基于DMD的双视场红外目标模拟器光学引擎的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外制导导弹以其探测手段的隐蔽性及抗干扰能力强等优点不断受到人们的重视,随着成像制导导弹的不断发展,红外目标模拟器作为测试与评估导引头的有效手段亦随之不断更新。红外光学引擎是红外目标模拟器的重要组成部分,其设计的合理性直接影响整个系统成像的照度均匀性、对比度、分辨率等因素。
     本文通过分析对比各景象生成器件的性能,最终选用DMD(Digital Micro mirror Devices)作为景象生成器件,并设计了一套双视场红外目标模拟器的光学引擎。
     文中分析了基于DMD光学引擎的结构特点及设计难点,详细讨论了光学系统中使用的远心光路结构的组成部分,及各组份之间的关系。由于红外目标模拟器光学引擎是一个集光、机、电、算一体化的技术,对于光学引擎的设计要同时考虑到光源与照明光学系统的光瞳匹配,照明光学系统经TIR(全内反射,Totally Internally Reflect)棱镜入射到DMD上的入射角与DMD偏角之间的关系。为实现在DMD微反射镜“开”状态时所有入射光都能入射到投影系统光瞳处,且“关”状态和“平”状态所有入射光都不能进入到投影系统光瞳,在设计TIR棱镜时要特别计算棱镜各参数的量值。此外为使红外目标模拟器与导引头相匹配,在设计投影光学系统时要考虑到导引头的技术参数,同时还应满足投影系统的入瞳与照明光学系统的出瞳相匹配。
     文中以某双视场导引头为例,设计了一套与之匹配的红外光学引擎。由于选用远心光路结构,设计过程中可以将照明光学系统与投影光学系统分开单独设计。
     首先对照明光学系统进行设计。通过分析光源、DMD等技术参数,利用光学扩展量,确定照明光学系统的结构为临界照明,并拟定照明光学系统的设计参数。此外根据TIR棱镜的特点及其在照明光学系统所中起的作用,综合考虑照明光束入射角度与DMD偏转角度之间的关系,满足在DMD微反射镜“关”状态时没有光线入射到投影光学系统中,以此确定TIR棱镜的各项参数。对设计参数分析完成后,进行了照明光学系统设计。并利用Light Tools软件分析照明光学系统的照明均匀性等技术指标。分析结果表明,照明光学系统基本满足设计要求,像面均匀性良好。然后对双视场投影光学系统进行设计。由于投影光学系统要与某双视场导引头相匹配,故在确定投影光学系统的设计参数前首先讨论了双视场导引头的技术参数。同时,为保证照明光学系统与投影光学系统匹配,应满足拉赫不变量相等,据此确定投影光学系统的设计参数。通过对MTF,弥散斑,畸变等分析,表明投影光学系统设计满足成像要求。文中对投影光学系统的公差进行了分析,保证了投影光学系统的倾斜、偏心、厚度等参数在满足公差要求较为宽松的同时,双视场投影光学系统仍可以清晰成像,达到设计要求。
     最后文中对整个光学引擎的结构及光学性能进行了分析,讨论了仿真温度与黑体工作温度之间的函数关系,并计算了整个结构的能量损耗系数。最后得出,本红外目标模拟器光学引擎设计合理,与双视场导引头匹配,实现双视场目标模拟功能。
Due to the advantage of difficult to discover and strong anti-interference, people have paid more and more attention to infrared guided missile. With the development of infrared imaging guidance missile, infrared scene projector (IRSP) as the most effective method to evaluate the seeker's performance has made great progress. Infrared optical engine is one of the most important parts of IRSP. The design of the IR optical engine directly affects the performance of the whole system, including illumination uniformity, contrast ratio, resolution and so on.
     In this dissertation, a duel field optical engine of IRSP is designed. Compared with the performance of numbers of IRSP technologies, DMD is chosen as the scene generator.
     This dissertation has analyzed the structure characteristic and design difficulties of optical engine based on DMD. In this dissertation, the component of telecentric structure used in DMD optical engine has been discussed. And the relationship between each component has also been analyzed. The optical engine of IRSP is an integration technology which associated with optic, mechanic, electron and compute. During the design of the optical engine, some problems need to be considered. First of all, the pupil of the illumination optical system should be matched with the light source. Secondly, the relationship of the incident angle and reflected angle for the chief ray of incident light bundle on each mirror of DMD should be considered. Thirdly, in order to ensure that all of the rays that transmitted by the illumination optical system should be guided to the pupil of the projection optical system when the mirrors of DMD is on state, and are prevented to enter the pupil when the mirrors is off state, the parameters of TIR prism requires precisely computation. Last but not the least; the IRSP should be matched with the seeker. Because of this, during the projection optical design, the seeker's parameters should be considered. Meanwhile, the projection pupil should be matched with the illumination optical system.
     This dissertation has taken one duel-field seeker as an example, and designed one optical engine of IRSP for the seeker. Because of the structure chosen in this dissertation is telecentric structure, the light path of the projection and illumination optical system (for prism design) can be designed independently.
     First of all, the illumination optical system has been designed. By analysis of the light source, DMD and other technical parameters, the etendue was first calculated. Then we have analyzed the light source and the technical specifications of DMD and chosen critical illumination as the illumination mode. Finally the design specifications for the illumination optical systems have also been determined. In addition, in order to compute the parameters of TIR prism, some problems need to be considered. Based upon the characteristic of TIR prism used in illumination optical system, the relation between illumination angle and the mirror-tilt angle of DMD should be considered first. Secondly it is also necessary to make sure that the whole light of off state could not enter the projection optical system. After the analysis of all the technical parameters, the TIR prism system has been designed. The illumination uniformity of the illumination optical system is evaluated by Light Tools. The analysis results showed that the illumination system designed in this dissertation meets the design requirements. The illumination uniformity is good and the system could modulate the light reflection of DMD.
     One duel-field projection optical system has been designed. Because of the projection system should be matched with the duel-field seeker, the technical parameter of the seeker has been discussed before the design of the whole IRSP optical system. Meanwhile, in order to ensure that the illumination optical system is matched with the projection optical system, the projection optical system has been designed with the consideration that the Lagrange Invariant of the illumination and projection optical system should be equal. The MTF, spot radius and distortion have been analyzed to evaluate the projection optical system. The results have shown that the projection optical system met the design requirements. Finally, he tolerance of the projection optical system has been discussed. Analysis have shown that with relatively loose tolerances of tilt, decenter, thickness etc., this duel field projection optical system could still have a good imaging quality, which means that the optical design is fairly good.
     At the last part of the letter, the structure of the whole optical engine and its optical performances has been analyzed. The relation between simulating temperature and the working temperature of the illumination blackbody was also discussed. The energy loss coefficient of the whole optical engine has been computed. Finally, it has been shown that the optical engine of IRSP designed in this dissertation is designed rationally, and it is matched with the duel field seeker. It could achieve the function of duel field simulation.
引文
[1]Philosophical Transactions of the Royal Society 90:255-83
    [2]R. Abel, "Radiometric accuracy in a Forward Looking Infrared system", Optical Engineering Vol.16,#3, pp 241-248, (1977).
    [3]N. Ben-Yosef, K. Wilner, I. Fuchs, S. Simhony, M. Abitbol. Natural terrain infrared radiance statistics:daily variation. Appl. Opt.24(23):4167-4171,1985
    [4]汪中贤,樊祥.红外制导导弹的发展及其关键技术[J]飞航导弹2009年第10期14-19
    [5]Alam M. S., Bal A. and Horache E. H. et al. Metrics for evaluating the performance of joint-transform-correlation-based target reconition and tracking algorithms. Opt. Eng.,44(6):0670051,2005
    [6]毕兰金,刘勇志.精确制导武器在现代战争中的应用及发展趋势.战术导弹技术,6:1-4 2004
    [7]C. Blasband, J. B. and, G. Schultz. High fidelity, physics-based sensor simulation for military and civil applications.[J] Sensor Review,24(2):151-155
    [8]Bhanu B. Automatic target recognition:state of the art survey. IEEE Trans. Aero. Elec. Sys.22(4):364-379,1986.
    [9]D. Borghys, C. Pemeel, M. Acheroy. Long range automatic detection of small targets in sequences of noisy thermal infrared images. In proceedings on signal and data processing of small targets-SPIE-USA, Apr.243-250,1993
    [10]T.Akiyama, Y.Tamagawa, T.Yanagisawa. Simulation of Visible/inftared Sensor Images [C]. Proc.of SPIE, Vol.2744, 1996, pp.61-67
    [11]N. Ben-Yosef, B. Rahat, G. Feigin. Simulation of IR image of natural backgrounds. Appl. Opt.22(1):190-193,1983
    [12]E. F. Williams, R. H. Evans. IR sensor data fusion for target detection, identification, and tracking. Proc. Of SPIE. Vol. 1304 Acquistion, Tracking, and Pointing IV (1990),138-146.
    [13]L. S. Balfour, Y. Bushlin. Semi-empirical model-based approach for IR scene simulation. Proc. Of SPIE, Vol.3061, pp. 616-623,1997
    [14]D. Brett Beasley, Daniel A. Saylor, James A. Buford, Jr. Overview of dynamic scene projectors at the U.S. Army Aviation and Missile Command. Proc. Of SPIE 4717 2002
    [15]E. E. Burroughs Jr., W. R. Brown, H. M. Lastra, F. Vuong. Infrared scene projection, synthetic solution for testing and training FLIR systems. Interservice/industry training, simulation & education conference. (1999)
    [16]D. Murphy, M. Ray, A. Kennedy, J. Wyles, C. Hewitt, R. Wyles, E. Gordon, T. Sessler, S. Baur, D. Van Lue, S. Anderson, R. Chin, H. Gonzalez, C. Le Pere, S. Ton, T. Kostrzewa. Expanded Applications for High-Performance VOx Microbolometer FPAs. [C] Infrared Technology & Applications XXXI Proc. Of SPIE. (2005)
    [17]P. Brant, J. Oleson, J. James, S. McHugh, J. Lannon, D. Vellenga, S. Goodwin, A. Huffman, S. Solomon, G Goldsmith. MIRAGE:Developments in IRSP Systems, RIIC Design, Emitter Fabrication, and Performance. [C] Technologies for Synthetic Environments:Hardware-In-The-Loop Tesing X. Proc. Of SPIE. Vol 5785. (2005)
    [18]O. Williams, G Goldsmith, R. Stockbridge. History of Resistor Array Infrared Projectors:Hindsight is Always 100% Operability. [C] Technologies for Synthetic Environments:Hardware-In-The-Loop Tesing X. Proc. Of SPIE. Vol 5785. (2005)
    [19]D. B. Beasley, J. B.Cooper. Performance capabilities and utilization of MICOM's Diode laser based infrared scene projector technology. [C] Proc. Of SPIE. Vol.2741. (1996)
    [20]J. B. Cooper, D. B. Beasley. Optical design o a diode laser based dynamic IR scene projector. [C] Proc. Of SPIE Vol. 2469.(1995)
    [21]D. B. Beasley, J. B. Cooper, S. Mobley, J. Buford. Diode laser based infrared scene projector. [C] Proc. Of SPIE. Vol. 2469. (1995)
    [22]D. B. Beasley, J. B. Cooper. Diode Laser Arrays for Dynamic Infrared Scene Projection. [C] Proc. Of SPIE. Vol.1967. (1993)
    [23]D. B. Beasley, D. A. Saylor. Current status of the laser diode array projector technology. [C] Proc. Of SPIE Vol. 3368.(1998)
    [24]H. J. Kim, M. C. Cronell, C. B. Naumann. AMRDEC's HWIL Synthetic Environment Development Efforts for LADAR sensors. Proc. Of SPIE. Vol.5408 (2004)
    [25]H. J. Kim, S. B. Mobley, J. A. Buford. AMCOM RDEC LADAR HWIL Simulation System Development. Proc. Of SPIE Vol.5092. (2003)
    [26]H. J. Kim, M. C. Cornell, C. B. Naumann. Current efforts on developing a HWIL synthethic environment for LADAR sensor testing at AMRDEC. [C] Proc. Of SPIE Vol.5218 (2005)
    [27]P. T. Bryant, J. Oleson, B. Lindberg, B. Anderson, K. Sparkman, etc. MIRAGE:developments in IRSP system development, RIIC design, emitter fabrication, and performance. Proc. Of SPIE 5092.2003
    [28]马斌,程正喜,刘强.国产MOS电阻阵列动态红外景像产生器新进展[J].红外与激光工程第39卷(增刊),2010年5月281-284
    [29]M. Bin, L. Pingzhi, Si Junjie, et al. An improved CMOS-compatible Bulk-silicon-micromachined microemitter for dynamic infrared scene projector. Proceddings of the 8th international conference on solid-state and integrated circuit technology. IEEE. Shanghai, China. (2006)
    [30]李延彬,韩四宁,康为民,戴景民.红外景象模拟器的结构模型及其噪声分析[J].红外与激光工程.2007年9月第36卷增刊.370-373
    [31]康为民,李延彬,高伟志.数字微镜阵列红外动态景象模拟器的研制[J].红外与激光工程.2008年10月.第37卷第5期753-756
    [32]李延彬,康为民,戴景民.红外景象模拟器波长相关问题的研究.[J].红外与激光工程.2008年6月第37卷增刊.381-384
    [33]虞红,费锦东,张盈,高阳,康为民,丁铂.共口径多波段复合场景仿真技术[J].红外与激光工程.2011年9月第40卷第9期1629-1633
    [34]康为民,关英姿,康松高,贾玉林.可见光光学目标模拟器的研制[J].光学技术.2000年5月第26卷第3期281-288
    [35]Z. Qiong. Dynamic scene simulation technology used for infrared seeker. [C] Proc. Of SPIE Vol.7383.2009
    [36]Li Zhuo, Q. Lixun, L. Ping, L. Yanhong, F. Zengming. Technologies of dynamic infrared scene projection and its development. [J] Infrared and laser engineering.2011 378-384
    [37]虞红,何秋茹,陶渝辉.用目标模拟器仿真真实目标能量的计算方法[J].红外与激光工程.2006年10月第35卷增刊.323-326
    [38]G. H. Kornfeld. Computer generation of infrared imagery. Appl. Opt.24(24):4534-4542,1985
    [39]Paul Bryant, Steve Solomon, et al. Bolometers Running Backward:The Synergy Between Uncooled IR Sensors & Dynamic IR Scene Projectors. [C].Proc. Of SPIE Vol.6207 (2006)
    [40]C. L.Bruzzone, J. J. Ma, D. J. W. Aastuen, S. K. Eckhardt. High-performance LCoS Optical Engine Using Cartesian Polarizer. [J] Society for Information Display.34(1):126-129,2003
    [41]C. Arcoumanis, C.S. Bae, Z. Hu. Flow and combustion in a four-valve, spark-ignition optical engine. [C] International Congress & exposition.2.28,2004
    [42]H. Biesel, R. Tom. Real-time simulated forward looking infrared (FL1R) imagery for training. Proc. Of SPIE. Vol.781, pp.71-80,1987
    [43]Russell M. Kurtz, A. V. Parfenov. R. D. Pradhan, T. M. Aye, G.D. Savant. A new approach to wideband scene projection. [C] Proc. Of SPIE. Vol.5813. (2005)
    [44]Ye Bin, P. Jiaxiong, Moving small target detection based on order morphology filtering in infrared image sequences. [J] Journal of data acquisition & processing,2001,16(3):315-319
    [45]李卓,王奎雄等.动态红外图像生成技术研究[J].红外与毫米波学报,1999年10月第18卷第6期443-448
    [46]李卓,李平.动态红外图像生成技术综述[J]红外与激光工程2006年10月第35卷增刊283-394
    [47]Rusche G. IR emitting CRT[C] Proc. Of SPIE Vol.765:85 (1987)
    [48]Roehrig H., Blume H., et al. Noise of CRT display systems[C] Proc of SPIE Vol.1987:232-245 (1993)
    [49]林猷慎.8~12μm IR-CRT视频/红外动态图像转换技术研究.通过技术鉴定[J]红外技术,2000,22(2):38
    [50]Kevin Sparkman, Joe LaVeigne, et al. Performance Improvements in Large Format Resistive Array (LFRA) InfraRed Scene Projectiors (IRSP). Proc. Of SPIE Vol.6942 (2008)
    [51]J. Oleson, et al. Large Format Resistive Array (LFRA) InfraRed Scene Projector (IRSP) Performance & Production Status. Proc. SPIE 6544, (2007)
    [52]V. K. Malyutenko, O. Yu. Malyutenko, et al. Micromachined single-level nonplanar polycrystalline SiGe thermal microemitters for infrared dynamic scene projection. [J]. Aplied Physics Letters.29 May 2009.
    [53]Forber R.A, Aua Efron U, et al. Dynamic IR scene projection using the Hughes liquid crystal light valve [C]. Proc. Of SPIE Vol.1665 259-273 (1992)
    [54]J. Perkins, C. Teplin, M. Van Hest, C. Warmsingh, D. Ginley and S. Harris. Optimization of Transparent Conductiong Oxides for Liquid Crystal Based Optical Phased Arrays. [C] Proc. IEEE Aerospace Conference 2003,5.0801. (2003)
    [55]Teresa K. Ewing, William R. Folks. Liquid Crystal on Silicon Infrared Scene Projectors. [C] Proc. of SPIE Vol.5785. (2005)
    [56]J. R. Dupuis, D. Mansur, G.Genetti. Two-Band DMD-Based IR Scene Simulator. [C] Proc of SPIE. Vol.6942 (2008)
    [57]Julia Rentz Dupuis, David J. Mansur, Robert Vaillancourt, Thomas Evans, David Carlson, Elizabeth Schundler. Two-Band DMD-Based Infrared Scene Simulator. [C] Proc of SPIE Vol.2683. (2009)
    [58]D. Brett Beasley, Matt Bender, Jay Crosby, Tim Messer. Dynamic infrared scene projectors based upon the DMD. [C] Proc. Of SPIE Vol.2710 (2009)
    [59]Tomas M. Cantey, Gary Ballard, Don A. Gregory. Application of type II Wquantum-well diode lasers for high-dynamic-temperature-range infrared scene projection. [J] Optical Engineering.47,086401 (2008)
    [60]Strickland, R. N., and Hahn, H., Wavelet Transform Methods for Object Detection and Recovery. Proc. Of IEEE. Vol.5, No.5, May 1997
    [61]W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, J. L. Johnson, M. L. Thomas, W. E. Tennant. Negative luminescence with 93% efficiency from midwave infrared HgCdTe diode arrays. [J] Appl. Phys. Lett.83,3254 (2003)
    [62]N. C. Das. MWIR LED Array for High-Temperature Target Simulation. [C] Proc. SPIE Vol.6208 (2006)
    [63]V. K. Malyutenko, O. Yu. Malyutenko, A. V. Zinovchuk. Bandgap dependence of current crowding effect in the 2,-inm InAsSb/InAs planar light emitting devices. [J]. Semicond Sci. Technol.23,085004 (2008)
    [64]Naresh C. Das, Kim Olver, F. Towner. Infrared (3-8μm) interband cascade light-emitting diode array with record high efficiency. [J] Appl. Phys. Lett.87,041105, (2005)
    [65]Zhong Dudu, Yu Weiwei, Zhang Kai, Lin Yi, Yan Jie. Design and test of DMD dynamic IR scene simulator. [J] Journal of system simulation. Vol.20 No.19 Oct.2008.5214-5218
    [66]LEON S. New ANSI/IEC standard for projectors [J]. SPIE,1996,2650:209-216.
    [67]JACOBSON B A, GENGELBACH R D. Beam-shape transforming devices in high-efficiency projection systems [J]. SPIE,1997,3139:141-150.
    [68]Benjamin Crowell. Optics. [M] Light and Matter. Fullerton, California.2003 255-269
    [69]Roland Winston, Juan C. Minano, etc. nonimaging optics. [M] Elsevier Academic Press. Burlington, USA.26-43
    [70]Philip C. D. Hobbs. Building electro-optical systems. [M] John wiley & sons, Inc. New York.52-67
    [71]钟锡华,《现代光学基础》[M],北京大学出版社,2003,P.36.
    [72]Paul R. Yoder, Jr. Opto-mechanical Systems Design. [M] Taylor & Francis Group, LLC.2006.85-99
    [73]ZEMAXUserManual, Zemax Development Corporation,3001 112th Avenue NE, Suite 202, Bellevue, Wash. 98004-8017, USA,2008.
    [74]Robert E. Fischer. Optical design for the infrared[J].SPIE,1985,531:82-120.
    [75]Optical Research Associates. LightTools IlluminationModule Users Guide. [M]. Pasadena, California, USA,1997. 122-154
    [76]Robert E.Fischer, BiljamaTadic-Galeb.OpticalSystemDesign[M].NewYork:McGraw-Hilllnc,2000.263-287
    [77]赵星,方志良,崔继承,张新,母国光.微型投影机光学引擎的研究[J]光学学报,2007年,第5期913-918
    [78]江伦大变倍比长焦距中波红外连续变焦距系统研究[D]中国科学院研究生院(长春光学精密机械与物理研究所)博士学位论文201246-58
    [79]胡家升著,光学工程导论(第二版)[M]大连理工大学出版社2005年8月第2次印刷26-30
    [80]郜洪云,熊涛 中波红外两档变焦光学系统[J]光学精密工程2008.第10期1891-1894
    [81]Willey, R. R. and Parks, R. E., Handbook of Optomechanical enginerring, [M] CRC Press, Boca Raton.1997.267-283
    [82]Willey, R.R. and Durham, M. E. Maximizing production yield and performance in optical instruments through effective design and tolerancing. Proc. Of SPIE CR43,1992:76
    [83]Ed. Aness Ahmad, Optomechanical Engineering Handbook [M] CRC Press LLC,1999 96-104
    [84]Casimer M. DeCusatis, Jay M. Enoch, et al. Handbook of Optics, Third Edition. [M] The McGraw-Hill Companies, Inc.2010.231-246
    [85]Smith, W. J., Modern Lens Design,3th. ed. [M] McGraw-Hill, New York,2005 220-231
    [86]Schott, Technical Information, TIE-42, Radiation Resistant Glass, Schott Glass Technologies, Inc., Duryea, Pennsylvania, August,2007
    [87]B. Wang. Studying birefringence in calcium fluoride. [J] Oemagazine.2.48.2002
    [88]Paquin, R. A., Handbook of Optomechanical engineering, [M] A. Ahmad, ed., CRC Press, Boca Paton,1997b 215-253
    [89]T. Parsonage, Jwst beryllium telescope:Material and substrate fabrication, Proc. SPIE, Vol.5494,39,2004.
    [90]K. B. Doyle, V. L. Genberg, G. J. Michels. Numerical methods to compute optical errors due to stress birefringence. Proc. Of SPIE. Vol.4769.2002
    [91]Kimmel, R. K. and Parks, R. E., ISO 10110 Optics and Optical Instruments-Preparation of drawings for optical elements and systems; A User's Guide, Second Edition, [M] Optical Society of America, Washington,2002.159-172
    [92]Optical Research Associates (ORA) Inc. CODE V Transition Guide for current Users Version 9.5 [M]. California: Optical Research Associates 2004.
    [93]M. Pfeffer. Optomechanics of plastic optical components. Handbook of plastic optics. [M] Baumer, S. M. B. Ed, Wiley lnterscience, New York,2005 301-326
    [94]Baumer, S., Shulepova, L., Willemse, J., Renkema, K., Integral optical sytem design of injection molded optics. Proc. Of SPIE 5173,2003:38
    [95]Genberg, V. and Michels, G, "Design optimization of actively controlled optics," Proceedings of SPIE 4198,158, 2000,
    [96]Paul R. Yoder, Jr. Mouting Optics in Optical Instruments, Second Edition [M]. SPIE press. Bellingham, Washington USA.2008 53-87
    [97]Shannon, R.R., Mills, J.P., Trotta, P.A., and Durvasula, L.N., "Conformal optics technology enables window shapes that conform to an application, not to optical limitations," Photonics Spectra,35,2001:86
    [98]McCay, J., Fahey, T., and Lipson, M., "Challenges remain for 157-nm lithography," Optoelectronics World, Supplement to Laser Focus World,23, S3,2001.
    [99]Knapp, D.J. Mills, J.P., Trotta, P.A., and Smith, C.B., "Conformal optics risk reduction demonstration," Proceedings of SPIE 4375,2001:146.
    [100]Christopher Palmer. Diffraction grating handbook, (sixth edition) [M] Newport corporation. New York.2005 287-295