水中脉冲等离子体推进技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆炸丝现象(exploding wires phenomenon)是将存储于高压电容器中的能量,在极短的瞬间内倾注于很小截面积的金属丝,使之汽化,产生强大的冲击波,这种冲击波产生的根本原因就是等离子体。等离子体推进技术在航天工业的应用很多,它作为辅助动力源,具有功耗少、安全可靠的优点。传统的水中电磁流体推进可以产生较大的推力,但它主要依赖于超导技术,对超导材料的要求严格、实现困难、效率低,在很大程度上制约了这种技术的应用。
     本文在对等离子体推进、液中放电和爆炸丝现象综述的基础上,将这三个领域的技术结合在一起,研制出实验用水中脉冲等离子体推进模型。水中脉冲等离子体推进的主要特点是瞬间推力大,但由于它所产生的平均推力小,更适合用作助推力,可实现船舶的定向和准确停靠。文中阐述了该模型的基本结构、工作原理、微机控制系统及其设计方法,给出了主电路和微机控制系统的硬件电路设计及部分软件流程图。最后对模型的实验波形进行了描点分析,得到了相关的关系曲线,并且对在实验过程中出现的问题进行了探讨。
Exploding wires phenomenon is that if the high-density energy is poured into metal wire with small transverse section in a short time from high power pulse source, the metal wire will explode into gaseity and generate significant shock wave. The .fundamental reason of the generated shock wave is the plasma. The plasma propulsion technology is applied abroad in spaceflight industry field as the assistant power source, which has the excellences such as little power exhausting and safe' credibility. Traditional electromagnetic hydrodynamic propeller in water, which depends on super conduct technique, generates the stronger thrust. But the disadvantages that have strict request with super conduct material and difficult realization and low efficiency restrict the application of this technique in a large of degree.
    In the summarize of plasma propulsion and discharging in water and exploding wires phenomenon, this paper combines technology in three fields hereinbefore. An experimental pulse plasma propeller model has been designed. The main characteristic of pulse plasma propulsion in water is great propulsion in moment, whose average propulsion is smaller. So it may be useful for side face propulsion of ships in static state as the assistant propulsion. The paper firstly expatiates the basic configuration, work theory, MCU control system and design method of the model. And then it introduces the hardware circuit design of the main circuit and MCU control system and a part of software flow chart. Finally it gives some correlative graphs of experimental data by analysis of experimental wave and discusses the arisen problem in experiment course.
引文
1 国家自然科学基金委.等离子体物理学报告.科技导报,1994,(5):16~19
    2 马振国.等离子体工业的崛起和发展.科技导报,1995,(2):14~17
    3 S.Katsuki. Behaviors of Plasma Armature in the Augmented Rdilgun Using a Permanent Magnet. IEEE Transactions on Magnetics, 1995, 31(1): 183-188
    4 毛根旺等.微波等离子推进器的原理与应用研究.上海航天,1998,(2):48~51
    5 毛根旺等.电推进研究的技术状态和发展前景.推进技术,2000,21(5):1~5
    6 朱毅麟.离子推进及其关键技术.上海航天,2000,(1):12~18
    7 孙再庸.微波电热推进.推进技术,1995,16(5):86~88
    8 杨涓等.国外微波等离子推进器研究的新进展.上海航天,1999,(4):54~58
    9 张雷.电水锤技术在工业中的应用.新技术新工艺,1998,(3):25~26
    10 Kusaiynov, K. Nonlinear Physical Characteristics of a High-Voltage Electric Discharge in a Two-Phase Liquid.Journal of engineering physics and thermophysics, 1999,72(4): 693
    11 Vovchenko A.Some features of the hydrodynamic characteristics of a high-voltage electric discharge in a liquid with a two-pulse power deposition law. Soviet technical physics letters,1997,23(5):358
    12 屈丹安等.井下电脉冲解堵增产设备.天然气工业,1997,(5):88
    13 韩波等.脉冲大电流放电技术在疏通油井上的应用.电工电能新技术,1998,(1):36~39
    14 孙凤举等.一种用于油水井解堵的脉冲大电流源.高电压技术,1999,25(2):47~49
    15 孙亚兵等.低温等离子体技术在三废处理中的应用与研究.环境保护科学,1997,23(5):45~48
    16 李树杰等.液电效应处理污水的实验研究.中国微生态学杂志,1996,8(1):63~64
    17 许正等.脉冲等离子技术降解TNT初步研究.火炸药学报,1999,(4):54~56
    18 齐军等.水中难降解有机物氧化处理技术的研究现状和发展趋势.环境保护,2000,(3):17~19
    19 Bonifaci, N. The Pulsed Corona Discharge in Liquid Argon.Conference Record of the IEEE Industry Applications Conference, 2000, (2): 739-7428
    
    
    20 王黎明等.体外震波碎石机用火花开关.高电压技术,1996,22(3):79~81
    21 Scherrer V E. Exploding wires. Vol Plenum Press. New York: 1959: 118
    22 张晓萍等.一种新型近红外脉冲强光辐射源的探索.国防科技大学学报,2000,22(3):76-79
    23 刘烈峰等.水中铝丝电爆炸反应的研究.爆炸与冲击,1997,17(1):57-61
    24 元木幹雄.水中線爆凳溶断特性.電気学会論文誌A,昭53,98(5):241-247
    25 王群等.电爆炸一步法制备Cu-Zn合金超细微粉.金属学报,1999,35(12):1271-1273
    26 刘宗德等.电爆炸高速喷涂新技术研究.爆炸与冲击,2001,21(1):16-20
    27 Gourdin W H. Development of the Electromagnetically Launched Expending Ring as a High Strain-rate Test Technique. Rev Sci. Instrum, 1989,60(3):427-432
    28 秦曾衍等.高压强脉冲放电及其应用.第1版.北京工业大学出版社,2000:1-5
    29 卢新培等.水中脉冲放电压力特性研究.爆炸与冲击,2001,21(4):282-286
    30 龚兴根.电爆炸断路开关综述.爆轰波与冲击波,2001,(6):47-56
    31 张晓萍等.红外脉冲强光辐射源中电爆丝爆炸机理研究.国防科技大学学报,2000,22:63-67
    32 王莹.高功率脉冲电源.第1版.原子能出版社,1991:1-7
    33 孙伟等.冲击电流发生器的理论分析.高压电器,1999,(4):40-42
    34 秦实宏等.脉冲电容器组电容器保护的对策分析.高电压技术,2001,27(1):39-40
    35 何孟兵等.高功率脉冲放电间隙开关综述.高电压技术,2000,26(4):33-35
    36 John.Moxchella.;Richard C. Hazelton. An Inverse Pinch Plasma Source for Plasma Opening Switches.IEEE Transactions on Plasma Science,2000, 28(12)2247-2254
    37 J M Koutsoubis. Electrode Erosion and Lifetime Performance of a High Repetition Tate, Triggered, Corona-stabilized Switch in Air. IEEE Transactions on Plasma Science,2000,28(5): 1486-1489
    38 朱士尧.等离子体物理技术.第1版.科学出版社,1983:62-64
    39 胡汉才.单片机原理及系统设计.第1版.清华大学出版社,2002:46-47
    40 凌云.MCU常用功率输出器件及其应用.电气时代,2002,(3):49-50
    41 王移风.点阵式液晶显示器与微机的连接及编程.机电工程,1998(2):13-15
    
    
    42 陈景亮等.冲击电流自动化系统中的电磁兼容研究.电瓷避雷器,2001,(4):40-44
    43 张寒虹等.水中高压放电的二次放电现象.物理学报,2001,50(4):748-751