用于生物传感器的氧化还原酶蛋白固定化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物大分子如何被持久、高效并保持活性状态固定在生物传感表面,同时保证生化反应信号迅速而充分地被信号转换元件所采集,是生物传感器研究的重要课题。氧化还原酶类催化底物分子的氧化还原反应,反应过程中转移的电子可被电化学检测仪器捕获,或者产生颜色变化可通过紫外-可见分光光度计来检测,易于获得可定量测定的信号变化,因而适合充当生物传感器的分子识别元件,并作为量化评价酶固定化效果的模式分子。
     本论文选择三种在生物传感器中广泛应用的氧化还原酶蛋白:胆碱氧化酶(ChOx)、葡萄糖氧化酶(GOx)和辣根过氧化物酶(HRP)来研究两类蛋白质固定化技术,分别为疏水蛋白自组装薄膜固定化ChOx和GOx,以及聚电解质层层累积微胶囊固定化HRP。
     疏水蛋白是一类由丝状真菌产生的外分泌蛋白,包含约100个氨基酸残基。其分子的表面结构包括一个4 nm~2大小的平整的连续疏水区域,其余部分为亲水性,是一个典型的两亲性分子,具有极强的界面活性,能够显著降低水的表面张力,并在多种表面自组装形成高度有序的纳米级结构薄膜,同时改变表面对水的湿润性,帮助真菌在多种环境条件下完成表面吸附或冲破水面生长。根据氨基酸序列疏水模式及蛋白质生物物理特点的差异,疏水蛋白分为Ⅰ型和Ⅱ型,本论文研究了来源于瑞氏木霉Trichoderma reesei的Ⅱ型疏水蛋白HFBI在金属表面的自组装行为,及其用作电流型生物传感器的酶固定化基质的可行性,致力于构建完全由蛋白质修饰、能够最大程度利用固定化酶的催化活力的酶电极。
     石英晶体微天平(QCM)实验结果证实了HFBI在铂表面的自组装行为,并显示HFBI自组装量受酸碱度影响不明显,而随HFBI浓度增加呈非线性增长。通过循环伏安法检测铂电极表面HFBI自组装薄膜的通透性,验证了QCM实验结果,即浓度较高的HFBI溶液能够在铂表面自组装形成更为致密的疏水蛋白薄膜,表现为较高的蛋白质自组装量和较低的通透性。筛选出了适于构建生物传感器的适当HFBI浓度,由20μg/mL HFBI自组装形成的疏水蛋白薄膜,能够允许信号分子过氧化氢通过,同时有效屏蔽电活性干扰物质抗坏血酸、尿酸和醋氨酚到达电极表面。
     在生物传感表面构造亲水性微环境有利于酶蛋白保持活性构象,通过测定HFBI自组装薄膜修饰前后金表面与水的接触角变化,证明该薄膜能够显著而且稳定地提高金表面的亲水性。在HFBI自组装薄膜修饰的金表面通过物理吸附成功地固定化了ChOx,酶的表面覆盖率为3366 ng·cm~(-2),固定化后ChOx的最适pH值由游离酶的pH 8.0转变为pH 7.6,表观米氏常数Km~(app)为1.27 mM,与游离酶Km值接近。在+400 mV工作电位下,基于Au/HFBI/ChOx电极的胆碱生物传感器各项性能指标良好,最低检测限为0.01 mM(信噪比=3),线性范围0.01-1.0mM,灵敏度2184.06458 nA·mM~(-1),表现出抗干扰性能和较长的使用寿命,对酶活力的利用效率显著优于已报道的同类胆碱生物传感器。
     在HFBI自组装薄膜修饰的铂表面通过静电吸附成功固定化了GOx,酶的表面覆盖率为859 ng·cm~(-2),固定化后GOx的表观米氏常数Km~(app)等于14.8 mM,略低于游离酶Km值。在+400 mV工作电位下,基于Pt/HFBI/GOx电极的葡萄糖生物传感器各项性能指标良好,最低检测限为0.12 mM(信噪比=3),线性范围0.5-20 mM,灵敏度0.29806μA·mM~(-1),表现出抗干扰性能和较长的使用寿命,对酶活力的利用效率显著优于已报道的同类葡萄糖生物传感器。
     本论文首次将Ⅱ型疏水蛋白应用于电流型生物传感器,获得了高性能的胆碱和葡萄糖生物传感器,并提供了两种基于疏水蛋白HFBI自组装薄膜的、简单高效的酶蛋白固定化策略。
     本论文还报道了一种操作流程简化、条件温和、能够稳定固定化酶蛋白的微胶囊制备技术。使用包含HRP并带有负电荷的碳酸钙微粒作为模板,通过带有相反电荷的两种聚电解质:聚烯丙基胺盐酸盐(PAH)和聚苯乙烯磺酸钠(PSS)交替累积,在模板表面形成(PAH/PSS)_5自组装薄膜,溶解模板后获得了形态大小均一、平均直径约6μm、分散度较好的HRP-(PAH/PSS)_5微胶囊,50天内HRP向微胶囊外释放量维持在总固定化量的6%以内。应用紫外-可见分光光度法测定微胶囊对HRP显色底物的催化活性,30天内对邻苯三酚的催化活力降低不超过20%。所制备的微胶囊表现出一定程度的选择透过性,有可能在用于生物传感器构建时提高对底物的专一性,并屏蔽部分干扰物质,应用于酚类环境污染控制。
It's an exciting challenge in the research of biosensors that how bio-macromolecules could be efficiently immobilized on kinds of sensing surfaces with their active conformations during a relatively long period,while facilitating the collection of biochemical reaction signals by transducers promptly and adequately. Redox enzymes catalyze oxidation-reduction reactions,during which measurable signals are easy to be obtained,for example,the transferred electrons are able to be detected by electrochemical instruments,or the color changes are able to be detected by UV-visible spectrum.As a result,redox enzymes are suitable to serve as sensitive biological elements for biosensors,also as model molecules for quantitative evaluation to the effect of enzyme immobilization.
     Choline oxidase(ChOx),glucose oxidase(GOx),and horseradish peroxidase (HRP),all of which are commonly used redox enzymes to fabricate biosensors,have been selected for the study on two types of strategies of protein immobilization. ChOx and GOx have been immobilized on metal surfaces by self-assembled films of hydrophobins,while HRP has been immobilized in microcapsules based on Layer-by-Layer polyelectrolyte deposition.
     Hydrophobins are small proteins of about 100 amino acid residues,secreted exclusively by filamentous fungi.There is an approximate 4 nm~2 planar hydrophobic patch on the surface of hydrophobin molecular,and the rest parts are hydrophilic.The characteristic amphiphilic structure contributes to the extremely high surface activity of hydrophobins,which significantly reduce the surface tension of water and self-assemble into strong,highly ordered films at almost any interfaces,helping fungi attach to various surfaces under different environmental conditions or grow into the air from aqueous environment.On the basis of differences in hydropathy patterns of the amino acid sequences and biophysical properties,two different types of hydrophobins are distinguished,namely classⅠand classⅡ.The self assembly behavior of a classⅡhydrophobin,HFBI from Trichoderma reesei has been investigated in this dissertation.Furthermore,the possibility of HFBI to serve as enzyme immobilization matrix for amperometric biosensors has been studied,in order to construct "all-protein modified" enzyme electrodes and to bring all the catalytic activities of immobilized enzymes into play.
     Experimental results of quartz crystal microbalance confirmed the self-assembly of HFBI on platinum substrate,indicating that the mass of HFBI self-assembly was barely affected by pH while it increased non-linearly together with the increase of HFBI concentration.The permeability of HFBI films self-assembled on platinum electrode was checked by cyclic voltammetry,whose results were in accordance with those of quartz crystal microbalance.It's believed that solutions of higher HFBI concentrations were apt to form more compact films on platinum surface and exhibited larger self-assembled HFBI mass and stronger block to electrochemical interferences.The optimal HFBI concentration for fabricating biosensors was 20μg/mL.
     Hydrophilic microenvironments on the biosensing surfaces would help enzymes keep their bioactive conformations.Water contact angle was measured to evaluate the wettability of gold surfaces before and after HFBI modification.The surface hydrophilicity was remarkably and steadily improved after HFBI processing.ChOx was successfully immobilized on HFBI modified gold surface via physical adsorption, with a coverage density of 3366 ng·cm~(-2).After immobilization,the optimal pH of ChOx slightly changed from pH 8.0 to pH 7.6,while the apparent Michaelis constant Km~(app) was 1.27 mM and close to free ChOx.An amperometric choline biosensor was constructed based on the Gold/HFBI/ChOx electrode,which showed low limits of detection of 0.01mM choline(signal-to-noise ratio=3),wide linear range from 0.01 to 1.0 mM,high sensitivity of 2184.06458 nA·mM~(-1),also well selectivity and lifetime.Comparing with our choline biosensors previously reported,the HFBI self-assembled film exhibited excellent capability to preserve the bioactivity of ChOx, which produced as large as 4718 nA response current by 0.238μg immobilized ChOx, when saturated by choline substrate.
     GOx was successfully immobilized on HFBI modified platinum surface via electrostatic adsorption,with a coverage density of 859 ng·cm~(-2).The apparent Michaelis constant Km~(app) of immobilized GOx was 14.8 mM and a little lower than the Km of free ChOx,indicating higher affinity for glucose after immobilization.An amperometric glucose biosensor was constructed based on the Pt/HFBI/GOx electrode,which showed low limits of detection of 0.12 mM glucose(signal-to-noise ratio=3),wide linear range from 0.5 to 20 mM,high sensitivity of 0.29806μA·mM~(-1),also well selectivity and lifetime.Comparing with other glucose biosensors previously reported,the HFBI self-assembled film exhibited especially high efficiency of enzyme utilization,which produced at most 710μA responsive current for per unit activity of GOx,when saturated by glucose substrate.
     The dissertation applied a classⅡhydrophobin in amperometric biosensors for the first time.Both of the choline biosensor and the glucose biosensor were of high performances,which thus provided two simple and effective strategies for enzyme immobilization based on hydrophobin HFBI self-assembly.
     This dissertation also reported a preparation technique of polyelectrolyte microcapsules for steady immobilization of enzymes,with simplified procedures and mild reaction conditions.Negatively charged CaCO_3 microparticles containing HRP molecules were prepared and subsequently enwrapped with layer-by-layer deposited multilayer films,which were constructed via an alternate electrostatic adsorption of poly(allylamine hydrochloride)(PAH) and poly(styrene sulfonate)(PSS).The CaCO_3 templates were then dissolved,leaving homogeneous and well dispersed HRP-(PAH/PSS)_5 microcapsules with an average diameter of about 6μm.During 50 days,the leakage of HRP out of the microcapsules was no more than 6%of the total immobilized HRP amount.While detected by UV-visible spectrum,the encapsulated HRP showed catalytic activity to pyrogallol substrate,the decrease of which was no more than 20%during 30 days.The selective permeability might help with the substrate specificity and the anti-interference capability of the prepared microcapsules. Thus,HRP-containing microcapsules might be promising in biosensor development for detection and treatment of phenolic compounds in environmental pollution.
引文
[1]汪尔康主编.21世纪的分析化学.北京:科学出版社,2001
    [2]Turner A P F.Biochemistry:Biosensors-sense and sensitivity.Science,2000,290:1315-1317
    [3]张先恩编著.生物传感器.北京:化学工业出版社,2006
    [4]宋思扬,娄士林主编.生物技术概论.第3版.北京:科学出版社,2007
    [5]张惟杰主编.生命科学导论.第2版.北京:高等教育出版社,2008
    [6]焦炳华,孙树汉主编.现代生物工程.北京:科学出版社,2007
    [7]刘向阳.生物传感器在医疗领域的应用.医疗保健器具,2008,Vol.108(2):29-30
    [8]Hirst E R,Yuan Y J,Xu W L.Bond-rupture immunosensors—A review.Biosensors and Bioelectronics.2008,23:1759-1768
    [9]Tothill I E.Biosensors for cancer markers diagnosis.Seminars in Cell & Developmental Biology.2009,20:55-62
    [10]刘仲敏,林兴兵,杨生玉主编.现代应用生物技术.北京:化学工业出版社,2004
    [11]韩雪清,杨泽晓,林祥梅.极具应用前景的生物学检测技术——生物传感器.中国生物工程杂志,2008,Vol.28(5):141-147
    [12]Gomes S A S S,Nogueira J M F,Rebelo M J F.An amperometric biosensor for polyphenolic compounds in red wine.Biosensors and Bioelectronics,2004,20:1211-1216
    [13]李彦文,杨仁斌,郭正元.生物传感器在环境污染物检测中的应用.环境科学动态,2004(1):27-29
    [14]李彤,伊丽丽,魏福祥.测酚生物传感器研究进展.河北工业科技,2008,Vol.25(3):172-176
    [15]Niemeyer C M,Mirkin C A编著.纳米生物技术——概念、应用和前景,马光辉,苏志国,王平主译.北京:化学工业出版社,2007
    [16]Goodsell D S著.生物纳米技术——来自自然的启示,张文雄,张鹏,王文雅等译.北京:化学工业出版社,2006
    [17]陈忠斌主编.生物芯片技术.北京:化学工业出版社,2005
    [18]方肇伦主编.微流控分析芯片的制作及应用.北京:化学工业出版社,2005
    [19]林炳承,秦建华主编.微流控芯片实验室.北京:科学出版社,2006
    [20]王平著.人工嗅觉与人工味觉.第2版.北京:科学出版社,2007
    [21]史海滨.静电层层自组装技术构建新型生物传感器的研究:[博士学位论文].天津:南开大学,2006
    [22]Clark L C,Lyon C.Electrode system for continuous monitoring in cardiovascular surgery.Ann.N.Y.Acad.Sci.,1962,102:29-45
    [23]Updike S J,Hicks G P.The enzyme electrode.Nature,1967,Vol.214(92):986-988
    [24]Guilbault G G,Montalvo J.A urea specific enzyme electrode.J.Am.Chem.Soc.,1969,91:2164-2165
    [25]Divies C.Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode.Annals of Microbiology,1975,Vol.126(2):175-186
    [26]Rechnitz G A,Kobos R K,Riechel S J,et al.A bio-selective membrane electrode prepared with living baterial cells.Anal.Chim.Acta,1977,94:357-365
    [27]Karube I,Matsunaga T,Mitsuda S,et al.Microbial electrode BOD sensors.Biotechnol.Bioeng.,1977,19:1535-1547
    [28]Caras S,Janata J.Field Effect Transistor Sensitive to Penicillin.Anal.Chem.,1980,52:1935-1937
    [29]张先恩,王志通,简浩然.BOD微生物传感器的研究.环境科学学报,1986,Vol.6(2):184-192
    [30]孙裕生.BOD微生物传感器的研究.化工环保,1987,Vol.7(5):309-313
    [31]梁逸曾.生物传感器.化学通报.1988(6):13-18
    [32]汪尔康主编.生命分析化学.北京:科学出版社,2006
    [33]陈守文主编.酶工程.北京:科学出版社,2008:208-216
    [34]Wang Z G,Wan L S,Liu Z M et al.Enzyme immobilization on electrospun polymer nanofibers:An overview.Journal of Molecular Catalysis B:Enzymatic,2009,56:189-195
    [35]Campas M,Prieto-Simonc B,Marry J.A review of the use of genetically engineered enzymes in electrochemical biosensors.Seminars in Cell & Developmental Biology,2009,20:3-9
    [36]Hansen L H,Sorensen S J.The use of whole-cell biosensors to detect and quantify compounds orconditions affecting biological systems.Microbial Ecology,2001,Vol.42(4):483-494
    [37]Chen P,Liu X,Wang B.A biomimetic taste receptor cell-based biosensor for electrophysiology recording and acidic sensation.Sensors and Actuators B:Chemical,In Press(doi:10.1016/j.snb.2009.02.067)
    [38]D'Souza S F.Microbial biosensors.Biosensors and Bioelectronics,2001,16:337-353
    [39]Catterall K,Zhao H,Pasco N.Development of a Rapid Ferricyanide-Mediated Assay for Biochemical Oxygen Demand Using a Mixed Microbial Consortium.Anal.Chem.,2003,75:2584-2590
    [40]Fatibello-Filho O,Lupettia K O,Vieira I C.Chronoamperometric determination of paracetamol using an avocado tissue(Persea americana) biosensor.Talanta 2001,55:685-692
    [41]Wu F,Huang Y,Huang C.Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element.Biosensors and Bioelectronics,2005,21:518-522
    [42]Conroy P J,Hearty S,Leonard P et al.Antibody production,design and use for biosensor-based applications.Seminars in Cell & Developmental Biology,2009,20:10-26
    [43]Wang R,Ruan C,Kanayeva D et al.TiO_2 Nanowire Bundle Microelectrode Based Impedance Immunosensor for Rapid and Sensitive Detection of Listeria monocytogenes.Nano Lett.,2008,Vol.8(9):2625-2631
    [44]Teles F R R,Fonseca L P.Trends in DNA biosensors.Talanta,2008,77:606-623
    [45]Bogani P,Minunni M,Spiriti M M et al.Transgenes monitoring in an industrial soybean processing chain by DNA-based conventional approaches and biosensors.Food Chemistry,2009.113:658-664
    [46]Hansen J A,Wang J,Kawde A N et al.Quantum-dot/ aptamer-based ultrasensitive multi-analyte electrochemical biosensor.J.Am.Chem.Soc.,2006,Vol.128(7):2228-2229
    [47]李晓霞,申丽华,漆红兰.适体电化学生物传感器研究进展.传感器与微系统,2007,Vol.26(12):8-11
    [48]Brovkovych V,Stolarczyk E,Oman J et al.Direct electrochemical measurement of nitric oxide in vascular endothelium.J.Pharm.Biomed.Anal.,1999,19:135-143
    [49]Cui J,Kulagina N V,Michael A C.Pharmacological evidence for the selectivity of in vivo signals obtained with enzyme-based electrochemical sensors.J.Neurosci.Methods,2001,104:183-189
    [50]鞠熀先.电分析化学与生物传感技术.北京:科学出版社,2006
    [51]Feltus A,Daunert S.Genetic engineering of signaling molecules.In:Ligler F S,Rowe-Taitt C A,Eds.Optical Biosensors:Present and Future.Amsterdam:Elsevier,2002
    [52]Pickupa J C,Hussaina F,Evans N D et al.Fluorescence-based glucose sensors.Biosensors and Bioelectronics,2005,20:2555-2565
    [53]Wu B,Wang Y,Li J et al.An optical biosensor for kinetic analysis of soluble Interleukin-1 receptor I binding to immobilized Interleukin-1α.Talanta,2006,Vol.70(3):485-488
    [54]Bjarnasona B,Johansson P,Johansson G.A novel thermal biosensor:evaluation for determination of urea in serum.Analytica Chimica Acta,1998,372:341-348
    [55]Ramanathan K,J(o|¨)nsson B R,Danielsson B.Sol-gel based thermal biosensor for glucose.Analytica Chimica Acta,2001,427:1-10
    [56]Kuznetsova L A,Coakley W T.Applications of ultrasound streaming and radiation force in biosensors.Biosensors and Bioelectronics,2007,22:1567-1577
    [57]Hagiwara T,Hirata H,Uchiyama S.Poly(p-maleimidostyrene) coated cross-linked polystyrene beads as novel ultrasonic irradiation resistant enzyme immobilization materials-Applications for biosensors and bioreactors.Reactive & Functional Polymers,2008,68:1132-1136
    [58]Kurosawa S,Park J W,Aizawa H et al.Quartz crystal microbalance immunosensors for environmental monitoring.Biosensors and Bioelectronics,2006,22:473-481
    [59]Burg T P,Godin M,Knudsen S M et al.Weighing of biomolecules,single cells and single nanoparticles in fluid.Nature,2007,446:1066-1069
    [60]Lord M S,Modin C,Foss M.Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance.Biomaterials,2008,29:2581-2587
    [61]Karamollaoglu I,Oktema H A,Mutlu M.QCM-based DNA biosensor for detection of genetically modified organisms(GMOs).Biochemical Engineering Journal,2009,44:142-150
    [62]Schuster S C,Swanson R V,Alex L A et al.Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance.Nature,1993,365:343-347
    [63]Turner A P F.Biosensors:Switching channels makes sense.Nature,1997,387:555-557
    [64]Wilson W D.Analyzing Biomolecular Interactions.Science,2002,Vol.295(5562):2103-2105
    [65]孟庆石,劳文燕,潘映红.表面等离子共振生物传感器技术及在生命研究中的应用生命.科学仪器,2007,Vol.7(1):10-13
    [66]D'orazio P.Biosensor in clinical chemistry.Clinica Chimica Acta,2003,334:41-69
    [67]唐利立.外科领域生物传感器的应用.中国医学工程,2003,Vol.10(6):45-49
    [68]吴宝艳,杨钰,宋昭等.纳米颗粒对葡萄糖生物传感器性能影响的研究.高技术通讯,2005,Vol.15(6):50-54
    [69]Sharma S K,Singhal R,Malhotra B D et al.Biosensors and Bioelectronics,2004,20:651-657
    [70]Garjonyte R,Melvydas V,Malinauskas A.Effect of yeast pretreatment on the characteristics of yeast-modified electrodes as mediated amperometric biosensors for lactic acid.Bioelectrochemistry,2008,74:188-194
    [71]Huang J,Song Z,Li J et al.A Highly-Sensitive L-lactate Biosensor Based on Sol-gel Combined with Multi-Walled Carbon Nanotubes(MWCNTs) Modified Electrode.Materials Sciences & Engineer C,2007,27:29-34
    [72]吴宝艳,黄加栋,史海滨等.特异选择性胆固醇生物传感器的研究.传感器技术,2005,Vol.24(1):25-27
    [73]Huang C P,Li Y K,Chen T M.A highly sensitive system for urea detection by using CdSe/ZnS core shell quantum dots.Biosensors and Bioectornics,2007,22:1835-1838
    [74]Dhawan G,Sumana G,Malhotra B D.Recent developments in urea biosensors.Biochemical Engineering Journal,2009,44:42-52
    [75]Zhang Y,Wen G,Zhou Y et al.Development and analytical application of an uric acid biosensor using an uricase immobilized eggshell membrane.Biosensors and Bioelectronics,2007,22:1791-1797
    [76]Serban S,EI Murr N.Redox-flexible NADH oxidase biosensor:A platform for various dehydrogenase bioassays and biosensor.Electrochimica Acta,2007,51:5143-5149
    [77]Song J M,Yang M S,Kwan H T.Development of a novel DNA chip based on a bipolar semiconductor microchip system.Biosensors and Bioelectronics,2007,22:1447-1453
    [78]Veltsistas P G,Prodromidis M I,Efstathiou C E.Au-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact.Anal.Chim.Acta,2004,Vol.502(1):15-22
    [79]Song Z,Huang J,Wu B et al.Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode.Sensor and Actuator B,2006,115:626-633
    [80]Yao S,Liu D,Ge K et al.A novel glutamine biosensor system based on a conductance-surface acoustic wave frequency response.Enzyme and Microbial Technology,1995,17:413-417
    [81]Chang K S,Hsu W L,Chen H Y et al.Determination of glutamate pyruvate transaminase activity in clinical specimens using a biosensor composed of immobilized 1-glutamate oxidase in a photo-crosslinkable polymer membrane on a palladium-deposited screen-printed carbon electrode.Analytica Chimica Acta,2003,481:199-208
    [82]Chang Y F,Chen R C,Lee Y J et al.Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum.Biosensors and Bioelectronics,2009,24:1610-1614
    [83]Kelly L S,Kozaka M,Walker T et al,Lectin immunoassays using antibody fragments to detect glycoforms of human chorionic gonadotropin secreted by choriocarcinoma cells.Analytical Biochemistry,2005,338:253-262
    [84]Tothill I E.Biosensors for cancer markers diagnosis.Seminars in Cell & Developmental Biology,2009,20:55-62
    [85]武文斌.生物传感器及其在微生物检测中的应用评价.海军医学杂志,2007,Vol.12(4):374-376
    [86]杨君,冯志彪.生物传感器在微生物毒素检测中的应用研究.农品加工,2007,Vol.5(5):80-84
    [87]D'Souza S F.Microbial biosensors.Biosensors & Bioelectronics,2001,16:337-353
    [88]张艳玲,黄俊生.生物传感器检测主要病原微生物研究进展.中国农学通报,2008,Vol.24(9):59-62
    [89]Gatto-Menking D L,Yu H,Bruno J G et al.Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor.ASAIO J.,1996,Vol.42(6):942-946
    [90]Dewey F M,Ebeler S E,Adamsdo et al.Quantification of Botrytis in grape juice determined by a monoclonal antibody-based immunoassay.American Journal of Viticulture and Enology,2000,51:276-282
    [91]Homola J,Dostalek J,Chen S et al.Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk.Int J Food Microbiol,2002,75:61-69
    [92]向四海,崔大付.利用表面等离子体谐振技术检测金黄色葡萄球菌肠霉素B.中国实验诊断学,2003,Vol.7(3):190-194
    [93]葛晶.使用SPR生物传感器快速检测大肠杆菌的研究:[博士学位论文].长春:吉林大学,2005
    [94]李群和.基于压电免疫生物传感器的大肠杆菌O157:H7检测方法研究:[硕士学位论文].杭州:浙江大学,2006
    [95]魏华,姜永强,赵永凯.用光纤生物传感器检测炭疽杆菌、鼠疫杆菌及葡萄球菌肠毒素B.生物技术通讯,2006,Vol.17(3):374-377
    [96]魏玉利,邱芳蕾,刘圣臣.鼠疫菌检测方法的研究进展.生命科学仪器,2007,Vol.5(4):32-34
    [97]Morales M D,Serra B,Guzman-Vazquez de Prada A et al.An electrochemical method for simultaneous detection and identification of Escherichia coli,Staphylococcus aureus and Salmonella choleraesuis using a glucose oxidase-peroxidase composite biosensor.Analyst,2007,Vol.132(6):572-578
    [98]Guntupalli R,Hu J,Lakshmanan R S et al.A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium.Biosensors and Bioelectronics,2007,22:1474-1479
    [99]Libby J M,Wada H G.Detection of neisseria meningitides and yesinia pestis with a novel silicon-based sensor.J.Clin.Microbial.,1989,27(7):1456-1459
    [100]Plomer M,Guilbault G G,Hock B et al.Development of a piezoelectric immunosensor for the detection of enterobacteria.Enzyme.Microb.Technol.,1992,Vol.14(3):230-235
    [101]Wang J,Nielsen P E,Jiang M,et al.Mismatch sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance.Anal.Chem.,1997,69:5200-5204
    [102]Wadkins R M,Golden J P,Pritsiolas L M et al.Detection of mutiple toxic agents using a planar array immunosensor.Biosensors and Bioelectronics,1998,Vol.13(340):407-415
    [103]Rasooly A.A surface plasmon analysis of staphycoccal enterotoxin B in food.J.Food prot.,2001,Vol.64(1):37-43
    [104]Ruan C,Yang L,Li Y et al.Immunobiosensor Chips for Detection of Escherichia Coli O157:H7 Using Electrochemical Impedance Spectroscopy.Anal.Chem.,2002,76:3814-24820
    [105]Jongerius B G,Goverde R L,van Knapen F et al.Surface plasmon resonance(BIACORE)detection of serum antibodies against salmonella enteritidis and salmonella typhimurium.J.Immunol.Methods,2002,Vol.266(12):33-44
    [106]Bokken G C,Corbee R J,van Knapen F et al.Immunochemical detection of salmonella group B,D and E using an optical surface plasmon resonance biosensor.FEMS Microbial.Lett.,2003,Vol.222(1):75-82
    [107]Erdem A,Papakonstantinou P,Murphy H et al.Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes.Anal.Chem.,2006,Vol.78(18):6656-6659
    [108]Shen Z,Huang M,Xiao C et al.Nonlabeled Quartz Crystal Microbalance Biosensor for Bacterial Detection Using Carbohydrate and Lectin Recognitions.Anal.Chem.,2007,79:2312-2319
    [109]吴宝艳.新型生物传感器活性界面的构造及其评价:[博士学位论文].天津:南开大学,2007
    [110]陆蓉,王章金,任恕.传感针在医学中的应用及前景.中国针灸,1999(11):685-687
    [111]任恕,李统平,喻风兰等.中医传感器的研制.传感技术学报,1992(3):49-53
    [112]江琦,沈安华,胡永熙等.一种可实用的PH传感针的性能研究.传感器世界,1996(7):32-34
    [113]任恕,周宜平,林志红等.传感针研究的进展与展望.世界电子元器件,2003(3):49-50
    [114]陈强,李静,殷惠军等.亲和型生物传感器及其在中药作用机理研究中的应用展望.中国中西医结合杂志,2004,Vol.24(8):746-748
    [115]Wu B,Wang Y,Li J et al.An optical biosensor for kinetic analysis of soluble Interleukin-1 receptor I binding to immobilized Interleukin-1α.Talanta,2006,Vol.70(3):485-488
    [116]Chen Q,Huang J,Yin H,et al.The Applications of Affinity Biosensors:IAsys Biosensor and Quartz Crystal Microbalance to the Study on Interaction between Paeoniae Radix 801 and Endothelin-1.Sensor and Actuators B,2006,115:116-122
    [117]Li J,Huang J,Wu B et al.Effects of Propyl Gallate on Interaction of TNF-α with sTNFR-I Studied Using an Affinity Biosensor.Acta Pharmacologica Sinica,2005,Vol.26(10):1212-1216
    [118]Li J,Huang J,Wu B et al.Optical Biosensor Analysis in Studying Propyl Gallate Binding to Endothelin-1.Sensor Letters,2005,Vol.3(4):296-299
    [119]陈继冰.生物传感器在食品安全检测中的应用与研究进展.食品研究与开发,2009,Vol.30(1):180-183
    [120]李杜娟,王剑平,应义斌等.检测食源性致病菌的生物传感器.中国生物化学与分子生物学报,2007,Vol.3(3):194-199
    [121]吴西梅,刘欣,陈永泉.生物传感器的研制及在食品工业中的应用.广州食品工业科技,2001,Vol.17(2):67-70
    [122]冯德荣,李梅,朱思荣等.适用于食品工业中的蔗糖-葡萄糖双功能生物传感分析仪的研究.食品科学,2002,Vol.23(6):117-121
    [123]Niculescu M,Erichsen T,Sukharev V et al.Quinohemoprotein alcohol dehydrogenase based regentless amperometric biosensor for ethanol monitoring during wine fermentation.Anal.Chim.Acta,2002,463:39-51
    [124]李莎,王艳艳,赵紫霞等.基于纳米材料、聚电解质制备高性能乙醇生物传感器.分析化学,2008,Vol.36(2):227-230
    [125]Li S,Wang Y,Zhao Z et al.Amperometric ethanol biosensors based on layer-by-layer deposition of alcohol oxidase on the platinum electrode.Sensor letters,In press
    [126]Zhao M,Hibbert D B,Gooding J J.Determiantion of sulfite in beer samples using an amperometric fill and flow channel biosensor emplying sulfite oxidase.Anal.Chim.Acta,2006,556:195-200
    [127]Miyanishi N,Inaba Y,Okuma H,et al.Amperometric determination of laminarin using immobilized β-1,3-glucanase.Biosensor and Bioelectronics,2004,Vol.19(6):557-562
    [128]宋昭.纳米级结构表面修饰技术构建胆碱生物传感器的研究:[硕士学位论文].天津:南开大学,2006
    [129]刘国艳,袁庆柴,柴春彦.检测鱼肉新鲜度的酶生物传感器的研制.中国动物检疫,2006,Vol.23(1):28-29
    [130]Karube M G.Fish meat freshness sensing system for industrial use.Biosensors and Bioelectronics,1991,Vol.6(5):389-394
    [131]Hoshi M,Sasamoto Y,Nonaka M et al.Microbial sensor system for nondestructive evaluation of fish meat quality.Biosensors and Bioelectronics,1991,Vol.6(1):15-20
    [132]Cosnier S,Silva S D,Shan D et al.Electrochemical nitrate biosensor based on poly(pyrrole-viologen) film-nitrate reductase-clay composite.Bioelectrochemistry,2008,74:47-51
    [133]Zhang Z,Xia S,Leonard D et al.A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane.Biosensors and Bioelectronics,2009,24:1574-1579
    [134]Villalba M,McKeegan K J,Vaughan D H et al.Bioelectroanalytical determination of phosphate:A review.Journal of Molecular Catalysis B:Enzymatic,In press,doi:10.1016/j.molcatb.2008.12.011
    [135]Liu L,Chen Z,Yang S et al.A novel inhibition biosensor constructed by layer-by-layer technique based on biospecific affinity for the determination of sulfide.Sensors and Actuators B,2008,129:218-224
    [136]Kochana J,Nowak P,Jarosz-Wilkotazka A et al.Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds.Microchemical Journal,2008,89:171-174
    [137]Keusgen M,Kloock J P,Knobbe D T et al.Direct determination of cyanides by potentiometric biosensors.Sensors and Actuators B,2004,103:380-385
    [138]Andreescu S,Noguer T,Magearu V et al.Screen-printed electrode based on AchE for the detection of lgesticides in presence of organic solvents.Talanta,2002,57:169-176
    [139]李花子,施汉昌,王建龙等.BOD生物传感器的研究与进展.重庆环境科学,2003,Vol.25(1):43-46
    [140]Jang J D,Barford J P,Lindawati et al.Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system.Biosensors and Bioelectronics,2004,19:805-812
    [141]Gil G C,Mitchell R J,Chang S T et al.A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium.Biosensors and Bioelectronics,2000,15:23-30
    [142]Suzuki H.Microfabrication of chemical sensors and biosensors for environmental monitoring.Materials Science and Engineering C,2000,12:55-61
    [143]唐丽娜,柳丽芬,杨凤林.传感器在环境水体检测中的应用.节能,2008(1):16-21
    [144]胡冠九,刘建琳,邹么伟等.生物传感器在环境监测中的应用.环境监测管理与技术,1999,Vol.11(2):12-16
    [145]Cowell D C,Dowman A A,Ashcroft T.The detection and identification of metal and organic pollutants in potable water using enzyme assays suitable for sensor development.Biosensors and Bioelectronics,1995,10:509-516
    [146]Touloupakis E,Giannoudi L,Piletsky S A et al,A multi-biosensor based on immobilized Photosystem Ⅱ on screen-printed electrodes for the detection of herbicides in river water.Biosensors and Bioelectronics,2005,20:1984-1992
    [147]孙君社主编.酶与酶工程及其应用.北京:化学工业出版社,2006
    [148]邹承鲁,周筠梅,周海梦著.酶活性部位的柔性.济南:山东科学技术出版社,2003
    [149]李树本等编著.酶化学.北京:化学工业出版社,2008
    [150]St Clair N L,Navia M A.Cross-linked enzyme crystals as robust biocatalysts.J.Am.Chem.Soc.,1992,114:7314-7316.
    [151]罗立新,娄文勇等编著.酶制剂技术.北京:化学工业出版社,2008
    [152]Lee S B,Ryu D D.Determination of Kinetic Constants in Enzyme Reactor Systems by Transformation of Variables.Biotechnol.Bioeng.,1979,Vol.21(12):2329-2336
    [153]Goodman R B,Peanasky R J.Isolation of the trypsin inhibitors in Ascaris lumbricoides var suum using affinity chromatography.Anal.Biochem.,1982,Vol.120(2):387-393
    [154]Hayashi S,Kinoshita J,Nonoguchi M et al.Continuous production of 1-kestose by fructofuranosidase immobilized on shirasu porous glass.Biotechnol.Lett.,1991,13:395-398
    [155]Hayashi S,Sasao S,Takasaki Y et al.Immobilization of β-fructofuranosidase fromAureobasidium on DEAE-cellulose.J.Ind.Microbiol.,1994,13:103-105
    [156]Ohba R,Chaen H,Hayashi S et al.Immobilization of streptomyces flavochromogenes pullulanase on tannic acid and TEAE-cellulose.Biotechnol.Bioeng.,1978,20:665-676
    [157]Careysmith S W,Dunnill P,Lilly M D.Kinetic behavior of immobilized Penicillin acylase.Biotechnol.Bioeng.,1980,22:735-756
    [158]Bernfeld P,Wan G.Antigens and enzymes made insoluble by entrapping them into lattices of synthetic polymers,Science,1963,142:678-679
    [159]Buchholz K,Godelmann B.Macrokinetics and operational stability of immobilized glucose oxidase and catalase.Biotechnol.Bioeng.,1978,20:1201-1220
    [160]Kuan K N,Lee Y Y,Melius P.Ultraviolet-sensitive photographic process using enzymes.Biotechnol.Bioeng.,1980,22:1725-1734
    [161]Ortega N,Busto M D,Perez-Mateos M.Optimisation of β-glueosidase entrapment in alginate and polyacrylamide gels.Bioresource.Technol.,1998,64:105-111
    [162]Tosa T,Sato T,Mori T et al.Immobilization of enzymes and microbial cells using carrageenan as matrix.Biotechnol.Bioeng.,1979,21:1697-1709
    [163]刘持标,黄葵,佘益民.微胶囊固定化过氧化氢酶的制取及对H_2O_2的分解作用.生物化学杂志,1997,Vol.13(4):478-482
    [164]Dave B C,Dunn B,Valentine J S et al.Sol-gel encapsulation methods for biosensors.Anal.Chem.,1994,66:1120-1127
    [165]Lim S H,Wei J,Lin J et al.A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode.Biosensors and Bioelectronics,2005,20:2341-2346
    [166]康杰,罗红斌,李柱来.壳聚糖固定胰蛋白酶的研究.福建医科大学学报,1996(30):55-57
    [167]Delvaux M,Moustier-Champagne S.Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors.Biotechnol.Bioeng.,2003,Vol.18(7):943-951
    [168]贾英民,赵学慧.几丁质固定化菊粉酶的研究.河北农业大学学报,1997,Vol.20(3):80-84
    [169]Sato K,Endo Y,Anzai J.Polyelectrolyte multilayer microcapsules containing fluorecein isothiocyanate-concanavalin A/glycogen conjugates for fluorometric determination of sugars.Sensors and Materials,2007,Vol.19(4):203-213
    [170]Chen Q,Kobayashi Y,Takeshita H et al.Avidin-Biotin System-Based Enzyme Multilayer Membranes for Biosensor Applications:Optimization of Loading of Choline Esterase and Choline Oxidase in the Bienzyme Membrane for Acetylcholine Biosensors.Electroanalysis,1998,Vol.10(2):94-97
    [171]Ferreira M,Fiorito P A,Oliveira O N et al.Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer(LbL) adsorption technique.Biosensors and Bioelectronics,2004,19:1611-1615
    [172] Davis F, Higson S P J. Structured thin films as functional components within biosensors. Biosensors and Bioelectronics, 2005, 21:1-20
    [173] Zhou H, Chen H, Luo S et al. Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosensors and Bioelectronics, 2005, 20: 1305—1311
    [174] Guana W J, Li Y, Chen Y Q et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosensors and Bioelectronics, 2005, 21:508-512
    [175] Yang H, Zhu Y. A high performance glucose biosensor enhanced via nanosized SiO_2.Analytica Chimica Acta, 2005,554:92-97
    [176] Xian Y, Hu Y, Liu F et al. Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite. Biosensors and Bioelectronics, 2006, 21:1996-2000
    [177] Hektor H J, Scholtmeijer K. Hydrophobins: proteins with potential. Curr. Opin. Biotech.,2005, 16: 434-439
    [178] Szilvay G R, Kisko K, Serimaa R et al. The relation between solution association and surface activity of the hydrophobin HFBI from Trichoderma reesei. FEBS Lett., 2007,581:2721-2726
    [179] Wessels J G, De Vries O M, Asgeirsdottir S A et al. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell, 1991, 3: 793-799
    [180] Sunde M, Kwan AHY, Templeton MD, Beever RE, Mackay JP. Structural analysis of hydrophobins. Micron, 2008, 39: 773-784
    [181] Hakanpaa J, Paananen A, Askolin S et al. Atomic Resolution Structure of the HFBII Hydrophobin, a Self-assembling Amphiphile. J. Biol. Chem., 2004, Vol.279(1): 534-539
    [182] Linder M, Szilvay G R, Nakari-Setala T et al. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Science,2002,11:2257-2266
    [183] Wessels, J G H. Fungal hydrophobins: proteins that function at an interface. Trends Plant.Sci., 1996, 1:9-15
    [184] Lumsdon S O, Green J, Stieglitz B. Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloid Surf. B-Biointerfaces, 2005,44: 172—178
    [185] Qin M, Hou S, Wang L K et al. Two methods for glass surface modification and their application in protein immobilization. Colloid Surf. B: Biointerfaces, 2007, 60: 243—249
    [186] Qin M, Wang L K, Feng X Z et al. Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization. Langmuir, 2007,23:4465-4471
    [187] Bilewicz R, Witomski J, Van der Heyden A et al. Modification of electrodes with self-assembled hydrophobin layers. J. Phys. Chem. B, 2001,105: 9772—9777
    [ 188] Corvis Y, Walcarius A, Rink R et al. Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal. Chem., 2005, 77: 1622~1630
    [189] Corvis Y, Brezesinski G, Rink R et al. Analytical investigation of the interactions between SC3 hydrophobin and lipid layers: elaborating of nanostructured matrixes for immobilizing redox systems. Anal. Chem., 2006, 78: 4850~4864
    [190] Corvis Y, Trzcinska K, Rink R et al. Electron-donor-acceptor fullerene derivative retained on electrodes using SC3 hydrophobin. J. Phys. Chem. C, 2007,111: 1176— 1179
    [191] Stolarczyk K, Nazaruk E, Rogalski J et al. Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators. Electrochim. Acta, 2008,53: 3983-3990
    [192] Janssen M I, van Leeuwen M B M, van Kootenb T G et al. Promotion of fibroblast activity by coating with hydrophobins in the b-sheet end state. Biomaterials, 2004, 25:2731-2739
    [193] Hou S, Yang K, Qin M et al. Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Biosensors and Bioelectronics, 2008,24:912—916
    [194] Wessels J G H. Developmental regulation of fungal cell wall formation. Annu. Rev.Phytopathol., 1994, 32: 413—437
    [195] Kisko K, Torkkeli M, Vuorimaa E et al. Langmuir-Blodgett films of hydrophobins HFBI and HFBII. Surf. Sci., 2005, Vol.584(1): 35-40
    [196] Talbot N J. Fungal biology: Coming up for air and sporulation. Nature, 1999, 398: 295—296
    [197] Zangi R, de Vocht M L, Robillard G T et al. Molecular Dynamics Study of the Folding of Hydrophobin SC3 at a Hydrophilic/Hydrophobic Interface. Biophysical Journal, 2002, 83:112-124
    [198] Wang X, Shi F, W(?)sten H A B et al. The SC3 Hydrophobin Self-Assembles into a Membrane with Distinct Mass Transfer Properties. Biophysical Journal, 2005, 88:3434-3443
    [ 199] Beever R E, Redgwell R J, Dempsey G P. Purification and chemical characterization of the rodlet layer of Neurospora crassa conidia. J. Bacteriol., 1979,140: 1063—1070
    [200] Mackay J P, Matthews J M, Winefield R D et al. The Hydrophobin EAS Is Largely Unstructured in Solution and Functions by Forming Amyloid-Like Structures. Structure,2001,9:83-91
    [201 ] Hakanp(?)(?) J, Szilvay G R, Kaljunen H et al. Two crystal structures of Trichoderma reesei hydrophobin HFBI-the structure of a protein amphiphile with and without detergent interaction. Protein Sci., 2006, 15: 2129—2140
    [202] Palomo J M, Penas M M, Fernandez-Lorente G et al. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.Biomacromolecules, 2003, 4: 204—210
    [203]Askolin S,Turkenburg J P,Tenkanen M et al.Purification,crystallization and preliminary X-ray diffraction analysis of the Trichoderma reesei hydrophobin HFB1.Acta Cryst.D-Biol.Crystallogr.,2004,60:1903-1905
    [204]Torkkeli M,Serimaa R,Ikkala O et al.Aggregation and Self-Assembly of Hydrophobins from Trichoderma reesei:Low-Resolution Structural Models.Biophys.J.,2002,Vol.83(4):2240-2247
    [205]Linder M B,Szilvay G R,Nakari-Set(a|¨)l(a|¨) T et al.Hydrophobins:the protein-amphiphiles of filamentous fungi.FEMS Microbiol.Rev.,2005,29:877-896
    [206]于雷,邵斌,张宝华等.瑞氏木霉疏水蛋白HFBI的分离纯化.生物活性物质分离与提纯,2005,Vol.31(7):129-132
    [207]邵斌.瑞氏木霉真菌疏水蛋白HFBI的抽提纯化和应用的研究:[硕士学位论文].天津:南开大学,2006
    [208]Szilvay G R,Paananen A,Laurikainen K et al.Selfassembled hydrophobin protein films at the air-water interface:structural analysis and molecular engineering.Biochemistry,2007,46:2345-2354
    [209]Sauerbrey G Z.The use of oscillator for weighing thin layers and for Microweighing.Z.Phys.,1959,Vol.155(2):206-222
    [210]Zhao W,Sun S X,Xu J J et al.Electrochemical Identification of the Property of Peripheral Nerve Fiber Based on a Biocompatible Polymer Film via in Situ Incorporating Gold Nanoparticles.Anal.Chem.,2008,80:3769-3776
    [211]Bourdillon C,Majda M.Microporous aluminum oxide films at electrodes.7.Mediation of the catalytic activity of glucose oxidase via lateral diffusion of a ferrocene amphiphile in a bilayer assembly.J.Am.Chem.Soc.,1990,112:1795-1799
    [212]Cosnier S,Innocent C.Detection of Galactose and Lactose by a Poly(Amphiphilic Pyrrole)-Galactose Oxidase Electrode.Anal.Lett.,1994,Vol.27(8):1429-1442
    [213]Dizgea N,Keskinlera B,Tanriseven A.Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer.Biochemical Engineering Journal,2009,44:220-225
    [214]Lee D G,Ponvel K M,Mir Kim et al.Immobilization of lipase on hydrophobic nano-sized magnetite particles.Journal of Molecular Catalysis B:Enzymatic,2009,57:62-66
    [215]Messina G M L,Satriano C,Marietta G.A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces.Colloids and Surfaces B:Biointerfaces,2009,70:76-83
    [216]袁勤生主编.现代酶学.上海:华东理工大学出版社,2001
    [217]Cooke R,Huntz ID.The properties of water in biological systems.Ann Rev Biophys Bioeng,1974,3:95-126
    [218] Hoang J V, Gadda G. Trapping Choline Oxidase in a Nonfunctional Conformation by Freezing at Low pH. PROTEINS: Structure, Function, and Bioinformatics 2007, 66:611-620
    [219] Fan F, Ghanem M, Gadda G. Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch. Biochem. Biophys., 2004,421: 149-158
    [220] Ohishi N, Yagi K. Covalently bound flavin as prosthetic group of choline oxidase. Biochem. Biophys. Res. Commun., 1979,86:1084—1088
    [221] Ikuta S, Imamura S, Misaki H et al. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem., 1977, 82: 1741—1749.
    [222] Ikuta S, Matuura K, Imamura S et al. Oxidative pathway of choline to betaine in the soluble fraction prepared from Arthrobacter globiformis. J Biochem., 1977, 82: 157-163
    [223] Razola S S, Pochet S, Grosfils K et al. Amperometric determination of choline released from rat submandibular gland acinar cells using a choline oxidase biosensor. Biosensors and Bioelectronics, 2003, 18: 185—191
    [224] Kok F N, Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosensors and Bioelectronics, 2004, 19:661-665
    [225] Langer J J, Filipiak M, Kecinska J et al. Polyaniline biosensor for choline determination.Surface Science, 2004, 573: 140—145
    [226] Qu F, Yang M, Jiang J et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer Wlm. Analytical Biochemistry, 2005, 344: 108—114
    [227] Guerrieri A, Lattanzio V, Palmisano F et al. Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor. Biosensors and Bioelectronics, 2006, 21: 1710—1718
    [228] Hsieh B C, Hsiao H Y, Cheng T J et al. Assays for serum cholinesterase activity by capillary electrophoresis and an amperometric flow injection choline biosensor. Analytica Chimica Acta, 2008, 623: 157—162
    [229] Fan F, Gadda G. On the catalytic mechanism of choline oxidase. J. Am. Chem. Soc.,2005,127: 2067-2074
    [230] Fan F, Gadda G. Oxygen- and temperature-dependent kinetic isotope effects in choline oxidase: correlating reversible hydride transfer with environmentally enhanced tunneling.J. Am. Chem. Soc, 2005, 127: 17954—17961
    [231] Gadda G, Powell N L, Menon P. The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase. Arch.Biochem. Biophys., 2004,430: 264—273
    [232] Gadda G. pH and deuterium kinetic isotope effects studies on the oxidation of choline to betaine-aldehyde catalyzed by choline oxidase. Biochim. Biophys. Acta, 2003, 1650: 4-9
    [233] Ghanem M, Fan F, Francis K et al. Spectroscopic and kinetic properties of recombinant choline oxidase from Arthrobacter globiformis. Biochemistry 2003, 42: 15179—15188
    [234] Ghanem M, Gadda G. On the catalytic role of the conserved active site residue His466 of choline oxidase. Biochemistry, 2005,44: 893-904
    [235] Ghanem M, Gadda G. Effects of reversing the protein positive charge in the proximity of the flavin N(1) locus of choline oxidase. Biochemistry, 2006, 45: 3437-3447
    [236] Massey V, Ganther H. On the interpretation of the absorption spectra of flavoproteins with special reference to D-amino acid oxidase. Biochemistry, 1965,4:1161 — 1173
    [237] Anzai J, Guo B, Osa T. Quartz-crystal microbalance and cyclic voltammetric studies of the adsorption behaviour of serum albumin on self-assembled thiol monolayers possessing different hydrophobicity and polarity. Bioelectrochem. Bioenerg., 1996, 40:35-40
    [238] Yu Y, Ying P Q, Jin G. Competitive adsorption between bovine serum albumin and collagen observed by atomic force microscope. Chinese Chem. Lett., 2004, 15: 1465—1468
    [239] Bonomo R C F, Minim L A, Coimbra J S R et al. Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis.J. Chromatogr. B, 2006, 844: 6-14
    [240] Paananen A, Vuorimaa E, Torkkeli M et al. Structural hierarchy in molecular films of two class II hydrophobins. Biochemistry, 2003,42: 5253—5258
    [241] Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem., 1980, 52:1198-1205
    [242] Ohta-Fukuyama M, Miyake Y, Emi S et al. Identification and properties of the prosthetic group of choline oxidase from Alcaligenes sp. J. Biochem. (Tokyo), 1980, 88: 197—203
    [243] English B P, Min W, van Oijen A M. Ever-fluctuating single enzyme molecules:Michaelis-Menten equation revisited. Nature Chemical Biology, 2006, 2: 87—94
    [244] Wu B Y, Hou S H, Yin F et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modefied Pt electrode.Biosensors and Bioelectronics, 2007, 22: 838—844
    [245] Wilson R, Turner A P F. Glucose oxidase:an ideal enzyme.Biosensors and Bioelectronics,1992,7: 165-185
    [246] Weibel M, Bright H. The glucose oxidase mechanism, J. Boil. Chem., 1971, 246: 2734—2744
    [247] Hecht H J, Kalisz H M, Hendle J et al. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J. Mol. Biol. 1993, 229, 153—172.
    [248] Iwasa Y, Koda T, Takura Y et al. Switching Effect in Organic Charge Transfer Complex Crystals. Appl. Phys. Letter., 1989,Vol.55(20): 2111-2113
    [249] Swoboda B E P, Massey V J. Purification and properties of the glucose oxidase from Aspergillus niger. Biol. Chem. 1965, 240: 2209-2215
    [250] Nakamura S, Hayashi S. A role of the carbohydrate moiety of glucose oxidase: Kinetic evidence for protection of the enzyme from thermal inactivation in the presence of sodium dodecyl sulfate. FEBS Lett., 1974,41: 327-330
    [251] Tsuge H, Natsuaki O, Ohashi K. Purification, properties, and molecular features of glucose oxidase from Aspergillus niger. J. Biochem.(Tokyo), 1975, 78: 835—843
    [252] Kalisz H M, Hecht H J, Schomburg D et al. Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger. Biochim.Biophys. Acta, 1991, 1080: 138-142.
    [253] Gidalevitz D, Huang Z, Rice S A. Protein folding at the air-water interface studied with x-ray reflectivity. Proc. Natl. Acad. Sci. U.S.A., 1999, 96: 2608—2611
    [254] Zoldak G, Zubrik A, Musatov A et al. Irreversible Thermal Denaturation of Glucose Oxidase from Aspergillus niger Is the Transition to the Denatured State with Residual Structure. J. Biol. Chem.,2004,279: 47601-47609
    [255] Wu B Y, Hou S H, Yin F et al. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosensors and Bioelectronics, 2007,Vol.22(12): 2854-2860
    [256] Deng C, Li M, Xie Q et al. New glucose biosensor based on a poly(o-phenyl-endiamine)/glucose oxidase-glutaraldehyde/ Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Anal. Chim. Acta, 2006,Vol.557(1): 85-94
    [257] Cosnier S, Mousty C, Gondran C et al. Entrapment of enzyme within organic and inorganic materials for biosensor applications: Comparative study. Materials Science and Engineering C, 2006, 26: 442—447
    [258] Wu J, Zou Y, Gao N et al. Electrochemical performances of C/Fe nanocomposite and its use for mediator-free glucose biosensor preparation. Talanta, 2005,68:12—18
    [259] Yang H, Zhu Y. A high performance glucose biosensor enhanced via nanosized SiO_2.Anal. Chim. Acta, 2005, 554: 92—97
    [260] Sato K, Endo Y, Anzai J. Polyelectrolyte multilayer microcapsules containing fluorecein isothiocyanate-concanavalin A/glycogen conjugates for fluorometric determination of sugars. Sensors and Materials, 2007, Vol.19(4):203—213
    [261] Chinnayelka S, McShane M J. Glucose-sensitive nanoassemblies comprising affinity-binding complexes trapped in fuzzy microshells. J. fluoresc, 2004, 14: 585—595
    [262] Volodkin D V, Larionova N I, Sukhorukov G B. Protein encapsulation via porous CaCO_3 microparticles templating. Biomacromolecules, 2004,5: 1962—1972
    [263] Nakahara Y, Mizuguchi M, Miyata K. Effects of surfactants on CaCO_3 spheres prepared by interfacial reaction method. J. Colloid Interface Sci., 1979,68: 401-407
    [264] Fujiwara M, Shiokawa K, Morigaki K et al. Calcium carbonate microcapsules encapsulating biomacromolecules. Chemical Engineering Journal, 2008, 137: 14—22
    [265] Nayak S R, McShane M J. Encapsulation of Peroxidase by Polymerizing Acrylic Acid Monomers in "Clean" Polyelectrolyte Microcapsules. Journal of Biomedical Nanotechnology, 2007, 3: 170-177
    [266] Balabushevich N G, Tiourina O P, Volodkin D V et al. Loading the Multilayer Dextran Sulfate/Protamine Microsized Capsules with Peroxidase. Biomacromolecules, 2003, 4:1191-1197
    [267] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process: 1.consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol. Chem.Macromol. Symp., 1991,46: 321-327
    [268] Decher D, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process: II.Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsen-ges. Phys. Chem., 1991, 95: 1430—1434
    [269] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992,210-211: 831—835
    [270] Decher G, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science,1997, Vol.277(5330): 1232-1237
    [271] Antipov A A, Sukhorukov G B. Polyelectrolyte multilayer capsules as vehicles with tunable permeability. Advances in Colloid and Interface Science, 2004, 111: 49—61
    [272] Johnston A P R, Cortez C, Angelatos A S et al. Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci., 2006, 11: 203—209
    [273] Blandino A, Macias M, Cantero D. Glucose oxidase release from calcium alginate gel capsules. Enzyme and Microbial Technology, 2000, 20: 319—324
    [274] Caruso F, Trau D, M(?)hwald H et al. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir, 2000,16: 1485—1488
    [275] Chinnayelka S, McShane M J. Microcapsule Biosensors Using Competitive Binding Resonance Energy Transfer Assays Based on Apoenzymes. Anal. Chem., 2005, 77:5501-5511
    [276] Johnston A P R, Read E S, Caruso F. DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett., 2005, 5:953—956
    [277] Shchukin D G, Patel A A, Sukhorukov G B et al. Nanoassembly of Biodegradable Microcapsules for DNA Encasing. J. AM. CHEM. SOC, 2004, 126: 3374-3375
    [278] Zhu Y, Shi J, Shen W et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew. Chem.Int. Ed., 2005, 44: 5083-5087
    [279] Fundueanu G, Constantin M, Esposito E et al. Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system.Biomaterials, 2005,26: 4337-4347
    [280] Wang X, Wenk E, Hu X et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials, 2007, 28: 4161—4169
    [281] Orive G, De Castro M, Kong H J et al. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. Journal of Controlled Release, 2009,135: 203—210
    [282] Teramura Y, Iwata H. Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials, 2009,30:2270—2275
    [283] Tiourina O P, Antipov A A, Sukhorukov G B et al. Entrapment of α-Chymotrypsin into Hollow Polyelectrolyte Microcapsules. Macromol. Biosci., 2001,1: 209—214
    [284] Zelikin A N, Becker A L, Johnston A P R et al. A General Approach for DNA Encapsulation in Degradable Polymer Microcapsules. ACS Nano, 2007, Vol.1(1): 63—69
    [285] Zelikin A N, Li Q, Caruso F. Disulfide-Stabilized Poly(methacrylic acid) Capsules: Formation, Cross-Linking, and Degradation Behavior. Chem. Mater., 2008, 20: 2655—2661
    [286] Aoubala M, Ivanova M, Douchet I et al. Interfacial Binding of Human Gastric Lipase to Lipid Monolayers, Measured with an ELISA. Biochemistry, 1995, 34: 10786—10793
    [287] Herrmann M, Veres T, Tabrizian M. Quantification of Low-Picomolar Concentrations of TNF-α in Serum Using the Dual-Network Microfluidic ELISA Platform. Anal. Chem.,2008,80:5160-5167
    [288] Li P, Zhang Q, Zhang W et al. Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chemistry, 2009, 115: 313—317
    [289] Yang S, Li Y, Jiang X et al. Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds. Sensors and Actuators B, 2006,114:774-780
    [290] Liu L, Jin X, Yang S et al. A highly sensitive biosensor with (Con A/HRP)n multilayer films based on layer-by-layer technique for the detection of reduced thiols. Biosensors and Bioelectronics, 2007,22: 3210—3216
    [291] Gajhede M, Schuller D J, Henriksen A et al. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nature Structural Biology, 1997, Vol.4(12): 1032—1038
    [292] Veitch N C. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry,2004, Vol.65(3): 249-259
    [293] La Rotta Hernandez C E, Werberich D S, D'Elia E. Electroenzymatic oxidation of polyaromatic hydrocarbons using chemical redox mediators in organic media.Electrochemistry Communications, 2008,10: 108—112
    [294] Miyazaki K, Arai S, Iwamoto T et al. Metabolism of pyrogallol to purpurogallin by human erythrocytic hemoglobin. Tohoku journal of experimental medicine, 2004,Vol.203(4):319—330
    [295] Ladam G, Schaad P, Voegel J C et al. In situ determination of the structural properties of initially deposited polyelectrolyte multilayers. Langmuir, 2000, Vol. 16(3): 1249—1255
    [296] McAloney R A, Sinyor M, Dudnik Vet al. Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir, 2001, Vol. 17(21):6655-6663
    
    [297] http://www.sigmaaldrich.com/sigma/en2yme assay/p6782enz.pdf
    [298] http://www.sigmaaldrich.com/sigma/enzyme assay/p8375enz.pdf
    [299] Lebedeva O V, Kim B S, Vasilev K et al. Salt softening of polyelectrolyte multilayer microcapsules. Journal of Colloid and Interface Science, 2005,284: 455—462
    [300] Dejeu J, Buisson L, Guth M C et al. Early steps of the film growth mechanism in self-assembled multilayers of PAH and PSS on silica Polymer uptake, charge balance and AFM analysis. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 288: 26—35
    [301] Hoshi T, Saiki H, Kuwazawa S et al. Selective Permeation of Hydrogen Peroxide through Polyelectrolyte Multilayer Films and Its Use for Amperometric Biosensors. Anal. Chem.,2001,73:5310-5315
    [302] Georgieva R, Moya S, Hin M et al. Permeation of macromolecules into polyelectrolyte microcapsules. Biomacromolecules, 2002,3: 517—524
    [303] Antipov A A, Sukhorukov G B, M(?)hwald H. Influence of the ionic strength on the polyelectrolyte multilayer's permeability. Langmuir, 2003, 19: 2444—2448