日本鬼鲉同工酶组织差异、基于Cytb,COII的系统发育分析及微卫星多态性标记筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本鬼鲉是一种有较高经济价值的的鱼类。本文从日本鬼鲉不同组织同工酶差异,基于Cyt b,COII基因序列的系统发育地位分析和多态性微卫星引物的筛选等三方面进行了研究。
     采用垂直聚丙烯酰胺平板电泳技术,对象山港野生日本鬼鲉的9种组织器官的8种同工酶进行研究,并分析了其酶谱表型。结果表明,琥珀酸脱氢酶在所有组织中均存在,组织间差异较小;乳酸脱氢酶、苹果酸脱氢酶、苹果酸酶、酯酶、醇脱氢酶、过氧化物酶、超氧化物歧化酶则具有明显的组织特异性,且这些酶在表型、分布和活性上均表现出高度的组织特异性。
     根据鲉行目鱼类cyt b和COⅡ上下游保守序列各自设计引物,对日本鬼鲉的线粒体DNA进行PCR扩增,克隆并测定了cyt b和COⅡ因的全序列, COⅡ基因为691 bp和cyt b为1141 bp。从GenBank下载鲉形目28种鱼类的cytb部分或全序列和10种鱼类的COⅡ部分或全序列,然后进行比对分析,用NJ法和ML法构建分子系统发育树。系统发育树结果显示:线粒体cytb和COⅡ基因序列构建的分子系统树,和传统分类方法的结果基本一致;毒鲉科的日本鬼鲉和鲉科的关系最近;在飞角鱼科(Dactylopteridae)是否属于鲉形目还是单独成飞角鱼目的问题上,本研究比较支持飞角鱼科(Dactylopteridae)独立归成飞角鱼目(Dactylopteriformes)。鲉形目的COⅡ与昆虫类的COⅡ不同,鲉形目的COⅡ基因比cyt b基因保守,即COⅡ基因比cyt b基因进化慢。COⅡ基因进化树相应的节点上数值稍微较高。
     用磁珠富集法构建的日本鬼鲉基因组微卫星文库中共有近1000个单菌落。随机挑选352个克隆用载体引物进行第二次筛选,获得阳性候选克隆262个并随机选择了174个克隆进行测序。测序结果表明,156个克隆含有明显(重复次数大于5次)的微卫星重复单元,共含有181个微卫星结构域。两碱基重复次数大于12或三碱基重复次数大于8的克隆共67个。所获得含微卫星的序列总长度范围是152-854bp,平均长度在330 bp左右。其中两碱基重复单元出现的次数最多,占所有分离的微卫星数目的79.0%,三碱基重复单元出现的次数居次,10.5%,此外还发现一碱基重复,四碱基重复,五碱基重复等多种重复类型,共占分离微卫星数目的10.5%,在获得的181个微卫星位点中,完美型微卫星序列共有98个,占54.1% ;非完美型的66个,占36.5% ;复合型的17个,占9.4%。对两碱基复次数大于12或三碱基重复次数大于8的克隆的67个克隆,用Primer premier 5.0引物设计软件设计65对引物,并随机挑选32个合成。用32对引物在厦门日本鬼鲉群28个个体进行PCR扩增,筛选出25对有效扩增的微卫星引物,其中19对微卫星引物在此群体有高度多态性。每个位点等位基因个数(A)在4-14之间,观察杂合度在0.500–0.892之间,期望杂合度0.521–0.914之间。有两个位点(J004, IJ014)严重偏离Hardy-Weinberg平衡。本文首次报道了日本鬼鲉微卫星DNA标记的多态性筛选,在毒鲉科鱼类中也尚属第一次。
The devil stinger, Inimicus japonicus, was a species with higher economic value. Three aspects coverd by this study are the isozyme patterns in various tissues of Inimicus japonicus, the phylogenetic analysis of it in Scorpaeniformes base on mitochondrial cyt b、COⅡand the isolation and characterization of high polymorphic microsatellite markers in it.
     Eight isozymes in 9 tissues or organs of Inimicus japonicus were studied by the vertical polyacrylamide gel electrophoresis, then the phenotypes and the expressions of the isozymes were analyzed. The results showed that the isozyme of Succinatedehydrogenase(SuDH) existed in all these tissues, showing little differences in various tissues. The isozymes of Lactic dehydrogenase(LDH)、Malate dehydrogenase(MDH)、Malic enzyme(ME)、Esterase(EST)、Alcoholdehydrogenase (ADH)、Peroxidase(POD) and Superoxide dismutase(SOD) showed clearly tissue-specific bands. And these enzymes in thier phenotype, distribution and activity all showed high degree of tissue specificity.
     The entire mitochondrial cyt b and COⅡs equence of Inimicus japonicus, 691 Bp for COⅡand 1141 bp for cytb,was cloned, whose primers was desiged by the upstream and downstream sequences of the mitochondrial cyt b and COⅡconserved sequences in Scorpaeniformes.They was compared respectly with the mitochondrial cyt b sequences of 28 other fish in Scorpaeniformes and the mitochondrial COⅡs equences of 10 other fish in Scorpaeniformes downloaded from GenBank, building molecular phylogenetic tree by NJ method and ML method. Phylogenetic tree showed that: phylogenetic trees constructed by mitochondrial cyt b and COⅡs equences was consistent with traditional classification methods;the relations of Inimicus japonicus (Synanceiidae) and Scorpaenidae was mostly close; Dactylopteridae to build up Dactylopteriformes was more reasonable than to be Scorpaeniformes in this paper. Differently with the mitochondrial COⅡin the insects, the mitochondrial COⅡgene was conservative than he mitochondrial cyt b gene in Scorpaeniformes, that is, the mitochondrial COⅡgene evolved slower than the cyt b gene in Scorpaeniformes. Therefore, the value of the nodes in the phylogenetic tree of the mitochondrial COⅡgene was corresponding slightly higher.
     There are almost 1000 colonies in the enriched library. 352 colonies were selected randomly by the second PCR screening. The second PCR screening was performed using the primers of T vector, and 262 positive clones were obtained in which 174 positive clones were Sequenced. Sequencing results showed that 156 clones contained microsatellite repeat unit (repeat number > 5), including 181 microsatellite doman. There were 67 clones contained two basic repeat whose repeat number > 12 or three basic repeat whose repeat number >8. The length of the sequence contained microsatellite doman ranged from 152 to 854bp, with an average of 330bp. The two basic repeat was the most abundant motifs with a percentage of 79%, and three basic repeat was the second abundant motifs with a percentage of 10.5% .Several other repeat types were also detected , accounting for 10.5%. Among all the 181 microsatellites, 98(54.1%) sequences were perfect type, 66(36.5%) were imperfect type and 17 (9.4%) were compound type. The 65 pairs of primers were designed using Primer premier 5.0 according to the 67 clones and 32 pairs selected randomly were synthized. The PCR amplification were performed in 28 individuals from the xiamen population with the 32 pairs primers. As a result, 25 pairs of primers were screened effective and 19 loci showed polymorphism in this population. The number of alleles per locus ranged from 4 to 14. The ranges of observed and expected heterozygosity were 0.500–0.892 and 0.521–0.914, respectively. Significant deviations from Hardy–Weinberg equilibrium were detected at two loci. These were the first microsatellite loci characterized from I. japonicas, even the first microsatellite loci developmented from Synanceiidae.
引文
陈定福,杨清发.吻鱼句和圆口吻鱼句同工酶的电泳分析[J] .西南师范大学学报, 1997,22 (2) : 162-168.
    陈红菊,岳永生,攀新忠.利用微卫星标记分析山东地方鸡种的遗传多样性[J]. 遗传学报, 2003, 30(9): 855-860.
    代金霞,张大治.基于线粒体COⅡ和Cyt b基因序列的8种漠甲系统发育关系[J].昆虫知识, 2008,45(4):554-558.
    方美英,吴常信.猪品种遗传多样性的研究进展[J].畜牧与兽医, 2001, 33(5): 40-42.
    管丹冬,李明云,叶帅东,等.岱衢族大黄鱼不同组织的同工酶谱[J].宁波大学学报(理工版), 2008, 23(1): 35-38.
    郭宪光,张耀光,何舜平,等. 16SrRNA基因序列变异与中国鮡科鱼类系统发育[J].科学通报, 2004, 49 (14): 1371-1379.
    郭新红,刘少军,刘巧,等.鱼类线粒体DNA研究新进展[J].遗传学报, 2004, (09): 983-1000.
    海萨,李家乐,刘峰,等.伊犁鲈微卫星位点的筛选及近缘物种通用性[J].动物学杂志[J]. 2009, 44(1): 17-23.
    胡能书,万贤国.同工酶技术及其应用[M].长沙:湖南科技出版社,1985: 86-126.
    黄福勇,李明云.凫溪香鱼群体同工酶的生化遗传分析[J].水产学报, 2004, 28(5): 579-584.
    黄原.分子系统学原理、方法和应用[M].北京:中国农业出版社, 1998: 1-2.
    季旭,孙效文,杨立更,等.微卫星标记对牙鲆有丝分裂雌核发育家系的亲子鉴定[J].动物学研究, 2008, 29(1): 25-30.
    姜建国,熊全沫,姚汝华.青鱼不同组织中同工酶的表达模式[J].水生生物学报, 1997, 21(4): 353-358.
    姜孝玉,涂洪斌,陈慧萍,等.日本鬼鲉毒腺cDNA表达文库的构建和初步分析[J].生物化学与生物物理进展, 2002, 29(3): 424-428.
    金鑫波.中国动物志硬骨鱼纲鲉形目Ostichthyes Scorpaeniformes[M].北京市: 科学出版社,2006,260-275.
    寇静,廉振民.基于mtDNA-COII基因部分序列探讨蟋蟀科五属的进化关系(直翅目:蟋蟀科) [J].昆虫分类学报, 2006 , 28 (2) : 97-102.
    匡刚桥,刘臻,鲁双庆,等. FIASCO法筛选鲡鱼微卫星标记[J].中国水产科学, 2007, 14 (4) : 608-614.
    李太武,吕振明,林志华,等.泥蚶同工酶谱在不同组织的差异研究[J].海洋学报, 2004, 26(4): 125-132.
    林能锋,苏永全,丁少雄,等.大黄鱼微卫星标记引物在石首鱼科几个近缘种中的通用性研究[J].中国水产科学, 2008, (02): 237-243.
    凌去非,李思发.鲤科25种鱼类线粒体COⅡ基因序列差异及其系统进化关系[J]. 水产学报, 2006, (06): 747-752.
    刘晓萍,于业军,张克凌,等.日本鬼鲉背鳍棘毒腺中Ⅰ、Ⅱ型毒腺细胞关系的探讨[J].动物学报, 2000,4(2): 221-226.
    刘晓萍,于业军,张克凌.中国沿海常见棘毒鱼类的毒性研究-日本鬼鮋背鳍棘中的毒腺结构[J].海洋与湖沼, 1999, 30(6): 597-603.
    刘振勇,全汉锋.鬼鲉人工育苗技术研究[J].上海水产大学报, 2005, 14(1): 30-35.
    刘志毅,相建海.微卫星DNA分子标记在海洋生物遗传分析中的应用[J].海洋科学, 2001, 25 (6): 11-13.
    彭涛,王念民,佟广香,等.湖鲟微卫星引物在三种鲟鱼及杂交子代的通用性研究[J].水产学杂志, 2009, 22(2): 12-16.
    彭作刚,张耀光,何舜平,等.从细胞色素b基因序列变异分析中国鲇形目鱼类的系统发育[J].遗传学报, 2005, (02) : 145-154.
    曲妮妮,龚世园,黄桂菊,等.基于FIASCO技术的合浦珠母贝微卫星标记分离与筛选研究[J].热带海洋学报, 2010, 29(3): 47-54.
    任竹梅,马恩波,郭亚平.蝗总科部分种类Cyt b基因序列及系统进化研究[J].遗传学报, 2002, 29(4): 314-321.
    沙学绅,阮洪超,何桂芬.鬼鲉卵子及仔、稚鱼的发育[J].海洋与湖沼, 1981, 12(4): 366-371.
    苏锦祥.鱼类学与海水鱼类养殖[M].北京:中国农业出版, 1993.
    王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究[J].昆虫知识, 2002, 39(2): 88-92.
    王成辉,李思发.中国红鲤线粒体COⅡ基因的遗传变异和亲缘关系(英文)[J].遗传学报, 2004, (11): 1226-1231.
    王春琳,母昌考,丁爱侠,等.口虾蛄(Oratosquillaoratoria)同工酶的组织特异性及生化遗传分析[J].海洋与湖沼, 2004, 35(3):258-63.
    王宏伟,王安利,王维娜,等.鱼类同工酶研究进展[J].动物学报, 2001, 47 (专刊):101-105.
    王军,全成千,苏永全,等.官井洋野生与养殖大黄鱼同工酶的研究[J].海洋科学, 2001, 25(6): 39-41.
    王俊杰.探析种质及种质资源定义[J].甘肃林业科技, 2007, 3(2): 1-4.
    王可玲,张培军,刘兰英,等.中国近海带鱼种群生化遗传结构及其鉴别的研究[J] .海洋学报, 1994 , 16 (1) :93-104 .
    王梅芳,余福勇.旗江珧不同组织中酯酶和过氧化物歧化酶同工酶的表达[J].海洋科学, 2000 , 24 (7) : 14-16.
    王中仁.植物等位酶分析[M].北京:科学出版社, 1996.
    吴登俊,马丁,费尔斯特.家畜基因组遗传多态性标记-微卫星标记研究进展(上)[J].国外畜牧科技, 1999, 26(1): 33-35.
    肖武汉,张亚平.鱼类线粒体DNA的遗传与进化[J] .水生生物学报, 2000 , 24 (4) : 384-391.
    辛晓玲,徐照学,门祥洲,等.微卫星标记在家畜遗传育种上的应用[J].河南农业科学, 2003, 7:63-64.
    徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社, 1994.
    徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.海洋与湖沼, 2001, 32, (3): 255-259.
    夏军红,朱彩艳,苏天凤,等.斑节对虾基因组微卫星分离及其序列特征分析,南方水产, 2006, 2 ( 6 ): 1-7.
    尤峰,王可玲,相建海,等.山东近海牙鲆同工酶的生化分析[J].海洋与湖沼,1999,30(2):127-133.
    张际峰,卢韫,杜晓光,等.太湖新银鱼mtDNA CO II和Cytb基因的克隆与序列分析[J].激光生物学报, 2008, 1(2): 229-234.
    张俊丽,高天翔,韩志强,等. 3种白鲑线粒体细胞色素b和16S rRNA基因片段序列分析[J].中国水产科学, 2007, (01): 8-14.
    张庆朝,王慧,秦孜娟,等.泰山赤鳞鱼同工酶的研究[J].动物学研究, l994, 5(2): 62-67.
    周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银螂的遗传多样性初探[J].动物学研究, 2001, 22(4): 257-274.
    朱世华,郑文娟,邹记兴.基于细胞色素b序列的鲹科分子系统发育[J].动物学报,2007, 53 (4): 641-650.
    Beaumont AR, Khamdan SA. Electrophoretic and morphometric characters in population of the pearl oyster, Pinctada radiata(Leach), from around Bahrain[J]. Journalof Molluscan Study, 1991, 57(4): 433-441
    Boore JL.Survey and summary: animal mitochondrial genomes [J]. Nucleic Acids Res, 1999,27: 1767-1780.
    Botstein D, White RL, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
    Brenner S, Elgar G, Sandford R. Characterization of the pufferfish (Fugu) genome compact model vertebrate genome[J]. Nature, 1993, 366(6452): 256-259.
    Brooker AL, Cook D, Bentzen P, et al. Organization of microsatellites differs between mammals and cold-water teleost fishes. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(9): 1959-1966
    Catherine R. M, Attard , Luciano B, et al. Genetic diversity and structure of blue whales (Balaenoptera musculus) in Australian feeding aggregations[J]. Conserv Genet, 2010, 22: 121-129.
    Cheng L, Liu L,Yu X, et al. A linkage map of common carp (Cyprinus carpio) based on AFLP and microsatellite markers[J]. Animal Genetics, 2010, 41: 191-198.
    Chistiako DA, Helleman B, Volckaert FAM. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics[J]. Aquaculture, 2006, 255(1-4): 1-29.
    Conant GC, Lewis PO. Effects of nucleotide composition bias on the success of the parsimony criterion inphylogenetic inference[J]. Mol. Biol. Evol., 2001, 18:1024–1033.
    De Gortari, Freking, Kappes, et al. Extensive genomic conservation of Cattle microsatellite heterozygosity in sheep[J]. Animal Genetics, 1997, 28: 274 -290.
    Faith DP, Cranston PS. Could a cladogram this short havearisen by chance alone?: On permutation tests for cladistic structure[J]. Cladistic, 1991, 7: 1-28.
    Farias IP, Orti G, Sampaio I, et al. The cytochrome b gene as a phylogenetic marker : The limits of resolution for analyzing relationships among cichilid fishes[J]. J Mol Evol, 2001, 53: 89-103.
    Garcia FG, Leon M, Canonne E, et al. The application of microsatellite markers to breeding programmes in the sea bass,Dicentrarchus labrax[J]. Aquaculture, 1998, 159:303-316.
    Glenn TC, Schable NA. Isolating microsatellite DNA loci. Methods in Enzymology, 2005, 395: 202-222.
    Hamilton MB, Pincus EL, DiFiore A, et al. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites[J]. BioTechniques, 1999, 27: 500-507.
    Hillis DM , Huelsenbeck JP. Signal, noise, and reliability in molecular phylogenetic analyses[J]. J Hered, 1992, 83 ( 3) : 189-195.
    Kirpichnikov V S. Genetic Bases of Fish Selection [M]. Chartper 5:The bioehcnacal genetics of fish.Berlin:SpringerVerlag, 1981: 319-395.
    Liu H, Beckenbach AT. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects [J]. Mol Phylogenet Evol, 1992, 1 (1) : 41-52.
    Lydeard C, Roe KJ. The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among Actinopterygianfishes. In: Kocher TD, Stepien CA (eds) Molecular systematic of fish. Academic Press, New York, 1997, pp. 285-303.
    Maddison WP, Donoghue MJ, Maddison DR. Outgroup analysis and parsimony[J]. Sistematic Zoology, 1984, 33: 83-103.
    Miya M, Takeshima H, Endo H, et al. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences[J].Molecular Phylogenetics and Evolution, 2003,26 :21-138.
    Nozaki R, Takushima M, Mizuno K. Reproductive cycle of devil stinger, Inimicus japonicas[J]. Fish Physiology and Biochemistry, 2003, 28: 217-218.
    Perdices A, Bermingham E, Montilla A, et al. Evolutionary history of the genus Rhamdia ( Teleostei: Pimelodidae) in central America[J]. Mol Phylogenet Evol , 2002, 25: 172-189.
    Rice WR. Analyzing tables of statistical tests[J]. Evolution, 1989, 43: 223-225.
    Rosenberg MS, Kumar S. Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference[J]. Mol. Biol. Evol., 2003, 20: 610-621.
    Rousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux[J]. Molecular Ecology Resources, 2008, 8(1):103-106.
    Ruth MS, Robert BM. Malate Dehydrogenase Isozymes in the Longnose Dace, Rhinichthys cataractae [J]. Biochemical Genetics, 1980,18: 755-764.
    Sekino M, Hamaguchi M, Aranishi F. Development of novel microsatellite DNA markers from the Pacific oyster Crassostrea gigas. Marine Biotechnology, 2003, 5(3): 227-233
    Shaklee JB, Kepes KL, Whitt GS. Specialized lactate dehygrogenase isozymes: the molecular and genetic basis for the unique eye and liver of teleost fishes[J]. Journal of Experimental Zoology, 1973, 185: 217-240.
    Takushima M, Nozaki R, Kadomura K, et al. Induced ovulation using LHRHa and artificial fertilization in devil stinger, Inimicus japonicas[J]. Fish Physiology and Biochemistry, 2003, 28: 521-522.
    Valdes AM, Slatkin M, Freimer NB. Allele frequencies at microsatellite loci: the stepwise mutation model revisited[J]. Genetics, 1993, 33: 737-749.
    Wang Z, Weber JL, Zhing G, et al. Survey of plant short tandem DNA repeat[J]. Theoretical and Applied Genetics, 1994, 88(1): 1-6
    Weber JL. Informativeness of human (dC-dA)n (dD-dT)n polymorphisms[J]. Genomics, 1990, 7: 524-530.
    Smith WL, Wheeler WC. Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data[J]. Molecular Phylogenetics and Evolution , 2004, (32):627-646.
    Tóth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis[J]. Genome Reseach, 2000,10: 967-981.
    Wofford DL. PAUP*Phylogenetic Analysis Using Parsimony( * and other methods) . Version 4. 0b10[M]. Sunderland, MA. Massachusetts: Sinauer Associates, 2002. Xia X. Data analysis in molecular biology and evolution[M]. Boston: Kluwer Academic Publishers, 2000.
    Xia X, Xie Z, Salemi M, et al. An index of substitution saturation and its application[J]. Molecular Phylogenetics and Evolution, 2003, 26: 1-7.
    Yeh FC, Yang R, Boyle TJ, et al. POPGENE 32, Microsoft Window-based Freeware for Population Genetic Analysis, version1.32[M]. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada, 1999.
    Ning Y, Liu X, Wang ZY, et al. A genetic map of large yellow croaker Pseudosciaena crocea[J]. Aquaculture, 2007, 264: 16-26.