高压脉冲水中放电特性及亚甲基蓝模拟废液降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压脉冲水中放电降解有机物是一种新型的水处理高级氧化技术,是脉冲功率技术与环境水处理、等离子体化学等多学科的交叉融合;集合高能电子辐射、紫外光辐射、自由基氧化等多种高级氧化技术于一体。不但对目前各种难降解有机污染物具有普遍的适用性,更因其简便、高效、无二次污染等特点具备了广阔的工业应用前景。
     本文从能量角度出发,采用气液两相放电等离子体和化学的方法,在分析高压脉冲水中放电特性及系统参数对亚甲基蓝模拟废液降解影响因素的基础上,搭建一套反应器扩大条件下的水处理实验平台,为高压脉冲水处理技术的进一步放大和工业化应用打下基础,提供有益参考。论文主要研究内容及创新性结论包括:
     1)设计研制了一种新型纳秒级高压脉冲电源。采用电容储能方式的双火花隙充放电回路隔离设计;通过对电路建模及解析求解,分析了电源主电路的最佳工作状态并由此确定电路各参数值。利用工程电磁场仿真软件对电源核心元件多电极旋转火花隙开关,其不同旋转角度下的关合开断电场强度进行仿真计算,结果表明:旋转火花隙充放电回路中强烈的电场畸变能够保证开关的可靠动作;同时达到减小电极烧蚀,延长工作寿命和降低放电分散性等目的。实测结果表明,所设计研制的纳秒级脉冲电源具有:单脉冲能量可调(0.25J-20J)、平均功率可调(25W-2kW)、高重复频率(20-600Hz)、陡峭上升沿(<100ns)、窄脉宽(<1μs)、可靠开断、耐烧蚀等优点,能够达到等离子体水处理应用要求。
     2)结合传统针-板反应器与线-板反应器特点,设计研制了大容量水处理用等离子体锯齿线-板放电反应器。该反应器总设计容量达到42L,采用四象限锯齿线电极,可以根据需要组成多单元串并联放电模式,在形成多个放电通道的同时更加注重气液混合放电的协同效果。
     3)研究了单一水介质条件下系统主要参数对脉冲放电特性的影响,包括波形特征和脉冲能量利用情况。实验表明:提高交流输入电压、增大脉冲储能电容及溶液电导率,减小放电间距等都能够使单脉冲注入能量得到不同程度的提升。但能量注入效率发展情况却各有不同:提高输入电压使得能量注入效率呈现先增后减趋势;增大脉冲储能电容只能让能量注入效率一直下降;增大溶液电导率及减小放电间距却可以保持能量注入效率不断提高。
     4)分析了高压脉冲水中放电过程中起主要降解作用的活性物质(如羟基自由基、臭氧、过氧化氢等)成因及各自降解转化机理。放电产生的过氧化氢和臭氧分别在25min和9min左右的反应时间出现溶解转化,过氧化氢的生成浓度远高于臭氧。过氧化氢和臭氧的产率都随放电间距和溶液电导率的减小而线性增大;曝气的加入削弱了电导率对放电特性的影响。不同曝气条件下,过氧化氢产生浓度次序为:无曝气>氧气>空气>氮气;臭氧产生浓度次序为:氧气>空气>氮气>无曝气,均与各自反应历程和能量利用情况有关。
     5)依托所设计研制的电源/反应器系统,从直接氧化角度和能量利用角度两方面出发,考察了系统主要参数对亚甲基蓝污染物降解效果的影响,以此为参考对各参数进行优化总结,达到整体电源/反应器系统的良好匹配。亚甲基蓝溶液的氧化效率和氧化速度都随交流输入电压、脉冲重复频率、脉冲储能电容的增大而有不同程度的提高,但这种提高通常以高能耗为代价。放电间距和溶液电导率的加大降低了亚甲基蓝氧化效率;入口质量浓度、空气曝气量及溶液pH的增大有助于亚甲基蓝氧化速度和系统能量利用效率的提升。不同反应溶液体积的实验结果表明:在反应器扩大化条件下,处理量越大,能耗越低,运行成本在系统优化整合后可以得到有效控制。
The high voltage pulsed discharge in water is a newly developed advanced oxidation technology, and it's also the combination of pusled power system, water environment treatment and free radical chemical oxidation. Because of the advantage of simplicity, high efficiency and no secondary pollution, this technology can deal with so many kinds of toxic and harmful organic substance without condition restriction and is potential for a propagation industry application.
     Some key factors of the technology were investigated in the dissertation, such as design and fabrication of power source/plasma reactor, pulsed discharge characteristic in water, active species formation, methylene blue(MB) oxidation, system parameters optimum, etc. The main research content and results presented in the dissertation are as follows:
     a) The newly designed high voltage nano-second generator is mainly consists of a variable DC power source for high voltage supply, two graded capacitors for energy storage and the mutiple-electrode rotating spark gap used as switch. The work principle of the main circuit is analyzed, and the dynamic running process is modeled and analytically solved. The results can be used for the design of PPS circuit and the choice of components. By means of calculated distortion characteristic of electrical field, which can ensure enough action time, reduction ablation and prolonging the life of the switch, a simulation model was set up for MER-SGS and the results demonstrate that the power output charactristic, including rise time(<100ns), pulse width(<1μs), repetition rate(20-600Hz) and average power(25W-2kW), etc, all of which reach the standard of experimental application.
     b) Gathering the advantage of needle-plate reactor and wire-plate reactor, the author designs a new style sawtooth wire-plate plasma reactor for water treatment enlargement. The reactor is mainly composed of four-quadrant electrodes which are made of stainless steel and the calculated capacity of this reactor reaches42L. It also can be series parallel connection for further scale up. This model of reactor is good for gas-liquid mass transfer enhancing and attaches more importance to air-liquid mixing discharge treatment result.
     c) The author makes research on pulsed discharge characteristic in pure water, incluing pulsed waveform characteristic and pulse energy utilization. The single pulse implantation energy is increasing constantly as the enhancing of AC input, the value of pulsed energy-storage capacity and solution conductivity. However, the development trend of implantation energy efficiency is so different for each parameter. The amplitude and shape of the output waveform are affected by the processing parameter of the designed system as well.
     d) The pollutant degradation is in accordance with the magnitude of the hydroxyl radical formation by analyzing the active species formation. H2O2and O3can be more powerful when they are translated into hydroxyl radical and the concentration of H2O2is much more than O3in the discharge process. Arranged by magnitude, the H2O2rates at different bubbling are as follows:no bubbling>oxygen>air>nitrogen, and the O3rates at different bubbling are as follows:oxygen>air>nitrogen>no bubbling. Bubbling gas changes the constitution of the discharge region and makes the affection of the conductivity decreased.
     e) Effect of the main parameters, such as AC input, discharge frequency, concentration, volume, air bubbling, pH value are studied on methylene blue waste degradation. Research of using pulsed discharge plasma, to oxidize high concentration methylene blue in the liquid phase, has obtained a remarkable progress. The experiment results show that the degradation efficiency and energy density increase with AC input and pulse frequency increment. However, MB degradation rate of increase is less than the rate of increase of energy, which can indicate that energy efficiency of low-voltage is larger and consumption of free radical is consistent with the characteristic of the secondary. Meanwhile, air bubbling, conductivity and mass transfer efficiency play important role in oxidation process as well. We also can be ensured that the system energy consumption will substantially drop when the reaction volume is larger after the matching optimized between power source and reactor has been realized.
引文
[1]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理[M],北京:中国环境科学出版社,2000.
    [2]秦增衍,左公宁,王永荣等.高压强脉冲放电及其应用[M].北京:北京工业大学出版社,2000.
    [3]李正瀛.脉冲功率技术[M].北京:水利电力出版社,1992.
    [4]H.Bluhm[德].脉冲功率系统的原理与应用[M].江伟华,张弛译.北京:清华大学出版社,2008.
    [5]M.Sihvonen, E.Jarvenpaa, V.Hietaniemi, et al. Advances in supercritical carbon dioxide technologies[J]. Trends Food Sci. Tech.,1999,10:217-222.
    [6]W.H.Glaze, J.W.Kang. The chemistry of water treatment Processes involving ozone, hydrogen Peroxide and ultrasonic radiation[M]. Ozone Sci.& Eng.,1987,9:335-352.
    [7]李志建,李可成,周明.超声波-厌氧生化法处理碱法草浆黑液的研究[J].环境科学与技术,2000,2:43-45.
    [8]贺明雷,张新胜,陈银生.脉冲电解处理废水的研究进展[J].河南化工,2003,5:4-6.
    [9]张光明,张盼月,张信芳.水处理高级氧化技术[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [10]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [11]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983.
    [12]胡希伟.等离子体理论基础[M].北京:北京大学出版社,2006.
    [13]许根慧,姜恩永,盛京.等离子体理技术与应用[M].北京:化学工业出版社,2006.
    [14]菅井秀郎[日].等离子体电子工程学[M].张海波,张丹译.北京:科学出版社,2002.
    [15]李德元,赵文珍,董晓强.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005.
    [16]J.R.Roth.工业等离子体工程第1卷基本原理[M].北京:科学出版社.1998.
    [17]H.GBooker.冷等离子体波[M].北京:科学出版社,1985.
    [18]林家齐,杨文龙,王玮等.薄膜的电致发光及其可靠性[J].发光学报,2008,29(1):56-60.
    [19]任家荣.非热等离子体在烟道气脱硫中的应用研究[D].北京:北京大学,2004.
    [20]胡小吐AC/DC流光放电等离子体烟气脱硫实验研究[D].北京:北京交通大学,2007.
    [21]J.S.Chang. Recent development of plasma pollution control technology:A critical review. Sci. Technol. Adv. Mater.,2001,2:571-576.
    [22]K.Yan, S.Kanazawa, T.Ohkubo, Y.Nomoto. Oxidation and Reduction Processes During NOx Removal with Corona-Induced Nonthermal Plasma. Plasma Chemistry and Plasma Processing, 1999,19(3):212-220.
    [23]Keping Yan, Hexing Hui, MiCui, Jinsong Miao, Xiaoli Wu, Chongguang Bao, Ruinian Li. Corona Induced Non-Thermal Plasmas:Fundamental Study and Industrial Applications[J]. Journal of Electrostatics,1998,44:17-39.
    [24]Ruinian Li, Keping Yan, Jingsong Mao, Xiaoli Wu. Heterogeneous reactions in non-thermal plasma flue gas desulfurization[J]. Chemical Engineering Science,1998,53(8):1529-1540.
    [25]W.F.L.M.Hoeben, E.M.van Veldhuizen, W.R.Rutgers, GM.W.Kroesen. Gas phase corona discharges for oxidation of phenol in an aqueous solution[J]. J.Phys.D:Appl.Phys,1999,32: 47-58.
    [26]S.A.Nair, K.Yan, A.J.M.Pemen, E.J.M.van Heesch, K.J.Ptasinski, et al. Tar Removal from Biomass Derived Fuel Gas by Pulsed Corona Discharges-a Chemical Kinetic Study[J]. Ind. Eng. Chem. Res.,2004,43:1649-1658.
    [27]K.Kawamura. Flue gas treatment by electron beam irradiation[J]. Atomic Energy Soc.,1978, 20:359-367.
    [28]K.Kawamura. Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam irradiation[J]. Radiat.Phys.Chem.,1979,13:5-12.
    [29]张驰,张若兵,徐莹等.双极性脉冲放电降解水中五氯酚的实验分析[J].高电压技术,2010,36(2):1803-1808.
    [30]张延宗.非平衡等离子体与多孔碳材料降解染料废水的协同效应[D].中国石油大学(华东),2008.
    [31]高树香,陈宗柱.气体导电[M].南京:南京工学院出版社,1988.
    [32]杨津基.气体放电[M].北京:科学出版社,1983.
    [33]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003.
    [34]中野义映[日].高电压技术[M].张乔根译.北京:科学出版社,2004.
    [35]董丽芳.气体放电等离子体动力学[M].河北:河北大学出版社,2004.
    [36]张雷,邓琦林,周锦进.液电效应除垢机理分析与试验研究[J].大连理工大学学报,1998,38(2):207-211.
    [37]酆斌.液电清砂技术[J].电工电能新技术,1987,2:50-54.
    [38]A.J.Coleman, J.E.Saunders, L.A.Crum, et al. Acoustic caviation generated by an extracorporeal shock wave lithotripter[J]. Ultrasound Med. Biol.,1987,13:69-76.
    [39]M.Sato, T.Ohgiyama, J.S.Clements. Formation of chemical species and their Effect on microorganisms using a pulsed high-voltage discharge in water[J]. IEEE Trans. Ind. Appl., 1996,32:106-112.
    [40]A.A.Joshi, B.R.Locke, P.Arce, et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution[J]. Hazard. Water, 1995,41:3-30.
    [41]P.Sunka, V.Babicky, M.Clupek, et al. Generation of chemically active species by electrical discharges in water[J]. Plasma Sources Sci. Technol,1999,8:258-265.
    [42]A.Hickling. Electrochemical processes in glow discharge at the gas-solution interface[J]. Modern Aspects of Electrochemistry,1971,6:329-373.
    [43]M.Kirkpatrick, B.R.Locke. Hydrogen, Oxygen, and Hydrogen Peroxide Formation in Electrohydraulic Discharge[J]. Ind. Eng. Chem. Res.,2005,44:4243-4248.
    [44]J.S.Clements, M.Sato, R.H.Davis. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water[J]. IEEE Trans. Ind. Appl., 1987,23:224-235.
    [45]B.Sun, M.Sato, J.S.Clements. Optical Study of Active Species Produced by a Pulsed Streamer Corona Discharge in Water[J]. Electrostatic,1997,39:189-202.
    [46]M.Sahni, B.R.Locke. Quantification of reductive species produced by high voltage electrical discharges in water[J]. Plasma Process. Polym,2006,3:342-354.
    [47]M.Sahni, B.R.Locke. Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors[J]. Ind. Eng. Chem. Res.,2006,45:5819-5825.
    [48]卢新培,潘垣,刘克富,刘明海.水中放电等离子体辐射特性研究[J].华中科技大学学报,2000,28:85-87.
    [49]卢新培,潘垣.水中放电等离子体特性的理论研究[J].应用基础与工程学科学报,2000,8:310-316.
    [50]卢新培,潘垣,刘克富,刘明海.水中放电等离子体状态方程的理论研究[J].高压物理学报,2001,15:103-110.
    [51]P.S.Lang, D.M.Willberg. Oxidative Degradation of 2,4,6-Trinitrotoluene by Ozone in an Electrohydraulic Discharge Reactor[J]. Environ. Sci. Technol.,1998,32:3142-3148.
    [52]B.Sun, M.Sato, J.S.Clements. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution[J]. Environ. Sci. Technol,2000,34:509-513.
    [53]I. Danielewicz Ferchmin, A.R.Ferchmin. Hydration of Ions at Various Temperatures:the role of electrostriction[J]. Journal of Chemical Physics,1998,109(6):2349-2354.
    [54]F.M.Toney, N.J.Howard, R.Jocelyn, et al. Distribution of water molecules at Ag(111)/ electrolyte interface as studied with surface X-ray scattering[J]. Surface Science,1995,335: 326-332.
    [55]Y.S.Chu, T.E.Lister, W.G.Cullen, et al. Commensurate Water Monolayer at the RuO(110)/ Water Interface[J]. Physical Review Letters,2001,86(15):156-162.
    [56]P.C.Hemmer. The Collected Works of Lars Onsager[M]. Singapore:World Scientific,1996.
    [57]陈德森.电子发射和阴极[M].北京:人民邮电出版社,1965.
    [58]T.Yamaguchi, S.H.Chong, F.Hirata. Theoretical study of the molecular motion of liquid water under high pressure[J]. Journal of Chemical Physics,2003,119(2):1021-1034.
    [59]J.V.Coe, A.D.Earhart, H.M.Cohen, et al. Using cluster studies to approach the electronic structure of bulk water:reassessing the vacuum level, conduction band edge, and band gap of water[J]. Journal of Chemical Physics,1997,107(16):6023-6031.
    [60]GN.Fursey. Field emission in vacuum micro-electronics[J]. Applied Surface Science,2003, 215:113-134.
    [61]金明剑.水下等离子体声源电特性的基础研究[D].北京:中国科学院电工研究所,2004.
    [62]刘强.水中脉冲特性电晕放电研究[D].北京:中国科学院电工研究所,2005.
    [63]X.P.Lu, Y.Pan, K.F.Liu, et al. Spark model of pulsed discharge in water[J]. Journal of Applied Physics.2002,91(1):24-31.
    [64]A.W.H.Kratel. Pulsed power discharge in water[D]. CA:California Institute of Technology Pasadena,1996.
    [65]张延宗,郑经堂,陈宏刚.高压脉冲放电水处理技术的理论研究[J].高电压技术,2007,33(2):136-140.
    [66]韩育宏,陆彬,李庆.高压脉冲放电等离子体水处理技术研究进展[J].河北大学学报(自然科学版),2007,27(supp):190-194.
    [67]K.Yan, E.J.M.van Heesch, A.J.M.Pemen, P.A.H.J.Huijbrechts., P.C.T.van der Laan. A 10 kW high-voltage pulse generator for corona plasma generatio[J]. Rev. Sci. Instrum.,2001,72: 2443-2447.
    [68]K.Yan, F.M.van Gompel, E.J.M.van Heesch, A.J.M.Pemen. Development of a 10-30 kW corona plasma system[C]. The Third Int. Symp. on Nonthermal Plasma Technology for Pollution Control,2001, April 23-27, Korea, p.7-12.
    [69]K.Yan, E.J.M.van Heesch, S.A.Nair, A.J.M.Pemen. A triggered spark-gap switch for high-repetition rate high-voltage pulse generation[J]. Journal of Electrostatics,2003,57: 29-33.
    [70]A.J.M.Pemena, I.V.Grekhov, E.J.M.van Heesch, K.Yan, S.A.Nair, S.V.Korotkov. Pulsed corona generation using a diode-based pulsed power generator[J]. Review of scientific instruments,2003,74:512-520.
    [71]K.Yan, D.Higashi, S.Kanazawa, T.Ohkubo, Y.Nomoto, J.S.Chang. NOx removal from air streams by a superimposed AC/DC energized flow stabilized streamer corona[J]. Trans IEE Japan,1998,118(A):948-953.
    [72]K.Yan, S.Kanazawa, T.Ohkubo. Oxidation and reduction processes during NOx removal with corona induced non-thermal plasma[J]. Plasma Chemistry and Plasma Processing,1999,19: 421-443
    [73]K.Yan, T.Yamamoto, S.Kanazawa, T.Ohkubo, Y.Nomoto, J.S.Chang. NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations[J]. IEEE Trans. Ind. Applicat.,2001,37(5):1499-1504.
    [74]K.Yan. Corona Plasma Generation[D]. The Netherlands, Eindhoven:Eindhoven University of Technology,2001.
    [75]A.N.Maltsev. Dense gas discharge with runaway electrons as a new plasma source for surface modification and treatment[J]. IEEE Transactions on Plasma Science,2006,34(4):1166-1174.
    [76]K.Yan, S.Kanazawa, T.Ohkubo, Y.Nomoto. Evaluation of NOx removal by corona induced non-thermal plasmas[J]. Trans IEE Japan,1999,119(A):731-737.
    [77]赵君科,夏连胜,任先文等.陡前沿纳秒脉冲电源的研究[J].高电压技术,1999,25(2):44-46.
    [78]Yefim Yankelevich, Alex Pokryvailo. High power short pulsed corona:investigation of electrical performance, SO2 removal, and ozone generation [J]. IEEE Trans. Plasma Science, 2002,30(5):1975-1981.
    [79]Y.L.M.Creyghton. Pulsed positive corona discharges:fundamental study and applications to flue gas treatment[D]. The Netherlands, Eindhoven:Eindhoven University of Technology, 1994.
    [80]P.P.M.Bloom. High power pulsed corona[D]. The Netherlands, Eindhoven:Eindhoven University of Technology,1997.
    [81]崔锦华.非平衡等离子体甲烷常压偶联研究[D].天津:天津大学,2002.
    [82]王蕾.辉光放电等离子体降解水中有机物与还原六价铬的研究[D].浙江:浙江大学,2008.
    [83]吕丹.气液混合放电反应器特性及甲基橙脱色的研究[D].辽宁:大连海事大学,2009.
    [84]D.M.Willberg, P.S.Lang, R.H.Hochemer, et al. Degradation of 4-Chlorophenol,3, 4-Dichloroaniline, and 2,4,6-Trinitrotoluene in an electrohydraulic discharge reactor[J]. Environ. Sci. Technol.,1996,30:2526-2534.
    [85]P.Lukes. Water treatment by pulsed streamer corona discharge[D]. Czech Republic, Prauge: Institute of Chemical Technology,2001.
    [86]M.A.Malik, Y.Minamitani, S.Xiao, et al. Streamers in water filled wire-cyliinder and packed-bed reactors[J]. IEEE Trans. Plasma Sci.,2005,33:490-491.
    [87]A.T.Sugiarto, M.Sato. Pulsed plasma processing of organic compounds in aqueous solution[J]. Thin Solid Films,2001,386:295-299.
    [88]T.Ohshima, K.Sato, H.Terauchi, et al. Physical and chemical modifications of high-voltage pulse sterilization[J]. Electrostatic,1997,42:159-166.
    [89]王辉,孙岩洲,方志等.不同电极结构下介质阻挡放电的特性研究[J].高压电器,2006,42:25-27.
    [90]许金豹,李成榕,詹花茂等.大气中电极结构对介质阻挡放电的影响[J].高压电器,2008,44:132-134.
    [91]李雪辰,贾鹏英,刘志辉等.介质阻挡放电丝模式和均匀模式转化的特性[J].物理学报,2008,57(2):1001-1007.
    [92]李胜利,李劲.高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学,1996,16:73-76.
    [93]陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解水中苯酚[J].环境科学学报,2002,22:566-569.
    [94]陈银生,张新胜,袁渭康.高压脉冲放电低温等离子体法降解废水中4-氯酚[J].华东理工大学学报(自然科学版),2002,28:232-234.
    [95]陈银生,张新胜,戴迎春等.脉冲电晕放电等离子体法降解含4-氯酚废水[J].化工学报,2003,54:1269-1273.
    [96]文岳中,姜玄真,刘维屏.高压脉冲放电与臭氧氧化联用降解水中对氯苯酚[J].环境科学,2002,23:73-76.
    [97]文岳中,姜玄真,吴墨.高压脉冲放电降解水中苯乙酮的研究[J].中国环境科学,1999,19:406-409.
    [98]Y.Z.Wen, X.Z.Jiang. Pulsed corona discharge-induced reactions of acetophenone in water[J]. Plasma Chem. Plasma Process.,2001,21(3):345-354.
    [99]卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究[D].浙江:浙江大学,2005.
    [100]郝小龙.高压脉冲等离子体放电技术催化降解有机污染物的研究[D].浙江:浙江大学,2007.
    [101]沈拥军.高压脉冲放电等离子体降解有机废水的电源与反应器优化研究[D].浙江:浙江大学,2008.
    [102]王方铮,李杰,吴彦等.高压脉冲放电等离子体溶液中苯酚的降解[J].高电压技术,2007,33(2):124-127.
    [103]D.R.Grymonpre, W.C.Finney, R.J.Clark, et al. Hybrid gas-liquid electrical discharge reactors for organic compound degradation[J]. Ind. Eng. Chem. Res,2004,43:1975-1989.
    [104]张祥龙,于毅,胡小吐,田付强.废水处理用等离子体窄脉冲电源的研制[J].北京交通大学学报(自然科学版),2010,35(5):69-73.
    [105]刘金亮,张瑜,程新兵等.一种结构紧凑重频高压ns脉冲电源的设计[J].高电压技术,2009,35(1):54-58.
    [106]程新兵.高功率重复频率气体火花开关研究[D].湖南:国防科学技术大学,2008.
    [107]叶忠祥.球隙开关的冷却气体流场分析及优化设计[D].湖北:华中科技大学,2008.
    [108]于慧,沈鼎权.电路断路后火花产生过程的分析[J].大学物理,2003,22(1):20-24.
    [109]Tian Fuqiang. Bipolar high repetition rate high voltage nanosecond pulser[J]. Review of scientific instruments,2008,79(35):301-305.
    [110]J.Mankowski, M.Kristiansen. A Review of Short Pulse Generator Technology[J]. IEEE Trans. Plasma Sci,2000,28(1):102-108.
    [111]R.B.Baksht, Y.Yankelevich, A.Pokryvailo. Pulse Repetition Rate Effect on Nanosecond Pulse Corona Discharge[J]. IEEE Trans. Plasma Sci,2006,34(5):1725-1730.
    [112]萨法·卡萨普[加].电子材料与器件原理[M].西安:西安交通大学出版社,2009.
    [113]李景德,沈韩,陈敏.电介质理论[M].北京:科学出版社,2003.
    [114]张祥龙,王毅,胡小吐.流光放电等离子体液相氧化降解亚甲基蓝[J].高电压技术,2011,37(6):1512-1520.
    [115]王占华.介质阻挡放电耦合电晕放电低温等离子及其对含染料废水脱色研究[D].吉林:东北师范大学,2009.
    [116]Ruinian Li, Xin Liu. Main fundamental gas reactions in denitrification and desulfurization from flue gas by non-thermal plasmas[J]. Chem. Eng. Sci.,2000,55:2491-2506.
    [117]李培芳,金方勤.液中放电冲击波和等离子体参数的计算[J].浙江大学学报(自然科学版),1994,28(1):27-35.
    [118]高波,张寒虹,张弛.水中高压放电气泡的实验研究[J].物理学报,2003,52(7):1714-1718.
    [119]张寒虹,陈志福.水中高压放电的二次放电现象[J].物理学报,2001,50(4):748-751.
    [120]卢新培,张寒虹,潘垣等.水中脉冲放电的压力特性研究[J].爆炸与冲击,2001,21(4):282-286.
    [121]卢新培,潘垣,张寒虹.水中脉冲放电的电特性与声辐射特性研究[J].物理学报,2002,51(7):1549-1553.
    [122]卢新培,潘垣,张寒虹.水中脉冲放电等离子体通道特性及气泡破裂过程[J].物理学报,2002,51(8):1768-1772.
    [123]李宁,雷开卓,黄建国等.采拥抱过时变电阻的水下高压放电模型[J].高电压技术,2008,34(12):3060-3064.
    [124]金明剑,孙鹞鸿.不同参数条件下水中脉冲放电的电学特性研究[J].高电压技术,2004,30(7):46-49.
    [125]刘强,孙鹞鸿.水中脉冲电晕放电等离子体特性及气泡运动[J].高电压技术,2006,30(2):54-56.
    [126]李胜利,向浩,李劲.实验用ns级高压脉冲电源的研制[J].高电压技术,2000,26(1):14-15.
    [127]D.R.Grymonpre, A.K.Sharma, W.C.A.Finney, et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors[J]. Chemical Engineering Journal,2001,82:189-207.
    [128]A.K.Sharma, B.R.Locke, P.Arce, et al. A preliminary study of pulsed streamer corona discharge for degradation of phenol in aqueous solution[J]. Hazardous Waste & Hazardous Material,1993,10(2):209-219.
    [129]J.H.Seinfeld. Atmospheric Chemistry and Physics[M]. New York:Wiley,1998.
    [130]C.Brandt, I.Fabian, R.van Eldik. Kinetics and mechanism of the iron(iii)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution, evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism[J]. Inorg. Chem., 1994,33(3):687-701.
    [131]F.M.Huang, L.Chen, H.L.Wang, et al. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma[J]. Chemical Engeineering Journal,2010,162:250-256.
    [132]J.Zhang, K.H.Lee, L.Z.Cui, et al. Degradation of methylene blue in aqueous solution by ozone-based processes[J]. Journal of Insdustrial and Engineering Chemistry,2009,15: 185-189.
    [133]P.Marco, B.Antonio, R.Rico, et al. Electrochemical degradation of methylene blue[J]. Separation and Purification Technology,2007,54:382-387.
    [134]李晖.水中脉冲等离子体推进技术的研究[D].哈尔滨理工大学,2003.
    [135]周同惠,汪尔康,陆婉珍等.分析化学手册(第二分册)[M].化学工业出版社,1997.