多年冻土地区路基纵向裂缝形成机理及处治对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏公路北起青海省格尔木,南止西藏拉萨,全长逾1100km。青藏公路承担着85%以上的进出西藏物资运输任务,对西藏的政治稳定、经济发展和国防建设具有特别重要的意义,是保障西藏200多万各族人民生活、生产和国防安全的重要生命线。
     青藏公路自昆仑山口至桑雄进入青藏高原腹地,平均海拔4500m以上。高原气候条件恶劣,全年气候负温期长,昼夜温差变化大,寒冷干燥,空气稀薄,太阳辐射强烈,路基阴阳坡温度差异明显。沿线地质条件复杂,地表广泛分布着各种成因的第四纪松散沉积物,特别是沿线550km的路段下分布着多年冻土。
     恶劣的自然条件和复杂的地质状况,导致该路出现大量路基纵向裂缝。这些纵向裂缝不仅规模巨大、数量繁多,而且发展迅速、难以养护,导致路面行驶质量每况愈下,运输效益常年偏低。过去常规的以小修保养的养护方法,治标不治本,且呈现出病害日渐严重的趋势,不能确保该地区道路的畅通,严重威胁着车辆的行驶安全,成为制约当地经济快速发展的瓶颈。
     为此,论文以青藏公路为依托,以解决重大工程问题为出发点,着手进行多年冻土地区路基纵向裂缝形成机理与防治对策研究。整个论文分为两大部分。第一部分为多年冻土地区路基纵向裂缝形成机理研究,对纵向裂缝的形成过程进行数值仿真,着重阐释纵向裂缝形成的深层原因;第二部分为青藏公路纵向裂缝防治对策研究,从工程实际出发,研究提出经济合理、技术可行的处治对策,服务于西部大开发中的公路基础设施建设。
     论文研究首先对青藏公路路基纵向裂缝进行了现场勘察,通过全线普查和典型路段详细调查,对这种病害的发育性状及分布规律进行了研究。瑞雷面波仪对于勘探浅层工程地质问题具有优势,本研究利用其进行了路基病害原因的测试分析。
     在纵向裂缝形成机理研究中,首先根据多年冻土上限变化规律、多年冻土地区路基温度场特征和青藏公路纵向裂缝特点构建了分析模型,然后利用有限元方法进行数值仿真,研究纵向裂缝的形成过程。分析结果显示,路基纵向裂缝形成过程十分复杂,经历了三个阶段:初始变形阶段、强度破坏阶段和变形失稳阶段;与此相对应,形成过程在力学性质上呈现三个区域:发育区、抑制区和诱发区。
    
     据实际路况调查分析,影响纵向裂缝的因素很多,本研究择其主要影响因素
    进行了分析,其中包括多年冻土融化区参数、季节活动层参数和路基参数,以掌
    握路基纵向裂缝的形成及其规模随这些因素的变化规律。
     在上述分析的基础上,论文对影响纵向裂缝的内在条件,外界环境因素进行
    研究,提出了纵向裂缝的防治原则与分类分级评价方法;并有针对性的提出多年
    冻土地区新建路基的防治对策和基于纵向裂缝分类分级的既有路基纵向裂缝的
    处治措施。根据不同的防护原则,提出了三种防护对策:保温隔热稳定技术、通
    风散热稳定技术和综合防护措施。基于现场勘察资料,按照纵向裂缝发育性状和
    形成原因的相似性和工程整治的方便性,将纵向裂缝分为直线型和边坡弧型两种
    类型。对直线型纵向裂缝,按照开裂程度分为轻微、严重和非常严重三个等级。
     对于直线型纵向裂缝,论文研究提出可以采用的基本对策主要有:单层土工
    格栅处治技术、柔性枕梁处治技术和柔性枕梁与土工合成材料复合处治技术。针
    对边坡弧型纵向裂缝,一般采用土工格栅分层加筋技术进行处治。论文通过对处
    治结构设计参数分析、处治路面结构的力学分析和不同处治结构之间的对比分
    析,研究了这几种结构的可行性和适应性,提出了相应的设计方法。其中柔性枕
    梁处治技术在国内外属首次提出并系统研究。最后结合实体工程试验研究,提出
    了处治结构的施工工艺。
The Qinghai-Tibet Highway amounts to 1100km from Germod to Lasha. It plays important roles for Tibet in political stabilization, economic development and defense construction. At the same time, it is an important line that makes sure the lives, work, and safety of more than 2 million local people.
    The Qinghai-Tibet Highway lies in the areas of Tibet Plateau with the 4500 average attitude. The weather is so bad with longer winter, colder and drier, fewer air, and stronger solar radiation that there is big temperature difference in slopes of subgrade. In addition, there are very complex geology conditions, especially permafrost along line.
    Due to the above reasons, there are many longitudinal cracks occurring in the line. These cracks are too huge to be maintained with ordinary methods. As a result the performance of road is very low. In recent years, these cracks become more severe and have a threat to the riding safety.
    Therefore, the paper, depending on the Qinghai-Tibet Highway, begin to study. The paper has two main parts; the first part has analyzed the forming mechanics of longitudinal cracks through FEM, and the other part has studied the treating structures according to the different types and classes.
    First of all, the paper has investigated the longitudinal cracks in the fields, and analyzed the characteristic and distributing laws of the crack. At any more, the paper also tests the reasons of crack through Reiligh Wave Instruction.
    In the mechanism analysis part, the paper has established the model through analyzing the changing laws of permafrost upper limit, temperature field characteristic and the longitudinal crack traits, and solved through FEM. The results has revealed that the forming process of crack have three different phases: the initial deforming phase, the strength destroying phase and deforming destroying phase; and there are three different area in mechanics aspects: development area, restrict area and urging area. At the same time, a lot of factors, including thawing zone of permafrost, seasonal active layer and subgrade, are considered to study forming course of the longitudinal cracks.
    On the basis of the above analysis, the paper has put forward the protecting
    
    
    principles and classifying and grading methods of the longitudinal cracks. According to the protecting principles, three protecting methods are suggested to use; and according to the classifying and grading methods of cracks, the longitudinal crack is divided into two types: the linear crack and the slope arc crack. In addition, the linear crack is further divided into three grades: light, severe and much severe. Though studying, there are three basic maintain methods on the linear crack, including single layer geogrid, the flexible beam and the composite structure of geogrid and flexible beam, and the geogrid of many layers to used to treat the slope arc crack.
    The paper has studied the design parameters of the treating structures and mechanics characteristic after treating through FEM, analyzed the feasibility and adaptability of these structures, and brought forward the corresponding design methods. Among these, the flexible beam is firstly introduced and studied.
    In the end, combined with the field test project, the paper has studied the construction techniques.
引文
[1] Robert F.Carlson. 1996.Cole Regions Engineering-The Cold Regions Infrastructure: An International Imperative for the 21st Century. America: American Society of Civil Engineers
    [2] E.GAohnson, Arvind Phukan, Wilbur H.Haas.1988.Embankment Design and Construction in Cold Regions-Technical Council on Cold Regions Engineering Monograph. America: American Society of Civil Engineers
    [3] Davie E.Newcom. 1998. Cold Regions Impact on Civil Works. America: American Society of Civil Engineers
    [4] Ted S.Vinson, James W.Rooney and Wilbur H.Haas. Roads and Airfields in Cold Regions. America: American Society of Civil Engineers
    [5] Thomas C.Kirmey. Technical Council on Cold Regions Engineering Monogragh—Use of Geosynthetics in Road and Airfield Construction in Cold Regions. America: American Society of Civil Engineers
    [6] David C. Esch. Technical Council on Cold Regions Engineering Monogragh—Road and Airfield Design for Permafrost Conditions. America: American Society of Civil Engineers
    [7] Walter S.Jutkofsky, J.The Sung, Dawit Negussey.2000. Stabilization of Embankmkent Slope with Geofoam.Transportation Research Record 1736(Paper No. 00-1315)
    [8] R.Schababerle, J.F.Wagner, K.A.Czurda.1989.Influence of Freeze-thaw Cycles on Clay Structure. 5th International Symposium on Ground Freezing
    [9] Lesile Ann Myers,Reynaldo Roque, Biota Birgisson.2001.Propagation Mechanisms for Surface-Initiated Longitudinal Wheelpath Cracks. Transportation Research Record 1778(Paper No. 01-0433)
    [10] Gerald A.Miller, Kanthasamy K.Muraleetharan, Yong Yeow Lim.2001.Wetting-induced Settlement of Compacted-Fill Embankments. Transportation Research Record 1755(Paper No. 01-0294)
    [11] Phukan,A..1983.Long-term Creep Deformation of Roadway Embankment in
    
    Ice-Rich Permafrost. Proc.4th International Conference on Permafrost, Fairbans, pp.994-999
    [12] Robert F.Calson. 1996. Cold Regions Engineering. ASCE
    [13] 黄文熙.1983.土的工程性质.北京:水利电力出版社
    [14] 钱家欢,殷宗泽.1996.土工原理与计算.北京:中国水利水电出版社
    [15] 崔政权,李宁.1999.边坡工程——理论与实践最新发展.北京:中国水利水电出版社
    [16] 谢康和,周健.2002.岩土工程有限元分析理论与应用.北京:科学出版社
    [17] 杨桂通,树学锋.2000.塑性力学.北京:中国建材工业出版社
    [18] 朱伯芳.2000.有限单元法原理与应用(第二版).北京:中国水利水电出版社
    [19] 中华人民共和国行业标准.1997.公路沥青路面设计规范(JTJ014-97).北京:人民交通出版社
    [20] 中华人民共和国行业标准.1998.公路土工合成材料应用技术规范(JTJ019-98).北京:人民交通出版社
    [21] 王勛成,邵敏.1995.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社
    [22] 黄小明,朱湘.2001.公路土工合成材料应用原理.北京:人民交通出版社
    [23] 王秉纲,邓学钧.1992.路面力学数值计算.北京:人民交通出版社
    [24] 胡长顺,王秉纲,何子文.2000.高原多年冻土地区路基路面典型结构研究总报告.长安大学
    [25] R·Rüegger,J·F·Ammann,F·P·Jaecklin.1999.土工合成材料应用手册.北京:中国标准出版社
    [26] 本书编写委员会.2000.土工合成材料工程应用手册[M].北京:中国建筑工业出版社
    [27] 中科院兰州冰川冻土研究所.1988.冻土路基工程[M].兰州:兰州大学出版社
    [28] 周大纲.2000.土工合成材料制造技术及性能[M].北京:中国轻工业出版社
    [29] 中华人民共和国交通部.1998.公路土工合成材料应用技术规范(JTJ/T019-98) [S].北京:人民交通出版社
    [30] 于鸿川,于滨.冻土地区膨胀土(裂土)路堑边坡病害的整治.铁道建筑,1998年第11期
    
    
    [31] 王绍令,米海珍.青藏公路铺筑沥青路面后路基下多年冻土的变化.冰川冻土,1993年(5)
    [32] 原喜忠,王辉.大兴安岭北部高含冰量冻土地段路基沉陷防治.黑龙江交通科技,1999年第4期
    [33] 徐学燕,仲丛利.冻土的动力特性研究及其参数确定.岩土工程学报,1998年(9)
    [34] 秦国刚,李东,李有德.高寒和多年冻土地区路桥施工技术.低温建筑技术2001年第3期
    [35] 孟凡松,刘建平,刘永智,黑北公路冻土路基设计原则及病害特征.冰川冻土,2001年(9)
    [36] 邱国庆,程国栋.中国的多年冻土——过去与现在.第四纪研究,1995年第1期
    [37] 田晓春,靳春敏.季节性冻土基床病害的整治.铁道建筑,2001年第6期
    [38] 李洪升,刘增利,朱元林.冻土断裂力学在桩基冻拔稳定计算中的应用.冰川冻土.Vol2.1998.2:112-115
    [39] 周国庆.饱和砂层中结构的融沉附近力研究.冰川冻土.Vol2.1998.2:120-123
    [40] 王正中,沙际德,蒋允静,等.正交各向异性冻土与建筑物相互作用的非线性有限元分析.土木工程学报.1999.6:56-60
    [41] 石名磊,战高峰,邓学钧.高路堤路面结构纵向裂缝分析.吉林工业大学学报.Vol29.96.1999.4:86-91
    [42] 童长江,管枫年.土的冻胀与建筑物冻害防治.北京:水利电力出版社.1985
    [43] 赵法锁,等.1999.坡体平面旋转机理及稳定性研究.西安地图出版社
    [44] 谢康和,周健.2002.岩土工程有限元分析理论与应用.科学出版社
    [45] 黄润秋,许强,陶连金,等.2002.地质灾害过程模拟和过程控制研究.科学出版社
    [46] 臧恩穆,吴紫汪.1999.多年冻土退化与道路工程.兰州大学出版社
    [47] 张有天,周维垣.1999.岩石高边坡的变形与稳定.中国水利水电出版社
    [48] 刘永智,吴青柏,张建明,等.2002.青藏高原多年冻土地区公路路基变形.冰川冻土.Vol.24.No.1
    [49] 倪万魁,刘东燕,张永兴.2002.黄土高边坡变形破坏机理的数值模拟研究.工程地质学报.2002.10(增刊)
    
    
    [50] 程国栋,何平.2001.多年冻土地区线性工程建设.冰川冻土.Vol.23.No.3
    [51] 张鲁渝,时卫民,郑颖人.2002.平面应变条件下土坡稳定有限元分析Vol.24.No.4
    [52] 杨针娘,刘新仁,曾群柱等.2000.中国寒区水文.科学出版社
    [53] 李宁,程国栋,徐学祖等.2001.冻土力学的研究进展与思考.力学进展.Vol.31,No.1
    [54] 刘永智,吴青柏,张建民等.2000.高原多年冻土地区公路路基温度场现场实验研究.公路No.2
    [55] 刘永智,吴青柏,张建民等.2002.高原多年冻土地区公路路基变形.冰川冻土.Vol24,No.2
    [56] 胡泽勇,钱泽雨,程国栋等.2002.太阳辐射对青藏铁路路基表面热状况的影响.冰川冻土.Vol24.No2
    [57] 吴青柏,朱元林,刘永智等.2002.工程活动下多年冻土热稳定性评价模型.冰川冻土.Vol24,No2
    [58] 吴青柏,朱元林,刘永智等.2001.人类工程活动下多年冻土热融蚀敏感性评价模型.冰川冻土.Vol23,No6
    [59] 窦明健,胡长顺,何子文等.2002.青藏公路多年冻土段路基病害分布规律.冰川冻土.Vol24,No6
    [60] 王绍令,赵林,李述训等.2001.青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究.冰川冻土.Vol23,No2
    [61] 蒋鑫,魏永幸,邱延峻等.2002.斜坡软弱地基填方工程数值仿真.交通运输工程学报.Vol2,No3
    [62] 芮勇勤,贺春宁,王惠勇等.2002.层状边坡渐进破裂与失稳过程数值模拟探讨,长沙交通学院学报.Vol18,No3
    [63] 王善勇,唐春安,王述红等.2002.地铁开挖对地基沉降影响的数值分析.东北大学学报(自然科学版).Vol23,No9
    [64] 王国林.1994.高填土公路路堤的稳定性分析.岩土工程学报.Vol16,No1
    [65] 刘小丽,周德培.2002.有软弱夹层岩体边坡的稳定性评价.西南交通大学学报.Vol37,No4
    [66] 经绯,刘松玉,邵光辉等.2001.软土地基上路堤沉降变形特征分析.岩土工程学报.Vol23,No6
    
    
    [67]黄本胜,白玉川,万艳春.2002.河岸崩塌机理的理论模式及其计算,水利学报,2002.9
    [68]程谦恭,胡厚田,彭建兵等.2000.高边坡岩体渐进性破坏粘弹塑性有限元数值模拟.工程地质学报.2000.8
    [69]王铁行,胡长顺,李宁等.2002.冻土路基应力变形数值模型.岩土工程学报.Vol24,No2
    [70]李飒,闫澍旺,刘金泉等.2001.不同类型软粘土土坡在实际工程中破坏的比较.水利学报.2001.3
    [71]崔玉柱,张楚汉,金峰等.2002.拱坝—地基破坏的数值模型与溃坝仿真.水利学报.2002.6
    [72]应宏伟,潘秋元.2002.某大型土木工程滑坡机理分析与治理.岩土工程学报.Vol24,No2
    [73]郑宏,李春光,李焯芬等,2002.求解安全系数的有限元法。岩土工程学报.Vol24,No5
    [74]张鲁渝,时卫民,郑颖人等.2002.平面应变条件下土坡稳定有限元分析.岩土工程学报.Vol24,No4
    [75]王祥秋,杨林德,高文华等.2002.含软弱夹层层状围岩地下洞室平面非线性有限元分析.岩土工程学报.Vol24,No6
    [76]张冰峰,秦四清.2002.某地基不均匀沉降的三维分析.工程地质学报.2002.10
    [77]彭华,高亮.2001.高原多年冻土地区路基施工及其质量控制.铁道建筑技术.2001.6
    [78]冉理.2001.青藏高原铁路的设计与研究.中国铁道科学.Vol22,No1
    [79]何平,程国栋,朱元林等.2001.土体冻结过程中的热质迁移研究进展.冰川冻土.Vol23,No1
    [80]张喜发,陈继,张冬青.2002.融沉系数在季冻区高速公路路基病害研究中的应用.冰川冻土.Vol24,No4:634-637
    [81]马巍,程国栋,吴青柏.2002.多年冻土地区主动冷却地基方法研究.冰川冻土.Vol24,No4:579-584
    [82]程国栋.2001.冻土力学与工程的国际研究新进展.地球科学进展.Vol16,No3
    [83]赵法锁,张伯友,庄宁.2002.坡体平面旋转运动综述.工程地质学报.2002.10(增)
    
    
    [84]屈智炯.1987.土的塑性力学.成都:成都科技大学出版社
    [85]徐学祖,邓友生.1991.冻土中水分迁移的实验研究.北京:科学出版社
    [86]程国栋.2004.冻土攻坚40年.中国国家地理.2004.2:18
    [87]黄腾,冯小腊,张迎春等.1999.土工织物加固高速公路软基的有限元分析.地质科技情报.Vol18,No3:85-89
    [88]牛富俊,张建明,张钊.2002.青藏铁路北麓河试验段冻土工程地质特征及评价.冰川冻土.Vol124,No3:264-269
    [89]李新,程国栋.2002.冻土-气候关系模型评述.冰川冻土.Vol124,No3:315-319
    [90]严二虎,沈金安,李福普.2004.沥青路面级配碎石基层的设计与施工工艺.公路交通科技.Vol121,No3:9-13
    [91]王树森.2001.级配碎石基层材料组成设计与工艺控制的研究.公路.2001.2.75-78
    [92]刘元雪,郑颖人.2001.岩土弹塑性理论的加卸载准则探讨.岩石力学与工程学报.Vol120,No6:768-771
    [93]郑颖人.关于岩土塑性的几点认识.岩土工程界.Vol15,No4:14-17
    [94]杨强,陈新,周维恒.2002.基于D—P准则的三维弹塑性有限元增量计算的有效算法.岩土工程学报.Vol124,No1:16-20
    [95]中国科学院兰州冰川冻土研究所.1990.冻土的温度水分应力及其相互作用.兰州:兰州大学出版社
    [96]孙均,迟景魁,曹正康等.1998.新型土工材料与工程整治.北京:中国建材工业出版社
    [97]何光春.2000.加筋土工程设计与施工.北京:人民交通出版社
    [98]李述训,程国栋.1995.冻融土中的水热输运问题.兰州:兰州大学出版社
    [99]陆辉.2001.轮载作用下沥青路面结构三维非线性有限元分析方法的研究.同济大学博士论文
    [100]潘卫东.2002.青藏高原多年冻土区铁路路基热稳定性研究.兰州大学博士论文
    [101]崔托维奇.1985.冻土力学.科学出版社.北京
    [102]前苏联科学院西伯利亚分院冻土研究所.1988.普通冻土学.科学出版社
    [103]杨成林.1993.瑞雷波勘探.北京:地质出版社
    [104]王振东.1988.浅层地震勘探应用技术.北京:地质出版社
    
    
    [105]王绍令,赵秀锋.1997.青藏公路南段岛状冻土区内冻土环境变化.冰川冻土.Vol.19,No.3
    [106]章金钊,李祝龙,武敬民.2000.冻土路基稳定性主要影响因素探讨.公路.2000.2
    [107]王家澄,徐学祖,张立新等.1995.土类对正冻土成冰及冷生组构影响的实验研究.冰川冻土.Vol.17,No.1
    [108]马虹,胡汝骥.1995.积雪对冻土热状况的影响.干旱区地理.Vol.18,No.4
    [109]http:/www.xinhuanet.com/newscenter/zt_zricfnf.htm
    [110]http:/www.un.org/chinese/event/wssd/agenda21.htm
    [111]http:/www.nsfc.gov.cn/
    [112]Robert L.Scher.1998. Geotextile-Reinforced Pavement over Spreading Embankments: Goldstream Road, Alaska(Performance 1994-1998)9th International Conference on Cold Regions Engineering Conference Proceedings.
    [113]Bemard Nidowicz and Yuri Shur.1998. Pavement Thermal Impact on Discontinuous Permafrost. 9th International Conference on Cold Regions Engineering Conference Proceedings
    [114]Douglas J.Goering. 1996.Air Convection Embankments for Roadway Construction in Permafrost Zones.8th International Conference on Cold Regions Engineering Conference Proceedings
    [115]Robert L.Scher. 1996. Environmental-Induced Longitudinal Cracking in Cold Regions Pavements. 8th International Conference on Cold Regions Engineering Conference Proceedings
    [116]Rupert Graft, Mark R.Musial and Michael E.Krueger. 1996. Distress Caused by Deep Heave in Anchorage, Alaska. 8th International Conference on Cold Regions Engineering Conference Proceedings
    [117]J.W.Rooney and E.G.Johnson.1988. Technical Council on Cold Regions Engineering Monograph-Embankment Stabilization Techniques.ASCE
    [118]J.P.Zarling and A.Braley. 1988. Geotechnical Thermal Analysis. ASCE
    [119]E.G.Johnson and T.C.Kinney.1988. Technical Council on Cold Regions Engineering Monograph-Embankment Settlement and Stability Analyses.ASCE.
    [120]W.M.Haas. 1988. Technical Council on Cold Regions Engineering Monograph-Construction Materials and Field Placement.ASCE
    
    
    [121]D.C.Esch. 1988.Technical Council on Cold Regions Engineering Monograph-Embankment Case Histories on Permafrost. ACSE
    [122]Zarling,J.P. and Braley, A.W.. 1987.Thaw Stabilization of Roadway Embankments Constructed Over Permafrost.Alaska Department of transportation and Public Facilities, Report FHWA-AKRRD-87-20
    [123]Nixon,J.F..1987.Ground Freezing and Frost Heave-A Review.Proc.Intemational Symposium on Heat Transfer
    [124]Kinney, T.C.. 1986.Reinforced Roads Bridging Voids.Proc.4th International Specialty Conference on Cold Regions, Anchorage, pp.320-329
    [125]Kinney, T.C.. 1988.Limiting Longitudinal Pavement Cracking.Alaska Department of Transportation and Public Facilities
    [126]Luscher, U. and Afifi,S.S.. 1973.Thaw Consolidation of Alaska Silts and Granular Soils. Proc.2th International Specialty Conference on Cold Regions, Yakutsk, pp.325-333