转“全鱼”GH基因黄河鲤呼吸器官和摄食器官形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转“全鱼”GH基因鲤(转基因鲤)是将鲤鱼β-肌动蛋白基因启动子和草鱼GH基因融合而成的“全鱼”基因重组元件显微注射到黄河鲤受精卵内而得到的能够稳定遗传的转基因鱼,目前已经形成一个稳定的品系。转基因鱼的生态风险一直是制约转基因鱼产业化的瓶颈,种群适合度问题是评价转基因鱼生态安全的关键。转植GH基因除了促进快速生长和提高饵料转换效率外,还可能对转基因鱼形态、生理、代谢和行为等方面的许多表型产生直接或间接的影响,这些表型特征的改变又可能导致转基因鱼与对照鱼在生存方式、摄食特征和繁殖策略等方面的差异,进而导致转基因鱼种群存活率和繁殖率发生改变,最终引起转基因鱼适合度的变化。
     摄食和呼吸功能与鱼类的适应性密切相关,摄食器官和呼吸器官的形态发育及其与功能的适应性是鱼类适合度评价的重要方面,本论文于2009年4月—2010年10月对转基因鲤的的呼吸器官的LM、SEM结构和摄食器官形态的进行测定分析,并对正常及低氧状态下鳃形态和鳃组织Na+、K+-ATP酶活性的变化进行比较,主要研究结果如下:
     1.对转基因鲤和普通鲤呼吸器官(鳃)形态进行测量,包括对鳃丝数、鳃丝长、鳃小片数、鳃小片密度、鳃小片面积的测定,对各形态参数以体重为协变量进行协方差分析,结果表明:转基因鲤的单个鳃丝长、鳃丝总长、鳃小片总数、呼吸面积显著大于对照组,鳃丝数、鳃小片密度、单个鳃小片面积与对照鲤没有显著性差异。
     2.对转基因鲤和普通鲤摄食器官形态进行测量,包括对头长、吻长、眼距、口裂宽、口裂高、第一鳃弓长、最长鳃耙长、鳃耙间距的测定,对各形态参数以体重为协变量进行协方差分析,结果表明:转基因鲤的头长、吻长、第一鳃弓长、鳃耙间距显著小于对照鲤,口裂高、口裂宽和鳃耙数等与对照鲤无显著性差异。
     3.对转基因鲤和普通鲤在低氧条件下(0.8±0.1mg/L)处理7d,而后恢复充氧(7.5±0.5mg/L)3d,取样观测结果表明:低氧引起转基因鲤和对照鲤的鳃形态发生巨大变化,鳃小片间细胞团萎缩,鳃小片面积增大,7d后转基因鲤呼吸面积增大了96.3%,对照鲤呼吸面积增大了83.9%,转基因鲤的呼吸面积显著大于对照鲤;当溶氧恢复正常时,鳃小片间细胞团重新包埋鳃小片,鳃小片面积亦恢复,转基因鲤的恢复了78.4%,对照鲤恢复了65.3%,转基因鲤和对照鲤的呼吸面积已经没有显著性差异。
     4.低氧引起转基因鲤和普通鲤的鳃组织Na-、K--ATP酶活性降低。转基因组Na-、K--ATP酶水平较对照组降低的快,恢复的也迅速,但两组之间并没有显著性差异。
"All-fish" GH transgenic common carp (transgenic fish) has been a stable line, produced by microinjection of "all-fish" gene included the grass carp GH drivend by theβ-actin gene promoter of common carp into the fertilized eggs of the common carp. The ecological safety has always been the indispensable step on the commercialization of transgenic fish, the key point is to evaluate the fitness of the transgenic fish. Besides accelarating growth performance and increasing food conversion efficiency of the fish, transgenic GH genes could also have direct or indirect effects on the morphology, physiology and behaviour and so on, which could change the survival, feeding and breeding of the fish, then led to the variation of the species survival and breeding rate, finally change the finess of the transgenic fish.
     Focusing on the fitness of respiratory organs and feeding organs of transgenic fish, in this study we undertook the histological examination and SEM examination of the gill and measured the morphology of the feeding organs. Then we measured the morphology of the gill and the Na+、K+-ATPase activity of the gill tissue in hypoxia. The main results were listed as follows:
     1. The gill morphology of the transgenic and nontransgenic (control) common carp was meansured, including the number of filaments, total filament length, total number of lamella, spacing of lamella, area of individual lamella and total lamella area. They were compared using one-way analysis of covariance with body weight as the covariate. It was shown that single filament length, total filament length, total number of lamella and total lamella area of the transgenic fish were significantly larger than those of control fish. But, there were no significant differences in all the other variables.
     2. The feeding organs morphology of the transgenic and control fish was meansured, including the head length, snout length, spacing of eyes, mouth gape width, mouth gape length, length of fist gill arch, gill raker length and distance between gill raker. They were compared using a one-way analysis of covariance with body weight as the covariate. The results were that the head length, snout length, distance between gill raker were significantly smaller than those of control carp. There were no significant differences in all the other variables.
     3. The exposure to hypoxia triggered the reduction of the ILCM and the gills displayed protruding lamella in transgenic and control fish. After 7 days of hypoxia, the total lamella area of transgenic carp incresed by 96.3%, was significantly larger than that of control fish. However, this morphological change was reversile. After 3 days recovery, the total lamella area of transgenic carp decreased by 78.4%, and 65.3% in control fish.
     4. Hypoxia trigged the reduction of Na+、K+-ATPase activity in transgenic and control carp. That of transgenic carp changed faster than that of control fish, but there was no significant differerce between the two groups all over the expoure.
引文
1.曹善东,孙京田.泥鳅鳃表面形态结构扫描电镜研究.海洋湖沼通报.1995,1:74-79
    2.曹善东.黄鳝咽部表面形态结构扫描电镜研究.四川动物,2008,27(5):858-859
    3.陈春辉,王春生,许学伟,刘镇盛.河口缺氧生物效应研究进展.生态学报,2009,2(5):2595-2602
    4.崔淼,赵俊.鱼类的辅助呼吸器官.生物学通报,2003,38(10):39-40
    5.崔宗斌,朱作言,崔奕波,李国华,许克圣.转人生长激素基因红鲤F2代阳性鱼的摄食及代谢研究.科学通报,1995,40(16):1514-1517
    6.崔宗斌,朱作言.鱼类基因转移育种的几个问题.生物技术通报,1998,5:1-10
    7.但学明,张耀光,谢小军.南方鲇鳃的光镜和扫描电镜观察.西南师范大学学报(自然科学版),1999,24(6):666-673
    8.董双林,李群,王莉,王志余.几种鲤科鱼类鳃的研究1.呼吸面积的研究.大连水产学院学报,1989,4(3、4):42-44
    9.方展强,邱玫,王春凤.剑尾鱼鳃结构的光镜、扫描电镜、透射电镜观察.电子显微镜学报,2004,23(5):554-559
    10.方展强,郑文彪,肖智.苏氏鱼芒鲶鳃超微结构观察.水产学报,2001,25(6):489-493
    11.高春生,张光辉,杨国宇,王艳玲.水体铜对黄河鲤Na+、K+-ATP酶活性的影响.环境科学研究,2008,21(4):179-184
    12.郭淑华,王良臣.鲤鳃表面结构扫描电镜研究.水生生物学报,1988,12(1):54-60
    13.何文辉,赫广辉,尤洋,胡庚东,王博.大银鱼和太湖新银鱼摄食器官与食性的研究.青海畜牧兽医杂志,2001,31(1):12-13
    14.贺扬,徐涤,张学成.转基因鱼生态效应的评价.山西科技,2008(5):90-91
    15.胡炜,汪亚平,朱作言.转基因鱼生态风险评价及其对策研究进展.中国科学C辑:生命科学,2007,37(4):377-381
    16.李德亮,傅萃长,胡炜,钟山,汪亚平,朱作言.快速生长导致转“全鱼”生长激素基因鲤鱼临界游泳速度的降低.科学通报,2007,52(8):923-927
    17.李德亮,傅萃长,胡炜,朱作言.转生长激素基因鱼的生物能量学研究进展.水生生物学报,2010,34(1):204-209
    18.李加儿,许晓娟,区又君,刘士瑞.浅色黄姑鱼鳃结构及其呼吸面积的研究.南方水产,2008,4(1):22-27
    19.梁利群,孙效文,曹顶臣,阎学春.转基因鲤对几种环境因子耐受能力的研究.应用生态学报,2002,13(12):1719-1720
    20.梁利群,孙效文,沈俊宝.转基因超级鲤的构建.高技术通讯,1999,4:52-54
    21.林浩然.鱼类生理学.广州:广东高等教育出版社,1999,109-145
    22.刘文生,王凤麟.胡子鲇、月鳢、泥鳅具气呼吸作用器官呼吸上皮的电镜观察.水生生物学报.2004,28(5):519-525
    23.龙爱民,陶澍.pH对鲤鳃部微环境铜形态的影响.水生生物学报,2001,25(6):558-564
    24.龙华.温度对鱼类生存的影响.中山大学学报(自然科学版),2005,44:254-257
    25.卢健民,卢玲,蔺玉华,夏重志,战培荣.低pH值对鲤鳃组织Na+-K+-ATP酶活性的影响.水生生物学报.2001,25(1):102-104
    26.潘雷雷,张桂蓉,魏开建,张洁.4种弹涂鱼鳃的形态度量学比较及其生态学意义.动物学杂志,2010,45(4):1-10
    27.沈旭明,赵清良.温度、溶解氧对暗纹东方魨幼鱼呼吸频率的影响.生态学杂志,2001,20(4):13-15
    28.舒少武.人工试验湖泊中转GH基因鲤鱼生物学特性的初步研究.[博士学位论文].武汉:中科院水生生物研究所,2008
    29.孙京田,张婧.鳙鱼鳃表面形态结构的扫描电镜研究.山东科学,2004,17(2):27-29
    30.孙京田,周茂新.草鱼鳃表面亚微形态特征的扫描电镜研究.山东师范大学学报(自然科学版),2004,19(1):74-76
    31.汪亚平,胡炜,吴刚,孙永华,陈尚萍,张甫英,朱作言,冯建新,张西瑞.转 ‘全鱼”生长激素基因鲤鱼及其F1遗传分析.科学通报,2001,46(3):226-229
    32.王波,谢琳萍,傅明珠.温度、盐度与pH对星斑川鲽呼吸频率的影响.河北渔业,2009,3(10):9-10
    33.王志余,董双林.鲢鲫鳃丝的扫描电镜观察.大连水产学院学报,1990,5(2)69-73
    34.熊晶,谢志才,陈静,张君倩,舒少武,张堂林,胡炜.转基因鲤鱼对大型底栖动物群落及多样性的影响.长江流域资源与环境,2010,19(4):377-382
    35.闫学春,梁利群,孙效文,曹顶臣.转基因鲤的形态特征及主要经济性状研究.东北农业大学学报,2005,36(5):598-604
    36.杨学芬,谢从新,杨瑞斌.梁子湖6种凶猛鱼摄食器官形态学的比较.华中农业大学学报,2003,22(3):257-259
    37.杨学明,张立,蒋和生.转基因鱼的研究及其发展前景.广西科学,2006,13(1):76-80
    38.殷名称.鱼类生态学.北京:中国农业出版社,1995,91-100
    39.余日清,贺锡勤.低pH对草鱼呼吸活动和耗氧代谢的影响.环境科学学报,1992,12(1):106-111
    40.张甫英,李辛夫.低pH对鱼类胚胎发育、鱼苗生长及鳃组织损伤影响的研究.水生生物学报,1992,16(2):175-182
    41.赵浩斌,陈尚萍,朱作言.转基因鱼的研究进展.农业生物技术学报,1999,7(3):310-306
    42.郑文彪,潘炯华,刘文生.苏氏鲇鳔的组织学及呼吸上皮的超微结构的研究.水生生物学报,1988,12(2):163-170
    43.朱作言,许克圣,谢岳峰,李国华,何玲.转基因鱼模型的建立.中国科学,1989年,B辑(2):147-155
    44. Bogdanova A, Grenacher B, Nikinmaa M, Gassmann M. Hypoxic responses of Na+/K+ATPase in trout hepatocytes. The Journal of Experimental Biology,2005, 208:1793-1801
    45. Bone Q, Moore R H. Biology of Fishes. New York:Taylor & Francis Group,2008, 126-128
    46. Boyd R B, De Vries AL, Eastman J T. The secondary lamellae of the gills of cold water (high latitude) teleosts. Cell and Tissue Research,1980,213 (3):361-367
    47. DE Jager S, Dekkers W J. Relations between gill structure and activity in fish. Netherlands Journal of Zoology,1974,25 (3):276-308
    48. Devlin R H, Donaldson E M. Production of germline transgenic pacific salmonids with dramatically increased growth performance. Canadian Journal of Fisheries and Aquatic Sciences,1995,52:1376-1384
    49. Devlin R H, Johnsson J I, Smaius D E. Increased ability to compete for food by growth hormone transgenic coho salmon Oncorhynchus kisutch (Walbaum). Aquaculture Research,1999,30:479-482
    50. Devlin R H, Sundstrom L F, William M M. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends in Biotechnology, 2006,24 (2):89-97
    51. Devlin R H, Yesaki T Y, Donaldson E M, Du S J, Hew C L. Production of germline transgenic pacific salmonids with dramatically increased growth performance. Canadian Journal of Fish Aquaculture,1995,52:1376-1384
    52. Farrell A P, Bennett W, Devlin RH. Growth enhanced transgenic salmon can be inferior swimmers. Canadian Journal of Zoology,1997,75:335-337
    53. Fu C, Hu W, Wang Y. Developments in transgenic fish in the People's Republic of China. Revue Scientifique et Technique-Office International des Eepizooties,2005, 24 (1):299-307
    54. Fu C, Li D, Hu W. Growth and energy budget of F2 "all-fish" growth hormone gene transgenic common carp. Journal of Fish Biology,2007,70:347-361
    55. Gong Z, Hew C L. Transgenic fish in aquaculture and developmental biology. Current topics in developmental biology. Academic Press,1995,30: 177-214
    56. Gray I E. Comparative study of the gill area of marine fishes. Biology Bulletin, 1954,107:219-225
    57. Guan B, Hu W, Zhang T L, Wang Y P, Zhu Z Y. Metabolism traits of'all-fish' growth hormone transgenic common carp(Cyprinus carpio L.). Aquacultrue,2008, 284:217-223
    58. Hughes G M, Stevens F P. Morphometry of the gills of the elasmobranch, Scyliorhinus stellaris, in relation to body size. Journal of Experimental Biology, 1986,121 (1):27-42
    59. Hughes G M. General anatomy of the gill. New York:Academic Press,1984,1-72
    60. Hughes G M. The dimensions of fish gills in relation to their function. Journal of Experimental Biology,1966,45 (1):177-195
    61. Hughes G M. The mechanism of gill ventilation in the dogfish and skate. Journal of Experimental Biology,1960,37 (1):11-27
    62. Johansson F, Radman P, Andersson J. The relationship between ontogeny, morphology, and diet in the Chinese hook snout carp (Opsariichthys bidens). Ichthyological Research,2006,53:63-69
    63. Lee C G, Devlin R H, Farrell A P. Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched coho salmon. Journal of Fish Biology,2003,62:753-766
    64. Leggatt R A, Devlin R H, Farrell A P, Randall D J. Oxygen uptake of growth hormone transgenic coho salmon (Oncorhynchus kisutch) during starvation, feeding, and swimming. Journal of Fish Biology,2003,62:1053-1066
    65. Leino R L, McCormick J H, Jensen K M. Changes in gill histology of fathead minnows and yellow perch transferred to soft water or acidified soft water with particular reference to chloride cells. Cell and Tissue Research,1987,250 (2): 389-399
    66. Leino R L, McCormick J H. Responses of juvenile largemouth bass to different pH and aluminum levels at overwintering temperatures-effects on gill morphology, electrolyte balance, scale calcium, liver glycogen, and depotfat. Canadian Journal of Zoology,1993,71 (3):531-543
    67. Martinez R, Juncal J, Zaldivar C, Arenal A, Guillen I, Morera V, Carrillo O, Estrada M, Morales A, Estrada M P. Growth efficiency in transgenic tilapia (Oreochromis sp.) carrying a single copy of a homologous cDNA growth hormone. Biochemical and Biophysical Research Communications,2000,267: 466-472
    68. Matey V, Richards J G, Wang Y X. Wood C M, Rogers J, Davies R, Murray B W, Chen X Q, Du J Z, Brauner C J. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. Journal of Experimental Biology,2008,211 (7):1063-1074
    69. McDonald D G, McMahon B R. Respiratory development in Arctic char Salvelinus alpinus under conditions of normoxia and chronic hypoxia. Canadian Journal of Zoology,1977,55:1461-1467
    70. McKenzie D J, Martinez R, Morales A, Acosta J, Morales R, Taylor E W, Steffensen J F, Estrada M P. Effects of growth hormone transgenesis on metabolic rate, exercise performance and hypoxia tolerance in tilapia hybrids. Journal of Fish Biology,2003,63:398-409
    71. Muir B S, Hughes G M. Gill dimensions for three species of tunny. Journal of Experimental Biology,1969,51 (2):271-285
    72. Oikawa S, Itazawa Y. Gill and body surface areas of the carp in relation to body mass, with special reference to the metabolism-size relationship. Journal of Experimental Biology,1985,117 (1):1-14
    73. Ostenfeld T H, McLean E, Devlin R H. Transgenesis changes body and head shape in Pacific salmon. Journal of Fish Biology,1998,52 (4):850-854
    74. Palzenberger M, Hannes P. Gill surface area of water-breathing freshwater fish. Reviews in Fish Biology and Fisheries,1992,2 (3):187-216
    75. Richards J G, Wang Y S, Brauner C J, Gonzalez R J, Patrick M L, Schulte P M, Choppari-Gomes A R, Almeida V M. Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. Journal of Comparative Physiology B,2007,177:361-374
    76. Sollid J, De Angelis P, Gundersen K. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. Journal of Experimental Biology,2003, 206 (20):3667-3673
    77. Sollid J, Kjernsli A, Angelis P M. Cell proliferation and gill morphology in anoxic crucian carp. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2005,289 (4):1196-1201
    78. Sollid J, Nilsson G E. Plasticity of respiratory structures-adaptive remodeling of fish gills induced by ambient oxygen and temperature. Respiratory Physiology & Neurobiology,2006,154 (1,2):241-251
    79. Sollid J, Weber R E, Nilsson G E. Temperature alters the respiratory surface area of crucian carp (Carassius carassius) and goldfish (Carassius auratus). Journal of Experimental Biology,2005,208 (6):1109-1116
    80. Stevens E D, Devlin R H. Gill morphometry in growth hormone transgenic Pacific coho salmon, Onchorhynchus kisutch, differs markedly from that in GH transgenic Atlantic salmon. Environmental Biology of Fishes,2000,58 (1):113-117
    81. Stevens E D, Sutterlin A M, Cook T. Respiratory metabolism and swimming performance in growth hormone transgenic Atlantic salmon. Canadian Journal of Fisheries and Aquatic Sciences,1998,55:2028-2035
    82. Stevens E D, Sutterlin A M. Gill morphometry in growth hormone transgenic Atlantic salmon. Environmental Biology of Fishes,1999,54 (4):405-411
    83. Sundstrom F L, Devlin R H. Feeding on profitable and unprofitable prey:comparing behaviour of growth-enhanced transgenic and normal coho salmon. Ethology,2004, 110:381-396
    84. Sundstrom F L, Lohmus M, Johnsson J. Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proceedings of the Royal Society of London B (Supplement),2004,271:350-352
    85. Tuurala H, Egginton S, Soivio A. Cold exposure increases branchial water-blood barrier thickness in the eel. Journal of Fish Biology,1998,53 (2):451-455
    86. Wenger R H. Mammalian oxygen sensing, signalling and gene regulation. Journal of Experimental Biology,2000,203(8):1253-1263
    87. Wright D E. Morphology of the gill epithelium of the lungfish, Lepidosiren Paradoxa. Cell and Tissue Research,1974,153(2):356-381