal of Asian Architecture and Building Engineering,3(1):93-100.
    81. N.Knalifa.1998.A study on a passively heated single-zone building using a thermal storage wall[J]. Renewable Energy,14,4:29-34
    82. Ong K S, Chow C C.2003. Performance of a solar chimney[J]. Solar Energy,74(7):1-17.
    83. Onder Ozgenera,Arif Hepbasli.2005.A review on the energy and exergy analysis of solar assisted heat pump systems[J]. Renewable and Sustainable Energy Reviews,1-16.
    84. Shen J, Stephane L, Laurent Z, et al.2007.Numerical study on thermal behavior of classical or composite Trombe solar walls[J]. Energy Build,39:962-974.
    85. Sharma A K, Bansal N K, Sodha M S, et al.1989.Vary-therm wall for cooling/heating of buildings in composite climate[J]. Inter J Energy Res,13:733-739.
    86. Teshome Edae Jiru, Fariborz Haghighat.2008.Modeling ventilated double skin facade-A zonal approach [J].Energy and Buildings,40:1567-1576
    87. U.Stritih,P.Novak.1996.Solar heat storage wall for building ventilation[C]. WREC,268-271
    88. US Dept.2002.of Energy,Passive Solar Design HandBook[M],V01.1.
    89. US Department of Housing and Urban Devolopment.1981.New Energy-Conseing Passive Solar Single Family Homes[M].
    90. Victor Norrefeldt, Gunnar Grun, Klaus Sedlbauer.2012.VEPZO e Velocity propagating zonal model for the estimation of the airflow pattern and temperature distribution in a confined space[J],48:183-194.
    91. Viorel Badescu.2002.Model of a space heating system integrating a heat pump, photothermal collectors and solar Cells[J].Renewable Energy 27:489-505
    92. Viorel Badescu.2003. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating[J].Energy Conversion and Management,44 1589-1604.
    93. Viorel Badescu.2002.Model of a solar-assisted heat-pump system for space heating integrating a thermal energy storage unit[J].Energy and Buildings,34:715-726.
    94. W. E. Mercer W. M. Pearce J. E. Hitchcock.1967. Laminar Forced Convection in the Entrance Region Between Parallel Flat Plates,J[J]. Heat Transfer--August--Volume 89, Issue 3,251 (6 pages)
    95. Sakai I, Takagi M.1976.Solar space heating and cooling with bi-heat source heat pump and hot water supply system[J]. Solar energy,18(6):525-532.
    96. SeongHwan Yoon,Akira Hoyanp.1998.Passive ventilation system that incorporates a pitched roof constructed of breathing walls for use in a passive solar house[J]. Solar Energy,64: 189-195.
    97. Yasuhiro Hamada, Makoto Nakamura,etc.2001. Field performance of a Japanese low energy home relying on renewable energy[J]. Energy and building,33:805-814.
    98. Yang X D,]iang Y.2008.Energy and environment in Chinese rural housing:road to sustainability[C]. Tianjin University and Dalian University of Technology. The First International Conference on Building Energy and Environment,July 13-16,Dal Jan.China.
    99. Zrikem Z, Bilgen E.1987. Theoretical study of a composite Trombe-Michel wall solar collector system[J]. Solar Energy,39(5):409-419.
    100. Zhi Zhuang,Yuguo Li,Bin Chen.2009. Thermal storage performance analysis on Chinese kangs [J].Energy and Buildings,41:452-459.
    101. Zalewski L, Chantant M, Lassue S, et al.1997. Experimental thermal study of a solar wall of composite type[J]. Energy Build,25(1):7-18.
    102. Zalewski L, Lassue S, Duthoit B, et al.2002.Study of solar walls-validating a simulation model[J]. Inter Rev Build Envir,37(1):109-121.
    103. Zhongping Lina, Shiming Dengb.2008. A study on the thermal comfort in sleeping environments in the subtropics-Measuring the total insulation values for the bedding systems commonly used in the subtropics [J]. Building and Environment,43:905-916.
    104. Zhongping Lin, Shiming Deng.2006. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong [J]. Energy and Buildings,38:1302-1307
    105. Zhongping Lin, Shiming Deng.2008. A study on the thermal comfort in sleeping environments in the subtropics-Measuring the total insulation values for the bedding systems commonly used in the subtropics[J]. Building and Environment,43:905-916