脉冲电晕等离子体中的N_2(C~3Π_u→B~3Π_g)光谱实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲电晕等离子体技术用于环境污染治理,是近几十年来各国学者研究的热点,已有相当数量的与宏观脱除效果相关的研究论文发表,但对于微观脱除机制及动力学研究及其重要的活性粒子的诊断研究,却报道较少。这些基础性问题得不到很好的解决,将直接影响到该技术的深入研究和工业应用。由于脉冲电晕放电过程中产生的活性粒子寿命很短,对检测方法的灵敏度要求很高,因此,本文利用发射光谱法对脉冲电晕等离子体中的N_2(C~3Π_u→B~3Π_g)发射光谱进行了研究,主要的研究工作和结论有以下几方面:
     1.设计了适合于光谱检测,并与高压脉冲电源相匹配的线-筒式脉冲电晕反应器。高压脉冲电源与反应器匹配的重要性在于不仅能减少脉冲能量在传输过程中的损失,而且可以提高脱除率。经实验验证,系统呈现良好的匹配关系。
     2.利用发射光谱法进行了大气压下空气中脉冲电晕放电的等离子体诊断研究。在常温常压下测量了N_2(C~3Π_u→B~3Π_g)发射光谱的相对强度与电压极性、峰值电压、重复频率之间的关系。
     3.在常温常压下测量了正脉冲电晕放电、负脉冲电晕放电和双极性脉冲电晕放电的N_2(C~3Π_u→B~3Π_g)发射光谱相对强度在线-筒式反应器内的径向分布,实验结果表明,高能电子密度(≥11.03eV)在线-筒式反应器内的径向分布是随反应器径向距离增大呈非线性递减的。
     4.对空气中和氮气中正、负、双极性脉冲电晕放电的N_2(C~3Π_u→B~3Π_g)发射光谱相对强度进行了比较,并对实验结果进行了定性解释。
The pulse corona induced non-thermal plasma chemical process is a technique applied to pollution control. It is researched actively in recent decades. Many research papers about removal effect have been published, but there are a few research papers about active particles diagnosis. This basic problem will influence the detailed studies and industry application of this technique. The lifetime of active particles produced by pulse corona discharge is very short, so we investigated the emission spectrum of N2(C3Пu-B3Пg) by means of emission spectrum method. The following results are obtained.
    1. A wire-cylinder reactor is designed which is fit for spectrum experiment. Matching a corona plasma reactor to a high-voltage pulse generator is very important. Not only the energy transfer costs can be reduced, but also the removal rate can be improved. By means of experiment, the system presents good matching connection.
    2. The relationships between N2(C3Пu- B3Пg) emission spectrum relative intensity and voltage polarity, peak voltage, repetition frequency are measured at room temperature and atmospheric pressure by means of emission spectrum method which is advantage and practical for plasma characteristic diagnosis. The relative intensity of emission spectrum induced by positive, negative or bipolar pulse corona all rise with increasing peak voltage and repetition frequency.
    3. The positive, negative and bipolar pulse corona induced N2(C3Пu-B3Пg) emission spectrum relative intensity radial distribution in wire-cylinder reactor at room temperature and atmospheric pressure are measured. The results show that the electronic density decreased nonlinearly with the increase of radial distance.
    4. The N2(C3Пu-B3Пg) emission spectrum relative intensity produced by positive, negative and bipolar pulse corona discharge in the air or in N2 are compared, and the experimental results are explained.
引文
[1] M.A.Malik, Jiang Xuanzhen. Destruction of VOCs by Combination of Corona Discharge and Catalysis Techniques[J]. J of Environ.1998, 10(3): 112~126
    [2] Fillus, K.D. Emission Characterization and Off-gas System Development for Processing Simulated Mixed Waste in a Plasma Centrifugal Furnace[J]. HAZARD.WASTE HAZARD. MASTER. Chang. D.P.Y, 1996, 13(1): 143~152.
    [3] 陈殿英.低温等离子体及其在废气处理中的应用.化工环保,2001,21(3):136~138
    [4] Zeuner M, Meischner.Ion Kinetic Aspects of plasma chemical Dsposition of PMMA film[J].J.Vacuum, 1995, 46(1): 27~31
    [5] B. Ozden, J. Hacaloglu. G. Akovali. Mass Spectrometric Study on plasma reaction of styrene and methyl methacrylate[J]. Eur. Polym. J. 1991, 27(12): 1405~1410
    [6] B. Ozden, J. Hacaloglu. G. Akovali. Mass Spectrometric Study on plasma tractions of methyl methacrylate-styrene mixtures[J]. Eur. Polym. J. 1992, 28(2): 129~134
    [7] 徐秋心,实用发射光谱分析,第一版,四川:四川科学技术出版社,1993年
    [8] Kornblum.G. R and Galan.L, Spectrochim. Acta, 1977. VOL32B: 71
    [9] Furuta. N., Nojiri. Y and Fuwa.K, Spectrochim. Acta, 1985. VOL40B: 987
    [10] G.Herzberg. Molecular spectra and molecular structure, Ⅰ. spectra of diatomic molecules[M]. 2nd ed, Van Nostrand, New York, 1950
    [11] K.P.Huber, G.Herzberg. Molecular spectra and molecular structure, Ⅳ. Constants of diatomic molecules[M]. 2nd ed, Van Nostrand, New York, 1979
    [12] 陈猛,杨津基.残余气体对等离子体制备聚合膜的影响[J].真空科学与技术,1996,16(2):130~133
    [13] ChenMeng, YangJinji, Diagnostic analysis of styrene plasma polymerization[J] J. Polym.Sci. Part A: Polym..Chem, 1999, 37(2): 325~330
    [14] Yan Keping et al. Matching between voltage pulse generator and reactor for producing low temperature plasma by positive pulse corona[C]. 2nd Int. Conf on Applied Electrostatics, Beijing, 1993
    [15] Yan k. et al., Electron energy for primary and secondary streamers of pulsed corona in relation with flue gas cleaning, Proc. 11th Int. Symp. Plasma Chem., 1993, 609-614
    [16] M.Rea et al. Energization of pulse corona induced chemical process. Non-thermal plasma Techniques for pollution control[M], 1993.191~204
    [17] Y. L. M. Creyghton. Pulse positive corona discharge: Fundamental study and pilot plant design. The second Int. Conf. On Advanced Oxidation Technologies for Water and Air Treatment, Canada: 1995.17-22
    [18] I.Gallimberti, Impulse corona simulation for flue gas treatment, Pure & Appl. Chem., 1988, 60(6), pp.663-674
    [19] Morrow R, Theory of positive corona in SF6 due to a voltage impulse, IEEE Trans. On-Plasma Sciense, 19, pp: 86-94, 1991
    [20] P.A.Vitello al., Multi-dimensional modeling of the dynamic morphology of streamer corona, Non-thermal plasma Techniques for Pollution Control, B.M. Penetrante and S.E. Schultheis(E.d.),
    
    G34(A): 249-271, 1993
    [21] E. M. Van Veldhuizen, Y. L. M. Creyghton and W. R. Rutgers. High resolution schlieren study of pulsed corona, Proceedings of 4th International Conference on Electrostatic Precipitation. Beijing: Academic Publishers, 1990.663-672,
    [22] 王文春,吴彦.NO、N_2气体中电晕放电高能电子密度分布的光谱实验研究.环境科学学报,1998,18(1):51-55
    [23] 王培南,郑家骠等.氮气快脉冲放电等离子体的光谱分析.原子与分子物理学报(增刊),1998年:91~93
    [24] T.H.Teich, M.Jacob, et Optical diagnostics and some results of gas treatment by way of non-thermal electrical discharge. Pulsed Power'96, IEE Colloquium on, 13 Mar 1996: 34/1-34/4
    [25] 刘征平,王培南,杨炜东等.氮气/氨气的高压快脉冲放电光谱研究.光谱学与光谱分析,1996,21(5):637~640
    [26] 杨津基.气体放电北京:科学出版社,1983:113
    [27] J.S.Chang, P. A. Lawless, and T. Yamamoto. Corona discharge processes. IEEE Tran. Plasma Sci. 1991, 19(6): 1152-1166
    [28] 唐兴祚.高电压技术.第一版.重庆:重庆大学出版社,1999年.6-8
    [29] 徐学基,诸定昌.气体放电物理.第一版.上海:复旦大学出版社,1996年.243-261
    [30] H.J.怀特,工业电收尘,冶金工业出版社,1984
    [31] 刘炳江,郝吉明等,中国酸雨和二氧化硫污染控制区区划及实施政策研究,中国环境科学,1998,Vol.18(1):1-7
    [32] O.Tokumaga, N.Nishimara and M. Washino. Radiation treatment of exhaust gases Ⅳ: Oxidation of NO in the moist mixture of O_2 and N_2, Radiat. Phys. Chem., 1978, 11: 117~122
    [33] K.Kawamura, A.Aoki, H.Kimura et al. Electron beam dry flue gas treatment process. Environ. Sci Tech., 1980, 14: 228~310
    [34] Kada K. and Tsuchiya S., Chemical and physical processes of N_2-NO-NH_3-O_2 mixture gas under electron beam irradiation, Proc. Chem. Soc. Japan, 1981, 8: 1313-1318
    [35] O.Tokumage and Suzuki N., Radiation chemical reaction in NO_x and SO_2 removals from flue gas, Radiat. Phys. Chem., 1984, 24: 145-165
    [36] Akira Mizuno, J. Sidney Clements, Robert H. Davis, IEEE Trans. On Ind. Appl., Vol. IA-22, No.3, May/June 1986
    [37] Masuda S. and H. Nakao, Control of NO_x by positive and negative pulsed corona discharge, Conf. Record, IEEE IAS Meeting, 1986: 1173-1182
    [38] Masuda S., Wu Yah, et al., Pulse corona induced plasma chemical process for De-NO_x, De-SO_x, and mercury vapor control of combustion gas, Third Int. Conf. Electrostatic Precipitation, M. Rea. Ed., 1987: 667-676
    [39] Masuda S., Wu Yan, et al., Pulse corona induced plasma chemical process for De-NO_x, De-SO_x, and mercury vapor control-of combustion gas, Third Int. Conf. Electrostatic Precipitation, M. Rea. Ed., 1987: 667-676
    [40] Chang J.S., and Musuda M., IEEE Ind. Appl. Soc., 1988 Meeting, 1645-1653
    [41] Mizuno A., et al, Proc. Ind. Int. Conf., Electrostatic precipitation, Tokyo, Japan, 1984, 879-885
    
    
    [42] Clements J. S., Mizuno A., Finney W.C. and R.H.Davis, IEEE trans. Ind. Appl., 1989, 25(1), 62-69
    [43] Clavert J. G. and W. R. Stockwell, SO_2, NO and NO_2 oxidation mechanisms, Butter Worth, Boston, 1984: 1-62
    [44] M. B. Chang, et al., J. Appl. Phys. 69(8), 15 April 1991: 4409-4417
    [45] 吴彦等,电晕法脱硫脱硝电源/反应器的研究,大连理工大学学报,35(1),1995:31-34
    [46] Wu Yan, et al., SO_2 removal from industrial flue gases using pulsed corona discharge, J. of Electrostatics, 44, 1998: 11-16
    [47] 宁成,李劲等.正脉冲电晕和氨水对SO_2和NO脱除的实验研究.环境科学,1994,15(1):15~18
    [48] 朱联锡,卢红,蒋文举等.脉冲等离子法烟气脱硫.中国环境科学,14(4):134~136.
    [49] 李谦,李胜利等.燃煤烟气CO_2和CO在脉冲电晕场中的转化.华中理工大学学报,1995,23 (4): 38-43
    [50] 郑雷,姜玄珍.脉冲电晕放电降解CH_2Cl_2的初步研究.环境科学,1997,18(5):62~64.
    [51] 李坚,马广大.电晕法处理易挥发性有机物(VOCs)的实验研究.环境工程,1999,17(3):30~33.
    [52] 黄立维,谭天恩.脉冲电晕法治理甲苯废气实验研究.中国环境科学,1997,17(5):449~452.
    [53] Yan Keping et al. Matching between voltage pulse generator and reactor for producing low temperature plasma by positive pulse corona[C]. 2nd Int. Confon Applied Electrostatics, Beijing, 1993
    [54] 朱益民.脉冲电晕法脱硫脱硝研究概述.环境科学进展,1997,5(5):75~80
    [55] 李谦,宁成等.脉冲放电净化燃媒烟气新技术研究的概况.环境保护科学,1996,2(1):17~20
    [56] Suchard S N. Spectroscopic data, homonuclear diatomic part B, Califonia: The aerospace corporation los angeles, 1975, 1: 381