大跨径钢桥面环氧沥青混凝土铺装裂缝行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢桥面铺装层作为一个功能层,必须具有足够的强度和良好的整体性,并应具有足够的抗裂、抗冲击、耐磨性能。在我国,多座钢桥面铺装层在使用过程中都出现裂缝类病害,有的甚至严重到不得不进行大面积翻修。大跨径钢桥面铺装层出现裂缝之后,一旦雨水渗入裂缝,浸蚀铺装层与钢桥面板之间的粘结层,那么在行车荷载作用下,铺装层会很快在更大面积上开裂恶化,不但会诱发更多其他类型病害的产生,还会引起钢桥面板的锈蚀。这不仅对高速行驶车辆的安全构成威胁,而且会降低钢桥面板的使用寿命,同时也会造成恶劣的社会影响。因此,对钢桥面铺装层裂缝行为进行研究是降低铺装层病害出现的概率、延长铺装层使用寿命的关键。
     本文是国家自然科学基金项目“钢桥面环氧沥青混凝土铺装层疲劳损伤与寿命预估研究”(基金编号:50578038)的一部分,主要对环氧沥青混凝土铺装层裂缝行为进行理论研究。
     论文首先对环氧沥青混凝土裂缝类病害现场调查结果进行令了分析和评述。根据裂缝的具体特征把铺装层上的裂缝分为三类。在此基础上通过对钢桥面铺装层荷载图式的研究以及不同条件下铺装层的力学分析,得出了不同类型裂缝产生的机理,并对钢桥面铺装各种病害之间的演化关系进行了分析。
     在对现有材料断裂判据优劣性分析的基础上,利用有限元方法对带切口的环氧沥青混凝土复合结构的断裂过程进行了模拟,发现在J积分vs.裂缝扩展长度曲线上存在两个拐点,由此提出用J积分作为环氧沥青混凝土复合结构的断裂判据,同时给出了描述环氧沥青混凝土复合结构中裂缝扩展过程的指标:iniJ I和J Iun。
     疲劳断裂是环氧沥青混凝土铺装层裂缝出现的主要原因。材料的疲劳断裂过程实际上是多次动荷载作用下裂缝扩展过程的简单迭加。鉴于此,论文利用有限元方法对带裂缝的铺装层的动荷载响应进行了分析。同时分析了不同铺装层不平整度、裂缝深度、铺装层模量、铺装层与钢板之间层间粘结情况等对裂缝顶端应力场的影响,结果表明,不同因素对铺装层裂缝顶端应力场的影响规律是不同的。其中,铺装层与钢板之间的粘结情况对铺装层使用性能的影响最为显著。
     通过对已有研究成果的对比分析,对环氧沥青混凝土复合结构疲劳裂缝扩展阻力曲线的形式进行了探讨,并提出了适合于环氧沥青混凝土复合结构的R曲线。在此基础上,利用MSC.Fatigue对复合梁的疲劳裂缝扩展进行了研究,提出了疲劳裂缝扩展的三个阶段:启裂阶段、稳定扩展阶段和失稳扩展阶段,并分别对其进行了拟合,得出了疲劳裂缝扩展与疲劳荷载作用次数之间的关系。同时还提出了当量裂缝长度的概念,以有效考虑环氧沥青混凝土中的微孔隙对疲劳裂缝扩展的影响。
     研究裂缝的目的是控制并消除裂缝的不利影响。因此,论文在最后对利用分布式光纤传感器对铺装层中的裂缝进行监测并预报的可行性进行了分析,提出了分布式光纤传感器在铺装层中的布设方式。同时,对环氧沥青混凝土铺装层养护方法进行了分类,并对预防性养护方法的实用性进行了分析。并且建立了铺装层使用性能评价指标BPCI模型。利用BPCI的衰减规律,可以方便地进行养护决策。
As a secondary layer, pavement on the steel orthotropic deck should have high strength, integrity and other good properties, such as anti-crack, anti-impaction, waterproof and wearable. In China, many steel deck pavements have the experiences of cracks during using, and some of them had to be rebuilt because of severe distresses. When cracks appearing in the deck pavement, rain or other water have the entrance to the bottom of the pavement and erode the cohesion layer between the pavement and steel deck. Gradually simple cracks will evolve into crocodile cracks or other distresses in wide area of the pavement under the traffic loadings, which may lead to the erosion of steel deck. This will not only do harm to the high speed vehicles, lower the fatigue life of the steel deck, but cause abominable social influence. Therefore, it is a key to put much effort into the analysis of cracks in pavement on the orthotropic steel deck, reducing the probability of cracking, and prolonging the life time of deck pavement.
     The dissertation is part of the project“Research on the Fatigue Damage and Life Prediction of Epoxy Asphalt Pavement on Steel Deck”(No. 50578038) aided by NSFC (National Natural Science Foundation of China). And the main purpose of the dissertation is doing theoretical research on the cracks of epoxy asphalt pavement.
     The distresses in epoxy asphalt pavement of orthotropic steel deck have been investigated, and cracks in the pavement were divided into 3 categories. The mechanism of each kind of cracks was analyzed on the basis of the research on the load patterns and different mechanic responses of the pavement with FEM. And the evolution relationship among different pavement distresses was discussed here.
     Composite beam made with epoxy asphalt over steel deck is the object of the research. The composite beam with a notch in the epoxy asphalt was simulated with FEM, and J-integral was used to evaluate the fracture property of the composite beam after considering the merit and demerit of the fracture criterions common used. The simulation results showed that there were two inflexions on the curve of J-integral vs. crack length, and J-integral could be a fracture criterion of the composite structure.
     As all known, fatigue fracture is the main cause of crack in the deck pavement. And the process of fatigue crack propagation is the addition of many times crack propagation under one-time dynamic loading. Therefore, the responses of epoxy asphalt pavement on steel deck with a crack were studied considering the stress field influenced by many factors such as different roughness of pavement, different crack depths, different pavement moduli and cohesion condition between deck and pavement.
     After the comparison among the research results, the R-curve of the composite structure was discussed and analyzed, on the basis of which fatigue crack propagation of composite structure was analyzed using MSC. Fatigue Programme. And the relationships between fatigue crack propagation vs. time of loading were regressed. And in order to considering the effect of the micro-void in the epoxy asphalt on the fatigue crack propagation, a new concept, Equivalent Crack Length, was put forward.
     The last topic in the paper was how to control crack and diminish its disbennifit effect. For the purpose, a new monitoring method, Distributed Fiber Crack Sensor, and the feasibility of how to use the fiber to monitor and predict pavement crack were discussed. Consequently some techniques of preventive maintenance and BPCI (Bridge Pavement Condition Index) model were recommended.
引文
[1] 凌坚, 李志能. 对桥面裂缝及铺装病害的讨论[J],公路,1996(9):12-15
    [2] 东南大学,江苏省扬子大桥有限公司. 江阴长江公路大桥主桥桥面铺装维修技术研究阶段报告[R],南京,2003
    [3] http://www.dayoo.com/gb/content/2002-08/19/content_577673.htm[DB/OL], 2002-8-19
    [4] 东南大学, 南京长江第二大桥建设指挥部. 南京长江第二大桥钢桥面环氧沥青混凝土铺装技术[R].南京, 2001
    [5] 张磊. 江阴大桥钢桥面铺装病害研究[D]: [硕士学位论文]. 南京:东南大学, 2004
    [6] 张家坤, 光纤光栅传感技术在土木工程结构中的应用研究[D]: [硕士学位论文]. 北京:北京交通大学, 2004.
    [7] Mendez A, Morse T.F and Mendez F. Applications of Embedded Fiber Optic Sensors in Reinforced Concrete Buildings and Structures[C].SP IE, 2002(1170):60 -69.
    [8] Sneddon. The distribution of stress in the neighborhood of a crack in an elastic solid[J]. Proc. Roy. Soc. Series A, 1946(187):229-260.
    [9] Paris,P.C., Gomez, M.P. A rational analytic theory of fatigue [J]. The Trend in Engineering, 1998(13):9-14
    [10] Forman. R.G.,Kearney. V.E., Numerical analysis of crack propagation in cyclic-loaded structures[J].Journal of Basic Engineering,2001(89):459-464
    [11] M.O.Speidel. Fatigue Crack Growth at High Temperatures in High Temperature Materials in Gas Turbines[J], Proc.Syrup, 1973(30):207-255
    [12] Taira.S. Grain size effect on crack nucleation and growth in long-life fatigue of low carbon steel[J], Fatigue Mechanisms Special Technical Publication. 1985(675):135-173.
    [13] E.K. Tschegg. Ultrasonic method for determination of near-threshold fagitue crack growth rates[J], Fatigue Threshold, Proc, int. coef. Fatigue threshold Stockholm,1981,3(40):99-112.
    [14] 郑修麟等. 15MnVN 钢 56 毫米厚板的疲劳裂纹扩展速率与门槛值[J]. 机械强度,1987(3):35-39.
    [15] 郑修麟等. LY 12CZ 铝合金板材中的疲劳裂纹扩展[J]. 西北工业大学学报, 1986(2):97-103
    [16] McMillan, J.C. Fatigue crack propagation under program and random loads[J]. Fatigue Crack Propagation, 1975(415): 505-535.
    [17] 刘文挺, 胡仁伟. 全范围疲劳裂纹扩展速率表达式的研究[J]. 航空学报, 1995,16(2):223-225.
    [18] 王荣. 金属材料的腐蚀疲劳[M]. 西安:西北工业大学出版社. 2001
    [19] S.Nishino. Nucleation of intergranular cracks during high temperature low cycle fatigue of SUS316[J], Fatigue Fract. Eng. Mater. Struct. 1996,19(5):581-587.
    [20] D.Kocanda, Description of short fatigue crack growth in a shotpeened medium carbon steel[J], Fatigue Fract. Eng. Mater. Struct, 1998,21(4):977-985
    [21] 王泓. 材料疲劳裂纹扩展和断裂定量规律的研究[D]:[博士生学位论文]. 西安:西北工业大学, 1998
    [22] 张登良.沥青与沥青混合料[M].北京:人民交通出版社, 1993.
    [23] C.L.Monismith, N.F.Coetzee. Reflection Cracking: Analysis, Laboratory state and design considerations[C]. Proceedings of AAPT, 1980(49):268-313
    [24] N.F.Coetzee, C.L.Monismith. Analytical study of minimization of reflection cracking in asphalt concrete overlays by use of a rubber-asphalt interlayer[C]. TRR,1981(700):101-108.
    [25] S.B.Seeds, B.F.MeCulloughm, F.Carmichael. Asphalt concrete overlay design procedure research report [R], Portland Cement Concrete Pavements Transportation, Washington D.C, 1985(1007):26-36.
    [26] Bathias, C.,Mecanique etal. Mechanism de la fissuration par fatigue, dans La Fatigue des materiaux et desstructures[J], les Press De L’universit De Montreal, 1981(77):163-200.
    [27] Masounave J.,Bailon, J. –P et Dickson, Les lois de la fissuration par fatigue[J], Ibid,1983(43):201-236.
    [28] Nukala, Phani Kumar V.V., Simunovic,et al. An efficient algorithm for modelling progressive damage accumulation in disordered materials[J]. International Journal for Numerical Methods in Engineering, 2005,62(14):1982-2008
    [29] Myers, Roque, Birqisson. Propagation mechanisms for surface-initiated longitudinal wheelpath cracks.Transportation Research Record. 2001(1778): 113-121
    [30] 刘振清. 大跨径钢桥面铺装设计关键技术研究[D]:[博士生学位论文]. 南京:东南大学,2004
    [31] 南京长江第二大桥建设指挥部, 东南大学, 南京长江第二大桥钢桥面环氧沥青混凝土铺装技术及应用[R], 2000.
    [32] Schapery, R. A.. a Theory of Crack Growth in Viscoelastic Media[R]. Report NN-2764-73-1, Mechanics and Matherials Research Center. Texas A&M University, 1973.
    [33] T. O. Medani, M. Sc. Asphalt Surfacing Applied to Orthotropic Steel Bridge Decks[R], Report 7-01-127-1 ISSN 0169-9288, Delf University of Technology, 2001.
    [34] T. O. Medani, M. Sc. Towards a New Design Philosophy for Asphalt Surfacings on Orthotropic Steel Decks[D], Report 7-01-127-2 ISSN 0169-9288, Delf University of Technology,2001.
    [35] 姬野贤治等. Longitudinal Surface Cracking in Asphalt Pavements on Steel Bridge Decks Related to Dissipated Energy [C]. 2nd Workshop on Pavement Technologies,东京, 2003.
    [36] 孙圣和, 王廷云等. 光纤测量与传感技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000.
    [37] Mendez A, Morse T.F and Mendez F. Applications of Embedded Fiber Optic Sensors in Reinforced Concrete Buildings and Structures[C].SP IE,1992(1170):60 -69.
    [38] A. J .Rogers,” Distributed Optical Fiber Sensors”, J PhyS & Appl Phys,1986,19(3):2237- 2255
    [39] Slowik V,etal. Fiber Bragg Grating Sensors in Concrete Technology [J] LACER,1998(3):109-119.
    [40] R L Idrissy, M B Kodindoumay,A D Kerseyz. Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges[J]. Smart Material and Structures, 1998 (7 ): 209-216.
    [41] Ansari F. Real-time monitoring of concrete structures by embedded optical fibers[C]. Proceedings of the ASCE, 1992(4):49-59.
    [42] Habel W R. Hillemeier B. Result in monitoring and assessment of damages in large steel and concrete structures by means of fiber optic sensors [J]. SPIE Proc, 1995(2446):25-35.
    [43] Friebele P. Fiber Bragg Grating Strain Sensors:Present and Future Applications in Smart Structures [J]. Optics and Photonics News.1998(9):33-37.
    [44] M. A. Davis, A. D. Kersey. Dynamic strain monitoring of an in-use interstate bridge using Fiber Bragg Grating sensors [J]. SPIE Proc, 2004(3043): 87-95.
    [45] Griffiths R W. Structural integrity monitoring of bridges using fiber optics [J]. SPIE Proc, 1995(2446):127–139.
    [46] Whitten L. Schulz, Joel P. Conte, Real-time damage assessment of civil structures using fiber grating sensors and modal analysis [J]. Smart systems for bridges, Structures, and Highways. 2002(4696): 228-237.
    [47] Hiroshige Ohno, Hiroshi Naruse, Mitsuru Kihara, and Akiyoshi Shimada. Industrial Applications of the BOTDR Optical Fiber Strain Sensor[J]. Optical Fiber Technology.2001(7) :341-349
    [48] 钱济成, 蔡尚荣等. 高速荷载下混凝土断裂性能的试验研究[J], 水利学报,1995(1):35-39.
    [49] 刘光延, 王宗敏等. 缝端奇异边界单元和界面裂缝的应力强度因子计算[J], 清华大学学报(自然科学版), 199636(1):34-40.
    [50] 郑健龙, 应荣华, 张起森. 沥青混合料热粘弹性断裂参数研究[J], 中国公路学报, 1996,9(3):20-28.
    [51] 赵志方, 徐世烺. 混凝土裂缝扩展阻力曲线[J], 三峡大学学报, 2002, 24(1):19-25.
    [52] 孙雅珍, 赵颖华等, 含表面裂缝沥青路面粘弹性损伤分析[J], 东北公路,2003, 26(4):6-8.
    [53] 赵艳华, 徐世烺等, 混凝土裂缝扩展的双 G 准则[J], 土木工程学报, 2004, 37(10):13-18.
    [54] 王承强, 郑长良. 混凝土双 K 断裂参数计算的半解析有限元法[J], 力学学报,2004, 36(4)414-418.
    [55] 卢海星, 黄醒春. 弹性体裂纹扩展的数值模拟[J], 上海交通大学学报 2001,35(4):634-637.
    [56] 张君, 王林等, 粗细骨料比例和水泥石强度对混凝土断裂参数的影响[J], 工程力学, 2004, 21(1): 136-142.
    [57] 单海燕, 马海峰. 防水混凝土桥面铺装层裂缝产生的原因及防治[J], 辽宁省交通高等专科学校学报, 2004, 6(2): 11-12.
    [58] 邓学钧, 顾兴宇等. 钢桥面沥青铺装层裂缝破坏趋势研究[J], 公路交通科技, 2002, 19(4):4-7.
    [59] 邵腊庚, 李宇峙. 正交异性钢桥面沥青铺装结构特性的研究[J],公路交通科技, 2005, 22(6):89-93.
    [60] 张起森, 李宇峙等. 厦门海沧大桥桥面沥青铺装层直道疲劳试验研究[J], 中国公路学报, 2001, 13(1): 61-65.
    [61] Huang Shanglian. An approach of state monitoring for smart civil structure [J]. SPIE Proc, 1995(2509): 6-12.
    [62] 赵廷超,黄尚廉. 光纤传感器用于混凝土结构状态检测的研究[J]. 传感技术学报,1997, 10(3):32-37.
    [63] Huang S L , Huang M S , et al. Distributed Fiber Optic Tensile Sensing Using Backscattering Brillouin Heterodyne[C]. SPIE, 1995(2507):158-161.
    [64] 赵廷超,黄尚廉等.光纤传感器用于混凝土结构状态监测的研究[J],传感技术学报. 1997(3):33-37
    [65] 信思金,梁磊,左军.,混凝土裂缝监测光纤传感器研究,中国水泥[J]. 2005(5) :61-62.
    [66] 刘浩吾. 混凝土重力坝裂缝观测的光纤传感网络[J] .水利学报,1999(10): 61-64.
    [67] 江毅, Christopher K. Y. Leung. 分布式光纤裂缝传感器[J], 压电与声光. 2004, 26(1):10-12。
    [68] 江毅, Leung K. Y. Christopher. 光纤裂缝传感器中裂缝宽度与光纤损耗关系分析[J], 北京理工大学学报, 2003, 23(4): 492~496。
    [69] 康增云, 张林, 陈建叶, 李桂林. 光纤传感技术在沙牌碾压混凝土高拱坝结构模型随机裂缝检测中的应用[J],四川水力发电. 2005,24(1):66~68。
    [70] 蔡德所, 张林. 光纤传感技术应用于裂缝监测的研究[J]. 中国水利, 2001(1):4-5.
    [71] 王丹生, 吴宁,朱宏平. 光纤光栅传感器在桥梁工程中的应用与研究现状[J]. 公路交通科技,2004 (2):37-39
    [72] 吴智深, 施斌, 原田隆郎等. 可用于结构健康监测的 BOTDR 光纤变形检出特性试验研[J]. 土木工程学报. 2005, 38(8):25-30
    [73] 张丹,施斌等. BOTDR 分布式光纤传感器及其在结构健康监测中的应用[J], 土木工程学报. 2003,36(11):95-97.
    [74] 张丹,施斌等. BOTDR 用于钢筋混凝土 T 型梁变形监测的试验研究[J],东南大学学报( 自然科学版). 2004, 34(4):41-47
    [75] 张丹, 施斌等. 基于 BOTDR 的隧道应变监测研究[J],工程地质学报. 2004(4): 422-426.
    [76] 高俊启, 施斌等. 分布式光纤传感器用于桥梁和路面的健康监测[J]. 防灾减灾工程学报. 2005, 25(1):324-330
    [77] 索文斌, 王宝军等. 基于 GIS 的大型工程分布式光纤传感监测系统研究[J],水文地质工程地质. 2005(4): 12-19.
    [78] 刘德华,宋牟平等,基于布里渊散射的长距离分布式监测网络技术[J],科学通报. 2004,20(5):415~419.
    [79] 王柏生.用神经网络进行结构损伤识别的关键问题研究[D]:[博士学位论文].杭州:浙江大学,1999.
    [80] 董志明,分布式光纤传感器在土木工程中应用[D]:[硕士学位论文]. 合肥:安徽理工大学, 2003.
    [81] Landes JD. Extrapolation of the J-R curve for predicting reactor vessel integrity[R]. US Nuclear Regulatory Commission Report,NUREG/CR5650,January,1992.
    [82] Steenkamp PAJM, Latzko DGH, Bakker A. Engineering application of elastic-plastic fracture assessment method: an exploratory study[J]. Nuclear Engineering and Design, 1985(35):87-101.
    [83] Kolednik O. On the physical meaning of the J-R a-curve[J]. Engineering Fracture Mechanics, 1991(38):403-422.
    [84] Etemand MR. Unique elastic-plastic R-curves: facts or fiction [J]. Fracture Mechanics: Twenty-First Symposium[J], ASTM STP,1990(174):289-301
    [85] T.L. Weng, S.T.Sun. A Study of Fracture Criteria for Ductile Materials[J], Engineering Failure Analysis, 2000(7):101-125.
    [86] 黄仰贤. 路面分析与设计[M].北京:人民交通出版社, 1998.
    [87] Mutoh Y, Takahashi M. Fatigue crack growth in several ceramic materials[J]. Fatigue and Fracture of Engineering Materials and Structures.1993, 16(8):875-890.
    [88] Liu S.Y., Chen L. W. Fatigue-crack growth of silicon –nitride at 1400degrees C-A novel fatigue-induced crack-tip bridging phenomenon[J]. Journal of the American Ceramic Society. 2000(77):137-142.
    [89] 徐世烺, 赵国藩. 巨型试件断裂韧度和高混凝土坝裂缝评定的断裂准则[J]. 土木工程学报, 1991, 24(2):1~9.
    [90] 徐世烺, 赵国藩. 混凝土结构的双 K 准则[J]. 土木工程学报, 1992, 25(2):21-28.
    [91] Roebben G., Steen M.. Mechanical fatigue in monolithic non-transforming ceramics [J]. Progress in Materials Science. 1996(40):265-331.
    [92] 于力. 江阴桥桥面铺装局部修复方案研究[D]:[硕士学位论文]. 南京:东南大学, 2004
    [93] Christopher K.Y. Leung, Niell Elvin et al. A novel distributed optical crack sensor for concrete structures[J]. Engineering Fracture Mechanics, 2000(65):133-148.
    [94] 孙圣和, 王延云. 光纤测量与传感技术.哈尔滨:哈尔滨工业大学出版社,2000
    [95] Chen tuan-jie, Qian zhen-dong, Dynamic response of longitudinal crack in pavement on the orthotropic steel deck[C], International Symposium on Innovation & Sustainability of structures in civil engineering-including seismic engineering, 2005.
    [96] M.F.Green, D.Cebon. Dynamic interaction between heavy vehicles and highway bridges[J]. Computers and structures, 1997, 62(2): 253-264,
    [97] O.Hunaidi, W. Guan, J. Nicks. Building vibrations and dynamic pavement loads induced by transit buses[J]. Soil dynamics and Earthquake Engineering, 2000(19): 435-453.
    [98] F T K Au, Y S Cheng, Y K Cheng. Vibration analysis of bridges under moving vehicles and trains: an overview[J]. Prog. Struct. Engng Mater. 2001(3): 299-304.
    [1] Wai-Fai Chen et al. Bridge Engineering Handbook [M]. Boca Raton:CRC Press, 2000
    [2] 宗海.环氧沥青混凝土桥面铺装病害修复技术研究[D]:[硕士学位论文]. 南京:东南大学,2005.
    [3] Medani T.O., Scarps A., Kolstein M.H.. Design aspects for wearing courses on orthotropic steel bridge decks [DB/OL]. www.vbk.citg.tudelft.nl/Wegbouwkunde/ road/papers/2002/ISAP02.med.pdf
    [4] 姬野贤治等. Longitudinal Surface Cracking in Asphalt Pavements on Steel Bridge Decks Related to Dissipated Energy [C]. 2nd Workshop on Pavement Technologies,东京, 2003.
    [5] 刘振清. 大跨径钢桥面铺装设计关键技术研究[D]:[博士生学位论文]. 南京:东南大学,2004
    [6] 钱振东, 黄卫等. 南京长江第二大桥钢桥面铺装层受力分析研究[J].公路交通科技. 2001, 18(6):43-46
    [7] 顾兴宇. 悬索桥桥面沥青铺装层力学分析及结构设计研究[D]: [博士生学位论文]. 南京:东南大学, 2002
    [8] Gunther. Troitsky, A. K. Azad. Analysis of orthotropic Steel Bridge Decks by a Stiffness Method[J]. Proc. Inst Civ. Engrs, 1973(5): 441-461
    [9] Chales Seim. The influence of wearing surfacing on the performance of orthotropic steel plate decks[C]. TRB 2004 Annual Meeting.
    [10] 罗剑. 钢混结构混合桥桥面铺装体系受力分析——桃夭门大桥钢桥面铺装力学分析[D]:[硕士生学位论文]. 南京:东南大学,2004
    [11] 王勖成,邵敏,有限单元法基本原理和数值方法[M],清华大学出版社,1997
    [12] M. Smith, D. V. Griffiths. Programming the Finite Element Method[M].John Wiley & Sons, Inc. and Publishing House of Electronics Industry, 2003
    [13] 孙立军. 沥青路面结构行为理论[M]. 上海:同济大学出版社,2003
    [14] 武和平. 高等级公路路面结构设计方法[M]. 北京:人民交通出版社,1999
    [15] 俞淇, 戴元坎, 张凯. 静负荷下轮胎接地压力分布测试[J]. 轮胎工业. 1999,19(4):203-207
    [16] 阮隆敏. 轮胎的接地印痕与胎冠的刚度分布[J]. 轮胎工业. 1997,17(4):210-211
    [17] 戴元坎, 俞淇. 轮胎接触问题的分析与研究[J]. 轮胎工业. 1997, 17(3):136-147
    [18] 谢水友, 郑传超. 轮胎接触压力对黎庆路面结构的影响[J]. 长安大学学报(自然科学版). 2004, 24(1): 12-16
    [19] 陈丽, 王友善. 轮胎接地反力分析[J]. 轮胎工业. 2000, 20(5):276-277.
    [20] 谭惠丰, 姚伟, 杜星文. 轮胎有限元分析结果校核[J]. 2002, 24(2):122-125
    [21] 王登祥. 轮胎有限元研究(FEA)进展及应用成果[J]. 轮胎工业. 1998, 18(6): 395-403
    [22] 李丽娟, 刘锋. 子午线轮胎接触变形的非线性有限元分析[J]. 合成橡胶工业. 2000, 23(6):313-316
    [23] 程钢, 赵国群, 管延绵. 子午线轮胎静态接触有限元分析及试验研究[J]. 汽车工程. 2004, 26(5):588-592
    [24] 王刚. 265/70R19.5 全钢丝无内胎子午线轮胎设计[D]:[硕士学位论文]. 哈尔滨:哈尔滨工业大学, 2003
    [25] 刘锋, 李丽娟. 轮胎与地面接触问题的非线性有限元分析[J]. 应用力学学报. 2001, 18(4):141-146
    [26] 吴卫东, 管迪华. 利用试验模态参数研究轮胎与地面的接触[J]. 清华大学学报(自然科学版).1996, 36(10):46-49
    [27] 王登祥. 轮胎胶料有限元分析的实验基础及计算[C]. 第十届全国轮胎技术研讨会, 1998.
    [28] 东南大学, 南京长江第二大桥建设指挥部. 南京长江第二大桥钢桥面环氧沥青混凝土铺装技术及应用[R],南京,2000
    [29] ADINA R&D Inc. ADINA theory and modeling guide[R]. Watertown, 2005
    [1] 范天佑. 断裂理论基础[M]. 北京:科学出版社, 2003
    [2] 唐春安. 混凝土损伤与断裂——数值实验[M]. 北京:科学出版社, 2003
    [3] 徐世烺, 赵国藩. 混凝土断裂力学研究[M]. 大连:大连理工大学出版社, 1991
    [4] 尹双增. 断裂判据与在混凝土工程中应用[M]. 北京:科学出版社, 1996
    [5] 蔡四维, 蔡敏.混凝土的损伤断裂[M]. 北京:人民交通出版社, 2000
    [6] 李庆芬. 断裂力学及其工程应用[M]. 哈尔滨:哈尔滨工程大学出版社, 1998
    [7] T.L.Weng, C.T. Sun. A study of fracture criteria for ductile materials[J]. Engineering Failure Analysis. 2000(7):101-125.
    [8] Landers JD. Extrapolation of the J-R curve for predicting reactor vessel integrity[R]. US Nuclear Regulatory Commission Report, NUREG/CR5650, January, 1992.
    [9] Shoji T. Determination of crack tip energy dissipation and elastic-plastic fracture toughness parameter with ductile crack extension [J]. Journal of Testing and Evaluation. 1991, 9(6):324-332.
    [10] Kfouri AP, Miller KJ. Crack separation energy rate for crack advance in finite growth steps [C]. ICF4,1987
    [11] Rice JR. An examination of the fracture mechanics energy balance from the point of view of continuum mechanics [C]. Proceedings of the First International Conference on Fracture. 1966
    [12] Parks. A stiffness derivative finite element technique for determination of crack tip stress intensity factors [J]. Journal of Basic Engineering. 1986, 85: 528-534.
    [13] Hellen T.K. On the method of virtual crack extensions[J]. International Journal for Numerical Methods in Engineering. 1975.
    [14] 亚得科技有限公司. ADINA Theory and Modeling Guide[G]. ARD05-7, October, 2005.
    [15] 东南大学, 南京长江第二大桥建设指挥部. 南京长江第二大桥钢桥面环氧沥青混凝土铺装技术及应用[R],2000
    [16] Kishimoto K, Aoki S and Sakata M. Dynamic stress intensity factors using J-integral and finite element method. Eng. Fracture Mech. 1980, 13:387~394
    [17] Yongqi Li. Asphalt pavement fatigue cracking modeling[D]:[ A Dissertation for the degree of Doctor of Philosophy]. Louisiana State University and Agricultural and Mechanical College, 1999
    [18] (美)布查南著,董文军译. 有限元分析[M]. 北京:科学出版社,2002.
    [19] Lee JD, Liebowitz H. Considerations of crack growth and plasticity in finite element analysis [J]. Journal of Computers& Structures. 1978,8:403-421
    [20] Liebowitz H, Lee JD. Effects of plasticity and crack geometry on fracture[R]. SMIRT, Paper#G6/2,1979.
    [21] Watson TJ, Mitchell IJ. Plastic energy dissipation as a parameter to characterize crack growth. Fracture Mechanics[J]. ASTM STP 905, 1986, 17(5):542-557.
    [22] Papaspyropoulos V, Marschall C, Landow M. Predictions of J-R curve with large crack growth from small specimen data[R]. US Nuclear Regulatory Commission Report, NUREG/CR4575,1986.
    [23] 范天佑. 断裂动力学原理与应用[M].北京:北京理工大学出版社,2005
    [24] 宋天霞, 郭建生, 杨元明. 非线性固体计算力学[M]. 武汉:华中科技大学出版社,2002
    [1] 潘玉利. 路面管理系统原理[M]. 北京:人民交通出版社,1998
    [2] 朱孔源. 车辆———柔性路面力学相互作用系统的研究 [D]:[博士学问论文]. 北京:中国农业大学, 2001
    [3] 赵济海, 王哲人, 关朝雳. 路面不平整度的测量、分析与应用. 北京:北京理工大学出版社,2000.
    [4] Jyh-Dong LIN, Yong-Lin Chen, Shun-Hsing CHEN. The study of HDN-4 pavement management system in TAIWAN freeway bureau. 2nd WORKSHOP ON PAVEMENT TECHNOLOGIES, Tokyo, Japan, 2003
    [5] 郑安福, 鲍世恩, 潘玉利. 国际平整度指数标定报告. 北京:交通部公路科学研究所, 杭州市公路处, 1990
    [6] 王永平, 陈彦江等. 桥面平整度的极大熵分析. 哈尔滨建筑大学学报, 1995, 28(2):115-123
    [7] 孙璐, 邓学钧. 平整度与机场道面谱分析. 华东公路, 1996, 2:35-39
    [8] 王新明, 王秉纲. 高速公路路面功率谱. 交通运输工程学报, 2003, 3(2):53-56.
    [9] 孙璐, 邓学钧. 车辆——路面相互作用产生的动荷载. 东南大学学报(自然科学版), 1996, 26(5):142-145
    [10] 郑京杰, 李跃军. 汽车对路面作用的随机动荷分析. 中南公路工程, 1999, 24(1):8-10
    [11] Ralph HAAS, W. Ronald Hudson. Pavement management systems[M]. Robert. E. Krieger PUBLISHING COMPANY.
    [12] Lu Sun. Simulation of pavement roughness and IRI based on power spectral density. Mathematics and Computers in Simulation. 2003, 61: 77-88.
    [13] GB/T 7031-1986. 车辆振动输入路面平整度表示方法. 中华人民共和国国家标准
    [14] 盛灿花. 路面平整度特性研究[D].:[硕士学位论文]. 长沙:湖南大学土木工程学院,2005
    [15] Sayers M W. On the calculation of International Roughness Index from longitudinal road profile. Transportation Research Record. 1995, 1501:1-12.
    [16] Gillespie T D, S M Karamihas, D Cebon, et al. Effects of heavy vehicle characteristics on pavement response and performance. National Cooperative Highway Research Program Report 353, 1993.
    [17] 杨瑞峰. 高速公路路面功率谱调查研究[D]:[硕士学位论文]. 长春:吉林大学交通学院,2004
    [18] T.D. Gillespie, M.W. Sayers, L. Segel. Calibration of response-type pavement roughness measuring systems. National Cooperative Highway Research Program. Res.Rep.No.228, Transportation Research Board, National Research Council, Washington, D.C., 1980
    [19] R. Al-Khoury, C. Kasbergen, A. Scarpas and J. Blaauwendraad. Poroelastic spectral element for wave propagation and parameter identification in multi-layer systems. International Journal of solids and structures, 2002, 39(15): 4073-4091
    [20] U ddin W. Three-dimensional finite element analysis of flexible pavements with an EPS sub-base. Geotextiles and Geomembranes. 1997, 15:29-38.
    [21] 黄晓明, 邓学钧. 弹性半空间地基板在动荷作用下的力学分析. 岩土工程学报. 1991(4):13-15
    [22] 邓学钧, 黄晓明. 弹性层状体系的动力响应分析. 土木工程学报. 1995, 28(3):9-16
    [23] 郝大力, 王秉纲. 路面结构动力响应分析. 长安大学学报(自然科学版). 2002, 22(3): 9-12.
    [24] 吴一鸣. 大跨径钢桥面铺装力学深入研究[D]:[硕士学位论文]. 南京:东南大学交通学院, 2005.
    [25] F T K Au, Y S Cheng and Y K Cheung. Vibration analysis of bridges under moving vehicles and trains: an overview. Prog. Struct. Engng Mater. 2001 (3):299-304
    [26] ADINA R&D Inc. ADINA theory and modeling guide[R]. Watertown, 2005
    [27] 宋一凡. 公路桥梁动力学. 北京:人民交通出版社,2000
    [28] 罗剑. 钢混结构混合桥桥面铺装体系受力分析——桃夭门大桥钢桥面铺装力学分析[D]:[硕士生学位论文]. 南京:东南大学,2004
    [29] 庄表中, 黄志强. 振动分析基础. 北京:科学出版社, 1985
    [30] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析 理论、实验与应用. 天津:天津大学出版社, 2001
    [31] 户川隼人(日). 振动分析的有限元方法. 北京:地震出版社, 1985.
    [32] 范天佑. 断裂动力学 原理与应用. 北京:北京理工大学出版社, 2006
    [33] 范天佑. 应用断裂动力学基础. 北京:北京理工大学出版社, 1992
    [34] 范天佑. 断裂动力学引论. 北京:北京工业学院出版社, 1990
    [1] Monismith C.L., Coetzee N.F.. Reflection cracking: laboratory studies and design considerations[C]. Proceedings Association of Asphalt Paving Technologists. 1980
    [2] Majidzadeh K., D.V. Ramsamooj. Mechanistic approach to the solution of cracking in pavements[R]. Special Report 140, Transportation Research Board, Washington D. C., 1973.
    [3] Majidzadeh K., E.M. Kaufmann. Application of fracture mechanics in the analysis of pavement fatigue[C]. Proceedings Association of Asphalt Paving Technologists, 1971
    [4] Salam Y.M., C.L.Monismith. Fracture characteristics of asphalt concrete[C]. Proceedings Association of asphalt Paving Technologists. 1972
    [5] Ramsamooj D.V., K. Majidzadeh, E.M. Kaufmann. The analysis and design of the flexibility of pavements[C]. Proceedings 3rd International Conference of Structural Design of Asphalt Pavements. London, 1972
    [6] Schapery R.A.. A theory of crack growth in visco-elasitc media[R]. Report NM 2764-73-1. Mechanics and Materials Research Center. Texas A&M, 1973.
    [7] Molenaar A.A.A.. Structural performance and design of flexible road constructions and asphalt concrete overlays[D]:[ Dissertation for the degree of Doctor of Philosophy]. Holland: Delft University of Technology, 1983
    [8] Jacobs M.M.J., A.H. de Bondt et al. Cracking in asphlt concrete pavement[C]. Proc. On 7th International Conference on the Structural Design of Asphalt Pavements. 1992.
    [9] Yongqi Li. Asphalt pavement fatigue cracking modeling[D]: [Dissertation for the degree of Doctor of Philosophy]. Louisiana: Louisiana State University and Agricultural and Mechanical College, 1999
    [10] 赵志方,徐世烺. 混凝土裂缝扩展阻力曲线[J]. 三峡大学学报(自然科学版). 2002, 24(1):19-25
    [11] 白世鸿, 乔生儒等. 低延性陶瓷材料高温 KR-曲线行为[J]. 材料工程, 2002(6):29-31
    [12] 吴智敏, 赵国藩. 混凝土试件缝高比对裂缝扩展过程及断裂韧度的影响[J]. 应用基础与工程科学学报, 1995, 3(2):126-130
    [13] J.D.G. Sumpter. An alternative view of R curve testing[J]. Engineering Fracture Mechanics, 1999(64): 161-176
    [14] 东南大学, 南京长江第二大桥建设指挥部. 南京长江第二大桥钢桥面环氧沥青混凝土铺装技术及应用[R]. 南京, 2000
    [15] 刘振清. 大跨径钢桥桥面铺装设计关键技术研究[D]: [博士学位论文]. 南京:东南大学交通学院, 2003
    [16] 王泓. 材料疲劳裂纹扩展和断裂定量规律的研究[D]:[博士学文论文]. 西安:西北工业大学, 2002
    [17] 黄仰贤[美]著, 余定选, 齐诚译. 路面分析与设计[M]. 北京:人民交通出版社,1998
    [18] 姜志青. 道路建筑材料[M]. 北京:人民交通出版社, 2002
    [19] 肖刚, 李天柁. 系统可靠性分析中的蒙特卡罗方法[M]. 北京:科学出版社, 2003
    [20] R.A.Smith. 疲劳裂缝扩展 30 年来的进展[M]. 西安:西安交通大学出版社, 1998
    [21] 刘兵山等. Patran 从入门到精通[M]. 北京:中国水利水电出版社, 2003
    [22] 周传月等. MSC. Fatigue 疲劳分析应用与实例[M]. 北京:科学出版社, 2005
    [23] 张永昌等. MSC. Nastran 有限元分析理论基础与应用[M]. 北京:科学出版社, 2004
    [24] 苏金明, 刘宏. Matlab 高级编程[M]. 北京:电子工业出版社, 2005
    [1] 王惠文. 光纤传感技术与应用. 北京:国防工业出版社,2001
    [2] 靳伟, 阮双琛. 光纤传感技术新进展. 北京:科学出版社,2005
    [3] 孙圣和, 王延云. 光纤测量与传感技术. 哈尔滨:哈尔滨工业大学出版社,2000
    [4] Christopher K.Y., Niell Elvin, Noah Olson, ET AL. A novel distributed optical crack sensor for concrete structures. Engineering Fracture Mechanics. 2000(65):133-148.
    [5] Maintenance Flexible Pavements- the long term pavement performance experiment SPS-3. 5-Year Data Analysis. FHWA, 1998
    [6] 徐剑. 沥青路面微表处养护技术的研究[D]:[博士学位论文]. 南京:东南大学交通学院.
    [7] 潘玉立. 路面管理系统原理[M].北京:人民交通出版社, 1998.