棕榈酸对βTC6细胞PANDER表达的影响及Exendin-4的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的用不同浓度棕榈酸(PA)干预小鼠胰岛细胞瘤系βTC6细胞不同时长,并加用c-jun氨基末端激酶(JNK)特异性抑制剂SP600125,观察JNK信号转导通路关键蛋白JNK及其下游底物c-jun磷酸化情况,以及胰腺衍生因子(PANDER)的表达变化,探讨PA对β细胞PANDER表达的影响及JNK信号转导通路在其中的作用;建立小干扰RNA(siRNA)沉默PANDER表达,观察βTC6细胞PANDER沉默前后脂性凋亡的变化以及凋亡关键分子caspase-3的活性变化,探讨PA作用下PANDER上调对β细胞脂性凋亡的影响及可能机制;加用胰高血糖素样肽-1(GLP-1)受体长效激动剂Exendin-4处理细胞,观察Exendin-4对PA作用下βTC6细胞凋亡及PANDER表达的影响,以及在这一过程中JNK信号通路和caspase-3的活性变化,探讨Exendin-4拮抗β细胞脂性凋亡的可能机制,为临床新药开发提供一定的实验和理论依据。
     第一部分棕榈酸对βTC6细胞PANDER表达的影响
     方法(1)分别以不同浓度PA(0,0.125,0.25,0.5或1.0mmol/L)干预βTC6细胞不同时长(0,6,12,24或48h),用实时荧光RT-PCR法及Westernblot法检测PANDER mRNA及蛋白的表达变化;(2)以0.5mmol/L的PA干预βTC6细胞0,0.1,0.25,0.5,1,6,12和24h,应用Western blot法,使用能特异识别JNK、c-jun的磷酸化位点的抗体来检测JNK, c-jun的磷酸化水平,从而说明这两种蛋白的活化程度;(3)将βTC6细胞分为四组,分别为对照组、PA组(0.5mmol/L的PA干预24h)、SP600125组(25umol/L SP600125处理细胞24h)和PA+SP600125组(25umol/L SP600125预处理细胞1h,再予25umol/LSP600125+0.5mmol/L PA处理细胞24h),应用Western blot法检测PANDER、p-JNK、JNK、c-jun、p-c-jun的变化。
     结果(1)PA可上调βTC6细胞PANDER表达,在mRNA水平,PA的作用高峰为0.5mmol/L,干预12h;而在蛋白水平,PA的作用高峰出现在0.5mmol/L,干预24h。(2)PA可致JNK通路活化,且有两个高峰,分别出现在PA干预6min及12h。(3)应用SP600125可有效抑制PA诱导的JNK及其下游c-jun磷酸化,且PA诱导的PANDER表达随之降低。
     结论PA通过活化JNK信号转导通路上调β细胞PANDER表达。
     第二部分PANDER在PA所致的βTC6细胞脂性凋亡中的作用
     方法(1)根据小鼠PANDER基因(GenBank Accession Number:52793)的序列,选择6个位点,于体外设计并合成siRNA。评估转染效率后,以Lipofectamine2000作为载体进行瞬时转染。同时设置空白对照组(Blank Control,BC),阴性对照组(Negative Control,NC)以及转染试剂组暴露组(mock)。应用实时荧光PT-PCR及Western blot法检测各组PANDER mRNA及蛋白表达情况。(2)将βTC6细胞分NC组,siRNA组,NC+PA组及siRNA+PA组进行干预。PA的干预浓度和时间根据第一部分实验结果选择,为0.5mmol/L,24h。用末端脱氧核苷酸转移酶介导的dUTP缺口末端标记测定法(terminaldexynucleotidyl transferase(TdT)-mediated dUTP nick end labeling,TUNEL)和Annexin V-FITC-PI双染,流式细胞术检测细胞凋亡。用Western blot法检测caspase-3蛋白水解后的两个亚单位,评估caspase3活化程度。
     结果(1)应用序列Fam3b-mus-208可抑制PANDER基因表达,与NC组相比,在mRNA水平,抑制率达78%,在蛋白水平,抑制率约为60%,可用于后续实验(;2)PA干预后,NC组细胞caspase-3活化,凋亡显著增加;转染PANDERsiRNA的细胞caspase-3活化减少,细胞凋亡率有所降低。
     结论PA可能通过上调PANDER表达进而活化caspase-3诱导胰岛β细胞凋亡。
     第三部分Exendin-4对βTC6细胞脂性凋亡的保护作用
     方法(1)以浓度逐渐升高的Exendin-4(12.5,25,50或100nmol/L)预处理βTC6细胞24h,再予相应浓度的Exendin-4联合0.5mmol/L PA共同干预βTC6细胞24h,用Western blot法检测细胞PANDER蛋白表达。(2)将βTC6细胞分对照组、Exendin-4组、PA组及Exendin-4+PA组进行干预。PA的干预浓度和时间根据第一部分实验结果选择,为0.5mmol/L,24h。Exendin-4的干预浓度根据本部分第一小节实验结果选择,为50nmol/L,预孵育细胞24h后再与0.5mmol/L PA共同干预24h。用TUNEL法和Annexin V-FITC-PI双染,流式细胞术检测细胞凋亡。用Western blot法检测细胞PANDER、p-JNK、JNK、c-jun、p-c-jun及cleaved caspase-3表达的变化。
     结果(1)Exendin-4浓度依赖性降低PA诱导的βTC6细胞PANDER表达。(2)0.5mmol/L PA处理βTC6细胞24h后,p-JNK、PANDER表达增多,caspase-3活化,细胞凋亡明显增多;加用Exendin-4可一定程度抑制PA诱导的JNK活化,进而下调PANDER表达,减少caspase-3活化,拮抗脂性凋亡。
     结论Exendin-4可能部分通过抑制JNK-PANDER-caspase-3通路,拮抗β细胞脂性凋亡
Objective The mouse insulinoma cell line βTC6cells were treated withdifferent concentration of palmitic acid (PA) for different times, and the c-junNH2-terminal kinase (JNK)-specific inhibitor, SP600125was added to observe theexpression of PANDER as well as the level of phosphorylated JNK and its substrateprotein c-jun, to explore the effects of PA on PANDER expression in β cells and therole of JNK signaling pathway plays on this process. A small interfering (si)RNA wasconstructed to interfere with the PANDER expression, the PA induced β-cell apoptosisand the activation of a major apoptotic molecule, cysteine containing aspartatespecific protease(caspase)-3, were measured to investigate the relationship betweenPANDER and PA mediated β-cell apoptosis. βTC6cells were pretreated withExendin-4and then treated with combination of PA and Exendin-4to observe theeffects of Exendin-4on PA-induced apoptosis and PANDER expression, to determinethe possible mechanism of Exendin-4on protecting β cells from lipoapoptosis.
     Part One The effects of PA on the expression of PANDER in βTC6cells
     Methods (1) βTC6cells were treated with different concentration of PA (0,0.125,0.25,0.5或1.0mmol/L) for different times (0,6,12,24或48h), the expressionof PANDER mRNA and protein were detected by quantitative Real Time RT-PCR andWestern blotting respectively.(2) βTC6cells were treated with0.5mmol/L of PA for0,0.1,0.25,0.5,1,6,12and24h, the expression of JNK, p-JNK, c-jun, p-c-junwas detected using Western blotting.(3) βTC6cells were divided into four groups:control (treated with fresh medium), PA (treated with0.5mmol/L of PA for24h),SP600125(treated with25umol/L of SP600125for24h) and PA+SP600125 (pretreated with25umol/L of SP600125for1h, and then treated with thecombination of PA and SP600125for24h). The expression of PANDER, JNK, p-JNK,c-jun and p-c-jun was detected using Western blotting.
     Results (1) PANDER expression could be enhanced when the cells werestimulated with higher concentration of PA for increasing lengths of time. The peakvalue of PA-induced PANDER mRNA expression appeared at0.5mmol/L with12hincubation period as well as0.5mmol/L with24h incubation period at the proteinlevels of PANDER expression.(2) JNK could be actived by PA, and the peak valueappeared at6min and12h.(3)24-h exposure to PA significantly increased thephosphorylation of JNK, pretreatment of βTc6cells with SP600125reducedPA-induced PANDER expression.
     Conclusions PA up-regulates PANDER expression in β-cells through theactivation of JNK signaling pathway.
     Part Two The contribution of PANDER to PA-induced apoptosis in βTC6cells
     Methods (1) Six siRNAs were designed and synthesized in vitro according tothe sequence of mouse PANDER gene(GenBank Accession Number:52793). ThesiRNAs were transfected respectively into βTC6cells using Lipofectamine2000. Cellscultured in medium (Blank Control, BC) or transfected with Negative siRNA(Negative Control, NC) or exposured to Lipofectamine2000(mock) served as thecontrol. The expression of PANDER mRNA and protein were detected by quantitativeReal Time RT-PCR and Western blotting respectively.(2) βTC6cells were dividedinto four groups: NC, siRNA, NC+PA and siRNA+PA. The concentration and theintervention time of PA were chosen according to the results of the part-oneexperiment of this study (0.5mmol/L of PA for24h). The apoptosis of βTC6cellswere detected by the terminal dexynucleotidyl transferase (TdT)-mediated dUTP nickend labeling(TUNEL) and the flow cytometric analysis.The cleaved caspase-3wasdetected by Western blotting to assess the activated level of caspase-3.
     Results (1) βTC6cells transfected with PANDER siRNA(Fam3b-mus-208) caused about72%decrease in the expression of PANDER mRNA as well as about60%decrease at the protein level of PANDER when compared with NC.(2) The24-hexposure to PA significantly increased the level of cleaved caspase-3as well as thepercentage of apoptotic cells in NC, whereas after24-h exposure to PA, the level ofcleaved caspase-3and apoptosis rate in PANDER siRNA transfected cells was lessthan that in NC transfected cells.
     Conclusions PANDER may play a role in β-cell lipoapoptosis throughactivating caspase-3.
     Part three The protective role of Exendin-4against βTC6-cell lipoapoptosis
     Methods (1) βTC6cells were pretreated with increasing concentration ofExendin-4(0,12.5,25,50and100nmol/L) for24h, and then treated withcombination of PA and Exendin-4for24h, the expression of PANDER wasdetected by Western blotting.(2) βTC6cells were divided into four groups: control(treated with fresh medium), Exendin-4(treated with50nmol/L of Exendin-4for24h)PA(treated with0.5mmol/L of PA for24h), and Exendin-4+PA (pretreated with50nmol/L of Exendin-4for24h, and then treated with the combination of PA andExendin-4for24h). The concentration and the intervention time of Exendin-4werechosen according to the results of the previous experiment of this part. The apoptosisof βTC6cells were detected by TUNEL and the flow cytometric analysis. Theexpression of PANDER, JNK, p-JNK, c-jun, p-c-jun and cleaved caspase-3wasdetected using Western blotting.
     Results (1) Exendin-4decreased PA-induced PANDER expression in adose-dependent manner in βTC6cells.(2) The PA-induced toxicity could be partlyprevented in the presence of Exendin-4, and24-h exposure to PA significantlyincreased the expression of p-JNK, p-c-jun, PANDER and cleaved caspase-3, whereasthese enhancements could be partly weakened by the addition of Exendin-4in βTC6cells.
     Conclusions The reverse role of Exendin-4on lipapoptosis of β-cells may bepartly related with interfering JNK-PANDER-caspase-3pathway.
引文
[1]. Yang, W., et al., Prevalence of diabetes among men and women in China. N EnglJ Med,2010.362(12): p.1090-101.
    [2]. Saltiel, A.R. and C.R. Kahn, Insulin signalling and the regulation of glucose andlipid metabolism. Nature,2001.414(6865): p.799-806.
    [3]. Tyrberg, B. and F. Levine, Current and future treatment strategies for type2diabetes: the beta-cell as a therapeutic target. Curr Opin Investig Drugs,2001.2(11):p.1568-74.
    [4]. McGarry, J.D., Banting lecture2001: dysregulation of fatty acid metabolism inthe etiology of type2diabetes. Diabetes,2002.51(1): p.7-18.
    [5]. Lupi, R., et al., Prolonged exposure to free fatty acids has cytostatic andpro-apoptotic effects on human pancreatic islets: evidence that beta-cell death iscaspase mediated, partially dependent on ceramide pathway, and Bcl-2regulated.Diabetes,2002.51(5): p.1437-42.
    [6]. Girard, J.,[Contribution of free fatty acids to impairment of insulin secretion andaction: mechanism of beta-cell lipotoxicity]. Med Sci (Paris),2003.19(8-9): p.827-33.
    [7]. Tuei, V.C., J.S. Ha and C.E. Ha, Effects of human serum albumin complexedwith free fatty acids on cell viability and insulin secretion in the hamster pancreaticbeta-cell line HIT-T15. Life Sci,2011.88(17-18): p.810-8.
    [8]. Kharroubi, I., et al., Free fatty acids and cytokines induce pancreatic beta-cellapoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmicreticulum stress. Endocrinology,2004.145(11): p.5087-96.
    [9]. Wu, P., L. Yang and X. Shen, The relationship between GPR40and lipotoxicityof the pancreatic beta-cells as well as the effect of pioglitazone. Biochem Biophys ResCommun,2010.403(1): p.36-9.
    [10]. Eitel, K., et al., Different role of saturated and unsaturated fatty acids in beta-cellapoptosis. Biochem Biophys Res Commun,2002.299(5): p.853-6.
    [11]. Omae, N., et al., Suppression of FoxO1/cell death-inducing DNA fragmentationfactor alpha-like effector A (Cidea) axis protects mouse beta-cells against palmiticacid-induced apoptosis. Mol Cell Endocrinol,2012.348(1): p.297-304.
    [12]. Nemcova-Furstova, V., R.F. James and J. Kovar, Inhibitory effect of unsaturatedfatty acids on saturated fatty acid-induced apoptosis in human pancreatic beta-cells:activation of caspases and ER stress induction. Cell Physiol Biochem,2011.27(5): p.525-38.
    [13]. Engelbrecht, A.M., et al., Differential induction of apoptosis and inhibition ofthe PI3-kinase pathway by saturated, monounsaturated and polyunsaturated fatty acidsin a colon cancer cell model. Apoptosis,2008.13(11): p.1368-77.
    [14]. Zhu, Y., et al., Cloning, expression, and initial characterization of a novelcytokine-like gene family. Genomics,2002.80(2): p.144-50.
    [15]. Aurora, R. and G.D. Rose, Seeking an ancient enzyme in Methanococcusjannaschii using ORF, a program based on predicted secondary structurecomparisons. Proc Natl Acad Sci U S A,1998.95(6): p.2818-23.
    [16]. Cao, X., et al., Pancreatic-derived factor (FAM3B), a novel islet cytokine,induces apoptosis of insulin-secreting beta-cells. Diabetes,2003.52(9): p.2296-303.
    [17]. Cao, X., et al., Effects of overexpression of pancreatic derived factor (FAM3B)in isolated mouse islets and insulin-secreting betaTC3cells. Am J PhysiolEndocrinol Metab,2005.289(4): p. E543-50.
    [18]. Hou, X., et al., Upregulation of pancreatic derived factor (FAM3B) expressionin pancreatic beta-cells by MCP-1(CCL2). Mol Cell Endocrinol,2011.343(1-2): p.18-24.
    [19]. Wang, O., et al., Mechanisms of glucose-induced expression ofpancreatic-derived factor in pancreatic beta-cells. Endocrinology,2008.149(2): p.672-80.
    [20]. Xu, W., et al., Interferon-gamma-induced regulation of the pancreatic derivedcytokine FAM3B in islets and insulin-secreting betaTC3cells. Mol Cell Endocrinol,2005.240(1-2): p.74-81.
    [21]. Larsen, P.J., et al., Distribution of glucagon-like peptide-1and otherpreproglucagon-derived peptides in the rat hypothalamus and brainstem.Neuroscience,1997.77(1): p.257-70.
    [22]. Bregenholt, S., et al., The long-acting glucagon-like peptide-1analogue,liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun,2005.330(2): p.577-84.
    [23]. Buteau, J., et al., Glucagon-like peptide-1prevents beta cell glucolipotoxicity.Diabetologia,2004.47(5): p.806-15.
    [24]. Hui, H., et al., Glucagon-like peptide-1inhibits apoptosis of insulin-secretingcells via a cyclic5'-adenosine monophosphate-dependent protein kinase A-and aphosphatidylinositol3-kinase-dependent pathway. Endocrinology,2003.144(4): p.1444-55.
    [25]. Farilla, L., et al., Glucagon-like peptide1inhibits cell apoptosis and improvesglucose responsiveness of freshly isolated human islets. Endocrinology,2003.144(12): p.5149-58.
    [26]. Farilla, L., et al., Glucagon-like peptide-1promotes islet cell growth and inhibitsapoptosis in Zucker diabetic rats. Endocrinology,2002.143(11): p.4397-408.
    [27]. Eng, J., et al., Isolation and characterization of exendin-4, an exendin-3analogue,from Heloderma suspectum venom. Further evidence for an exendin receptor ondispersed acini from guinea pig pancreas. J Biol Chem,1992.267(11): p.7402-5.
    [1]. Xu, W., et al., Interferon-gamma-induced regulation of the pancreatic derivedcytokine FAM3B in islets and insulin-secreting betaTC3cells. Mol Cell Endocrinol,2005.240(1-2): p.74-81.
    [2]. Cao, X., et al., Pancreatic-derived factor (FAM3B), a novel islet cytokine,induces apoptosis of insulin-secreting beta-cells. Diabetes,2003.52(9): p.2296-303.
    [3]. Zhu, Y., et al., Cloning, expression, and initial characterization of a novelcytokine-like gene family. Genomics,2002.80(2): p.144-50.
    [4]. Burkhardt, B.R., et al., Tissue-specific and glucose-responsive expression ofthe pancreatic derived factor (PANDER) promoter. Biochim Biophys Acta,2005.1730(3): p.215-25.
    [5]. Yang, J., et al., Mechanisms of glucose-induced secretion ofpancreatic-derived factor (PANDER or FAM3B) in pancreatic beta-cells. Diabetes,2005.54(11): p.3217-28.
    [6]. Hou, X., et al., Upregulation of pancreatic derived factor (FAM3B)expression in pancreatic beta-cells by MCP-1(CCL2). Mol Cell Endocrinol,2011.343(1-2): p.18-24.
    [7]. Yang, J., et al., PANDER binds to the liver cell membrane and inhibitsinsulin signaling in HepG2cells. FEBS Lett,2009.583(18): p.3009-15.
    [8]. Urbina, E.M., et al., Youth with obesity and obesity-related type2diabetesmellitus demonstrate abnormalities in carotid structure and function. Circulation,2009.119(22): p.2913-9.
    [9]. Report of the expert committee on the diagnosis and classification of diabetesmellitus. Diabetes Care,2003.26Suppl1: p. S5-20.
    [10]. Lee, Y., et al., Beta-cell lipotoxicity in the pathogenesis ofnon-insulin-dependent diabetes mellitus of obese rats: impairment inadipocyte-beta-cell relationships. Proc Natl Acad Sci U S A,1994.91(23): p.10878-82.
    [11]. McGarry, J.D., Banting lecture2001: dysregulation of fatty acid metabolismin the etiology of type2diabetes. Diabetes,2002.51(1): p.7-18.
    [12]. Lu, X., et al., Native low density lipoprotein induces pancreatic beta cellapoptosis through generating excess reactive oxygen species. Lipids Health Dis,2011.10: p.123.
    [13]. Gehrmann, W., M. Elsner and S. Lenzen, Role of metabolically generatedreactive oxygen species for lipotoxicity in pancreatic beta-cells. Diabetes Obes Metab,2010.12Suppl2: p.149-58.
    [14]. Laybutt, D.R., et al., Endoplasmic reticulum stress contributes to beta cellapoptosis in type2diabetes. Diabetologia,2007.50(4): p.752-63.
    [15]. Cunha, D.A., et al., Initiation and execution of lipotoxic ER stress inpancreatic beta-cells. J Cell Sci,2008.121(Pt14): p.2308-18.
    [16]. Gwiazda, K.S., et al., Effects of palmitate on ER and cytosolic Ca2+homeostasis in beta-cells. Am J Physiol Endocrinol Metab,2009.296(4): p.E690-701.
    [17]. Elrick, L.J. and K. Docherty, Phosphorylation-dependent nucleocytoplasmicshuttling of pancreatic duodenal homeobox-1. Diabetes,2001.50(10): p.2244-52.
    [18]. Urano, F., et al., Coupling of stress in the ER to activation of JNK proteinkinases by transmembrane protein kinase IRE1. Science,2000.287(5453): p.664-6.
    [19]. Wang, O., et al., Mechanisms of glucose-induced expression ofpancreatic-derived factor in pancreatic beta-cells. Endocrinology,2008.149(2): p.672-80.
    [20]. Poitout, V., L.K. Olson and R.P. Robertson, Insulin-secreting cell lines:classification, characteristics and potential applications. Diabetes Metab,1996.22(1):p.7-14.
    [21]. Poitout, V., et al., Morphological and functional characterization of betaTC-6cells--an insulin-secreting cell line derived from transgenic mice. Diabetes,1995.44(3): p.306-13.
    [22]. Wu, P., L. Yang and X. Shen, The relationship between GPR40andlipotoxicity of the pancreatic beta-cells as well as the effect of pioglitazone. BiochemBiophys Res Commun,2010.403(1): p.36-9.
    [23].黄林晶等,游离脂肪酸对胰岛素瘤细胞系βTc6细胞葡萄糖激酶和葡萄糖转运蛋白2表达及胰岛素分泌功能的影响.中华糖尿病杂志,2011(3).
    [24].吴佩文等, GPR40shRNA表达载体构建及其稳定转染βTC6细胞系的建立.福建医科大学学报,2010(5).
    [25].吴佩文,杨立勇与刘东晖,游离脂肪酸对βTC6细胞葡萄糖刺激胰岛素分泌的影响及吡格列酮的干预作用.中国医药导报,2010(27).
    [26].杨立勇等,游离脂肪酸对βTc6细胞PDX-1表达及胰岛素分泌能力的影响.国际内分泌代谢杂志,2009(6).
    [27]. Dolatabadi, J.E., Molecular aspects on the interaction of quercetin and itsmetal complexes with DNA. Int J Biol Macromol,2011.48(2): p.227-33.
    [28]. Eitel, K., et al., Different role of saturated and unsaturated fatty acids inbeta-cell apoptosis. Biochem Biophys Res Commun,2002.299(5): p.853-6.
    [29]. Stein, D.T., et al., The insulinotropic potency of fatty acids is influencedprofoundly by their chain length and degree of saturation. J Clin Invest,1997.100(2):p.398-403.
    [30]. Nemcova-Furstova, V., R.F. James and J. Kovar, Inhibitory effect ofunsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreaticbeta-cells: activation of caspases and ER stress induction. Cell Physiol Biochem,2011.27(5): p.525-38.
    [31]. Michalska, M., et al., Effects of pharmacological inhibition of NADPHoxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2-inducedmouse islet or clonal pancreatic beta-cell dysfunction. Biosci Rep,2010.30(6): p.445-53.
    [32]. Dixon, G., et al., Arachidonic acid, palmitic acid and glucose are importantfor the modulation of clonal pancreatic beta-cell insulin secretion, growth andfunctional integrity. Clin Sci (Lond),2004.106(2): p.191-9.
    [33]. Goh, T.T., et al., Lipid-induced beta-cell dysfunction in vivo in models ofprogressive beta-cell failure. Am J Physiol Endocrinol Metab,2007.292(2): p.E549-60.
    [34]. Li, J. and Y.F. Guang,[Pancreatic derived factor (PANDER) andnon-alcoholic fatty liver disease (NAFLD)]. Zhonghua Gan Zang Bing Za Zhi,2011.19(9): p.646-7.
    [35]. Robert-Cooperman, C.E., C.G. Wilson and B.R. Burkhardt, PANDER KOmice on high-fat diet are glucose intolerant yet resistant to fasting hyperglycemia andhyperinsulinemia. FEBS Lett,2011.585(9): p.1345-9.
    [36]. Carnegie, J.R., et al., Characterization of the expression, localization, andsecretion of PANDER in alpha-cells. Mol Cell Endocrinol,2010.325(1-2): p.36-45.
    [37]. Robert-Cooperman, C.E., et al., Targeted disruption of pancreatic-derivedfactor (PANDER, FAM3B) impairs pancreatic beta-cell function. Diabetes,2010.59(9): p.2209-18.
    [38]. Wilson, C.G., et al., Liver-specific overexpression of pancreatic-derivedfactor (PANDER) induces fasting hyperglycemia in mice. Endocrinology,2010.151(11): p.5174-84.
    [39]. Burkhardt, B.R., et al., PDX-1interaction and regulation of the PancreaticDerived Factor (PANDER, FAM3B) promoter. Biochim Biophys Acta,2008.1779(10): p.645-51.
    [40]. Bode, J.G., C. Ehlting and D. Haussinger, The macrophage response towardsLPS and its control through the p38(MAPK)-STAT3axis. Cell Signal,2012.
    [41]. Mei, S., et al., p38MAPK promotes cholesterol ester accumulation inmacrophages through inhibition of macroautophagy. J Biol Chem,2012.
    [42]. Wakeman, D., et al., p38MAPK Regulates Bax Activity and Apoptosis inEnterocytes at Baseline and after Intestinal Resection. Am J Physiol GastrointestLiver Physiol,2012.
    [43]. Davis, R.J., Signal transduction by the JNK group of MAP kinases. Cell,2000.103(2): p.239-52.
    [44]. Kato, H., et al., mTORC1serves ER stress-triggered apoptosis via selectiveactivation of the IRE1-JNK pathway. Cell Death Differ,2012.19(2): p.310-20.
    [45]. Biswas, N., et al., ICB3E induces iNOS expression by ROS-dependent JNKand ERK activation for apoptosis of leukemic cells. Apoptosis,2012.
    [46]. Subramanian, S.L., et al., cJUN N-terminal kinase (JNK) activation mediatesislet amyloid-induced beta cell apoptosis in cultured human islet amyloidpolypeptide transgenic mouse islets. Diabetologia,2012.55(1): p.166-74.
    [47]. Jaeschke, A. and R.J. Davis, Metabolic stress signaling mediated bymixed-lineage kinases. Mol Cell,2007.27(3): p.498-508.
    [48]. Martinez, S.C., et al., Inhibition of Foxo1protects pancreatic islet beta-cellsagainst fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes,2008.57(4): p.846-59.
    [49]. Bachar, E., et al., Glucose amplifies fatty acid-induced endoplasmicreticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS One,2009.4(3): p. e4954.
    [50]. Komiya, K., et al., Free fatty acids stimulate autophagy in pancreaticbeta-cells via JNK pathway. Biochem Biophys Res Commun,2010.401(4): p.561-7.
    [51]. Eferl, R. and E.F. Wagner, AP-1: a double-edged sword in tumorigenesis.Nat Rev Cancer,2003.3(11): p.859-68.
    [52]. Choi, S.E., et al., Protective role of autophagy in palmitate-induced INS-1beta-cell death. Endocrinology,2009.150(1): p.126-34.
    [1]. Tyrberg, B. and F. Levine, Current and future treatment strategies for type2diabetes: the beta-cell as a therapeutic target. Curr Opin Investig Drugs,2001.2(11):p.1568-74.
    [2]. Saksida, T., et al., Macrophage migration inhibitory factor deficiencyprotects pancreatic islets from palmitic acid-induced apoptosis. Immunol Cell Biol,2011.
    [3]. Omae, N., et al., Suppression of FoxO1/cell death-inducing DNAfragmentation factor alpha-like effector A (Cidea) axis protects mouse beta-cellsagainst palmitic acid-induced apoptosis. Mol Cell Endocrinol,2012.348(1): p.297-304.
    [4]. Nemcova-Furstova, V., R.F. James and J. Kovar, Inhibitory effect ofunsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreaticbeta-cells: activation of caspases and ER stress induction. Cell Physiol Biochem,2011.27(5): p.525-38.
    [5]. Cvjeticanin, T., et al., T cells cooperate with palmitic acid in induction ofbeta cell apoptosis. BMC Immunol,2009.10: p.29.
    [6]. Shimabukuro, M., et al., Fatty acid-induced beta cell apoptosis: a linkbetween obesity and diabetes. Proc Natl Acad Sci U S A,1998.95(5): p.2498-502.
    [7]. Maedler, K., et al., Monounsaturated fatty acids prevent the deleteriouseffects of palmitate and high glucose on human pancreatic beta-cell turnover andfunction. Diabetes,2003.52(3): p.726-33.
    [8]. Piro, S., et al., Chronic exposure to free fatty acids or high glucose inducesapoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism,2002.51(10): p.1340-7.
    [9]. Lupi, R., et al., Prolonged exposure to free fatty acids has cytostatic andpro-apoptotic effects on human pancreatic islets: evidence that beta-cell death iscaspase mediated, partially dependent on ceramide pathway, and Bcl-2regulated.Diabetes,2002.51(5): p.1437-42.
    [10]. Lingohr, M.K., et al., Decreasing IRS-2expression in pancreatic beta-cells(INS-1) promotes apoptosis, which can be compensated for by introduction ofIRS-4expression. Mol Cell Endocrinol,2003.209(1-2): p.17-31.
    [11]. Wrede, C.E., et al., Fatty acid and phorbol ester-mediated interference ofmitogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells(INS-1). J Mol Endocrinol,2003.30(3): p.271-86.
    [12]. Maedler, K., et al., Distinct effects of saturated and monounsaturated fattyacids on beta-cell turnover and function. Diabetes,2001.50(1): p.69-76.
    [13]. Kharroubi, I., et al., Free fatty acids and cytokines induce pancreatic beta-cellapoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmicreticulum stress. Endocrinology,2004.145(11): p.5087-96.
    [14]. Cao, X., et al., Effects of overexpression of pancreatic derived factor(FAM3B) in isolated mouse islets and insulin-secreting betaTC3cells. Am J PhysiolEndocrinol Metab,2005.289(4): p. E543-50.
    [15]. Cao, X., et al., Pancreatic-derived factor (FAM3B), a novel islet cytokine,induces apoptosis of insulin-secreting beta-cells. Diabetes,2003.52(9): p.2296-303.
    [16]. Fire, A., et al., Potent and specific genetic interference by double-strandedRNA in Caenorhabditis elegans. Nature,1998.391(6669): p.806-11.
    [17]. Robert-Cooperman, C.E., C.G. Wilson and B.R. Burkhardt, PANDER KOmice on high-fat diet are glucose intolerant yet resistant to fasting hyperglycemia andhyperinsulinemia. FEBS Lett,2011.585(9): p.1345-9.
    [18]. Meister, G. and T. Tuschl, Mechanisms of gene silencing by double-strandedRNA. Nature,2004.431(7006): p.343-9.
    [19]. Rivas, F.V., et al., Purified Argonaute2and an siRNA form recombinanthuman RISC. Nat Struct Mol Biol,2005.12(4): p.340-9.
    [20]. Tuschl, T., Expanding small RNA interference. Nat Biotechnol,2002.20(5):p.446-8.
    [21]. Chakraborty, C., Potentiality of small interfering RNAs (siRNA) as recenttherapeutic targets for gene-silencing. Curr Drug Targets,2007.8(3): p.469-82.
    [22]. Haney, S.A., Expanding the repertoire of RNA interference screens fordeveloping new anticancer drug targets. Expert Opin Ther Targets,2007.11(11): p.1429-41.
    [23]. Mahotka, C., et al., Survivin-deltaEx3and survivin-2B: two novel splicevariants of the apoptosis inhibitor survivin with different antiapoptotic properties.Cancer Res,1999.59(24): p.6097-102.
    [24]. Caplen, N.J., et al., Specific inhibition of gene expression by smalldouble-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U SA,2001.98(17): p.9742-7.
    [25]. Harborth, J., et al., Identification of essential genes in cultured mammaliancells using small interfering RNAs. J Cell Sci,2001.114(Pt24): p.4557-65.
    [26]. Yang, D., et al., Short RNA duplexes produced by hydrolysis withEscherichia coli RNase III mediate effective RNA interference in mammalian cells.Proc Natl Acad Sci U S A,2002.99(15): p.9942-7.
    [27]. Sui, G., et al., A DNA vector-based RNAi technology to suppress geneexpression in mammalian cells. Proc Natl Acad Sci U S A,2002.99(8): p.5515-20.
    [28]. Castanotto, D., H. Li and J.J. Rossi, Functional siRNA expression fromtransfected PCR products. RNA,2002.8(11): p.1454-60.
    [29]. Hou, X., et al., Upregulation of pancreatic derived factor (FAM3B)expression in pancreatic beta-cells by MCP-1(CCL2). Mol Cell Endocrinol,2011.343(1-2): p.18-24.
    [30]. Wang, O., et al., Mechanisms of glucose-induced expression ofpancreatic-derived factor in pancreatic beta-cells. Endocrinology,2008.149(2): p.672-80.
    [31]. Burkhardt, B.R., et al., Tissue-specific and glucose-responsive expression ofthe pancreatic derived factor (PANDER) promoter. Biochim Biophys Acta,2005.1730(3): p.215-25.
    [32]. Xu, W., et al., Interferon-gamma-induced regulation of the pancreatic derivedcytokine FAM3B in islets and insulin-secreting betaTC3cells. Mol Cell Endocrinol,2005.240(1-2): p.74-81.
    [33]. Bachar, E., et al., Glucose amplifies fatty acid-induced endoplasmicreticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS One,2009.4(3): p. e4954.
    [34]. Martinez, S.C., et al., Inhibition of Foxo1protects pancreatic islet beta-cellsagainst fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes,2008.57(4): p.846-59.
    [35]. Jaeschke, A. and R.J. Davis, Metabolic stress signaling mediated bymixed-lineage kinases. Mol Cell,2007.27(3): p.498-508.
    [36]. Choi, S.E., et al., Protective role of autophagy in palmitate-induced INS-1beta-cell death. Endocrinology,2009.150(1): p.126-34.
    [37]. Kharroubi, I., et al., Free fatty acids and cytokines induce pancreatic beta-cellapoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmicreticulum stress. Endocrinology,2004.145(11): p.5087-96.
    [38]. Hoorens, A., et al., Distinction between interleukin-1-induced necrosis andapoptosis of islet cells. Diabetes,2001.50(3): p.551-7.
    [39]. Zhou, Y.P., et al., Apoptosis in insulin-secreting cells. Evidence for the roleof intracellular Ca2+stores and arachidonic acid metabolism. J Clin Invest,1998.101(8): p.1623-32.
    [40]. Maedler, K., et al., Glucose induces beta-cell apoptosis via upregulation ofthe Fas receptor in human islets. Diabetes,2001.50(8): p.1683-90.
    [41]. Maedler, K., et al., FLIP switches Fas-mediated glucose signaling in humanpancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci U S A,2002.99(12): p.8236-41.
    [42]. Heim, M.H., The Jak-STAT pathway: cytokine signalling from the receptorto the nucleus. J Recept Signal Transduct Res,1999.19(1-4): p.75-120.
    [43]. Kluck, R.M., et al., The release of cytochrome c from mitochondria: aprimary site for Bcl-2regulation of apoptosis. Science,1997.275(5303): p.1132-6.
    [44]. Kim, S.J., et al., Glucose-dependent insulinotropic polypeptide (GIP)stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkheadtranscription factor Foxo1, and down-regulation of bax expression. J Biol Chem,2005.280(23): p.22297-307.
    [45]. Burkhardt, B.R., et al., PANDER-induced cell-death genetic networks inislets reveal central role for caspase-3and cyclin-dependent kinase inhibitor1A (p21).Gene,2006.369: p.134-41.
    [46]. Lupi, R., et al., Prolonged exposure to free fatty acids has cytostatic andpro-apoptotic effects on human pancreatic islets: evidence that beta-cell death iscaspase mediated, partially dependent on ceramide pathway, and Bcl-2regulated.Diabetes,2002.51(5): p.1437-42.
    [47]. Takahashi, A., et al., Oxidative stress-induced apoptosis is associated withalterations in mitochondrial caspase activity and Bcl-2-dependent alterations inmitochondrial pH (pHm). Brain Res Bull,2004.62(6): p.497-504.
    [48]. Ulloth, J.E., C.A. Casiano and M. De Leon, Palmitic and stearic fatty acidsinduce caspase-dependent and-independent cell death in nerve growth factordifferentiated PC12cells. J Neurochem,2003.84(4): p.655-68.
    [49]. Wilkie, R.P., et al., A functional NADPH oxidase prevents caspaseinvolvement in the clearance of phagocytic neutrophils. Infect Immun,2007.75(7): p.3256-63.
    [1]. Perley, M.J. and D.M. Kipnis, Plasma insulin responses to oral andintravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest,1967.46(12): p.1954-62.
    [2]. ELRICK, H., et al., PLASMA INSULIN RESPONSE TO ORAL ANDINTRAVENOUS GLUCOSE ADMINISTRATION. J Clin Endocrinol Metab,1964.24: p.1076-82.
    [3]. MCINTYRE, N., C.D. HOLDSWORTH and D.S. TURNER, NEWINTERPRETATION OF ORAL GLUCOSE TOLERANCE. Lancet,1964.2(7349): p.20-1.
    [4]. BALSANO, F., et al., NEW INTERPRETATION OF ORAL GLUCOSETOLERANCE. Lancet,1964.2(7364): p.865.
    [5]. McIntyre, N., C.D. Holdsworth and D.S. Turner, Intestinal factors in thecontrol of insulin secretion. J Clin Endocrinol Metab,1965.25(10): p.1317-24.
    [6]. Unger, R.H. and A.M. Eisentraut, Entero-insular axis. Arch Intern Med,1969.123(3): p.261-6.
    [7]. Brown, J.C., A gastric inhibitory polypeptide. I. The amino acid compositionand the tryptic peptides. Can J Biochem,1971.49(2): p.255-61.
    [8]. Lauritsen, K.B., et al., Gastric inhibitory polypeptide (GIP) and insulinrelease after small-bowel resection in man. Scand J Gastroenterol,1980.15(7): p.833-40.
    [9]. Ebert, R., H. Unger and W. Creutzfeldt, Preservation of incretin activity afterremoval of gastric inhibitory polypeptide (GIP) from rat gut extracts byimmunoadsorption. Diabetologia,1983.24(6): p.449-54.
    [10]. Drucker, D.J., Glucagon-like peptides. Diabetes,1998.47(2): p.159-69.
    [11]. Theodorakis, M.J., et al., Human duodenal enteroendocrine cells: source ofboth incretin peptides, GLP-1and GIP. Am J Physiol Endocrinol Metab,2006.290(3):p. E550-9.
    [12]. Elliott, R.M., et al., Glucagon-like peptide-1(7-36)amide andglucose-dependent insulinotropic polypeptide secretion in response to nutrientingestion in man: acute post-prandial and24-h secretion patterns. J Endocrinol,1993.138(1): p.159-66.
    [13]. Reimer, R.A., Meat hydrolysate and essential amino acid-inducedglucagon-like peptide-1secretion, in the human NCI-H716enteroendocrine cell line,is regulated by extracellular signal-regulated kinase1/2and p38mitogen-activatedprotein kinases. J Endocrinol,2006.191(1): p.159-70.
    [14]. Lu, W.J., et al., Chylomicron Formation and Secretion is Required forLipid-Stimulated Release of Incretins GLP-1and GIP. Lipids,2012.
    [15]. Lim, G.E., et al., Insulin regulates glucagon-like peptide-1secretion from theenteroendocrine L cell. Endocrinology,2009.150(2): p.580-91.
    [16]. Nakashima, K., et al., Self-inducible secretion of glucagon-like peptide-1(GLP-1) that allows MIN6cells to maintain insulin secretion and insure cell survival.Mol Cell Endocrinol,2012.349(2): p.281-8.
    [17]. Kendall, D.M., et al., Effects of exenatide (exendin-4) on glycemic controlover30weeks in patients with type2diabetes treated with metformin and asulfonylurea. Diabetes Care,2005.28(5): p.1083-91.
    [18]. DeFronzo, R.A., et al., Effects of exenatide (exendin-4) on glycemic controland weight over30weeks in metformin-treated patients with type2diabetes.Diabetes Care,2005.28(5): p.1092-100.
    [19]. Buse, J.B., et al., Effects of exenatide (exendin-4) on glycemic control over30weeks in sulfonylurea-treated patients with type2diabetes. Diabetes Care,2004.27(11): p.2628-35.
    [20]. Stoffers, D.A., et al., Insulinotropic glucagon-like peptide1agonistsstimulate expression of homeodomain protein IDX-1and increase islet size in mousepancreas. Diabetes,2000.49(5): p.741-8.
    [21]. Brubaker, P.L. and D.J. Drucker, Minireview: Glucagon-like peptidesregulate cell proliferation and apoptosis in the pancreas, gut, and central nervoussystem. Endocrinology,2004.145(6): p.2653-9.
    [22]. Drucker, D.J., Glucagon-like peptides: regulators of cell proliferation,differentiation, and apoptosis. Mol Endocrinol,2003.17(2): p.161-71.
    [23]. Blandino-Rosano, M., et al., Anti-proliferative effect of pro-inflammatorycytokines in cultured beta cells is associated with extracellular signal-regulated kinase1/2pathway inhibition: protective role of glucagon-like peptide-1. J Mol Endocrinol,2008.41(1): p.35-44.
    [24]. Chang, A.M., et al., The GLP-1derivative NN2211restores beta-cellsensitivity to glucose in type2diabetic patients after a single dose. Diabetes,2003.52(7): p.1786-91.
    [25]. Sandhu, H., et al., Glucagon-like peptide1increases insulin sensitivity indepancreatized dogs. Diabetes,1999.48(5): p.1045-53.
    [26]. Cornu, M. and B. Thorens, GLP-1protects beta-cells against apoptosis byenhancing the activity of an IGF-2/IGF1-receptor autocrine loop. Islets,2009.1(3): p.280-2.
    [27]. Kimura, R., et al., Glucagon-like peptide-1(GLP-1) protects againstmethylglyoxal-induced PC12cell apoptosis through thePI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience,2009.162(4): p.1212-9.
    [28]. Toyoda, K., et al., GLP-1receptor signaling protects pancreatic beta cells inintraportal islet transplant by inhibiting apoptosis. Biochem Biophys Res Commun,2008.367(4): p.793-8.
    [29]. Buteau, J., et al., Glucagon-like peptide-1prevents beta cell glucolipotoxicity.Diabetologia,2004.47(5): p.806-15.
    [30]. Urusova, I.A., et al., GLP-1inhibition of pancreatic islet cell apoptosis.Trends Endocrinol Metab,2004.15(1): p.27-33.
    [31]. Eng, J., et al., Isolation and characterization of exendin-4, an exendin-3analogue, from Heloderma suspectum venom. Further evidence for an exendinreceptor on dispersed acini from guinea pig pancreas. J Biol Chem,1992.267(11): p.7402-5.
    [32]. Goke, R., et al., Exendin-4is a high potency agonist and truncatedexendin-(9-39)-amide an antagonist at the glucagon-like peptide1-(7-36)-amidereceptor of insulin-secreting beta-cells. J Biol Chem,1993.268(26): p.19650-5.
    [33]. Kawasaki, Y., et al., Exendin-4protects pancreatic beta cells from thecytotoxic effect of rapamycin by inhibiting JNK and p38phosphorylation. HormMetab Res,2010.42(5): p.311-7.
    [34]. Natalicchio, A., et al., Exendin-4prevents c-Jun N-terminal protein kinaseactivation by tumor necrosis factor-alpha (TNFalpha) and inhibits TNFalpha-inducedapoptosis in insulin-secreting cells. Endocrinology,2010.151(5): p.2019-29.
    [35]. Ferdaoussi, M., et al., Exendin-4protects beta-cells from interleukin-1beta-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway.Diabetes,2008.57(5): p.1205-15.
    [36]. Orskov, C., A. Wettergren and J.J. Holst, Biological effects and metabolicrates of glucagonlike peptide-17-36amide and glucagonlike peptide-17-37inhealthy subjects are indistinguishable. Diabetes,1993.42(5): p.658-61.
    [37]. Larsen, P.J., et al., Distribution of glucagon-like peptide-1and otherpreproglucagon-derived peptides in the rat hypothalamus and brainstem.Neuroscience,1997.77(1): p.257-70.
    [38]. Mojsov, S., M.G. Kopczynski and J.F. Habener, Both amidated andnonamidated forms of glucagon-like peptide I are synthesized in the rat intestine andthe pancreas. J Biol Chem,1990.265(14): p.8001-8.
    [39]. Siegel, E.G., et al., Comparison of the effect of GIP and GLP-1(7-36amide)on insulin release from rat pancreatic islets. Eur J Clin Invest,1992.22(3): p.154-7.
    [40]. Nathan, D.M., et al., Insulinotropic action of glucagonlike peptide-I-(7-37) indiabetic and nondiabetic subjects. Diabetes Care,1992.15(2): p.270-6.
    [41]. Gutniak, M., et al., Antidiabetogenic effect of glucagon-like peptide-1(7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med,1992.326(20): p.1316-22.
    [42]. Casellas, A., et al., Expression of IGF-I in pancreatic islets preventslymphocytic infiltration and protects mice from type1diabetes. Diabetes,2006.55(12): p.3246-55.
    [43]. Hill, D.J., et al., Increased and persistent circulating insulin-like growthfactor II in neonatal transgenic mice suppresses developmental apoptosis in thepancreatic islets. Endocrinology,2000.141(3): p.1151-7.
    [44]. Okuya, S., et al., Leptin increases the viability of isolated rat pancreatic isletsby suppressing apoptosis. Endocrinology,2001.142(11): p.4827-30.
    [45]. Kieffer, T.J. and J.F. Habener, The glucagon-like peptides. Endocr Rev,1999.20(6): p.876-913.
    [46]. Bulotta, A., et al., Cultured pancreatic ductal cells undergo cell cyclere-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1.J Mol Endocrinol,2002.29(3): p.347-60.
    [47]. Wang, X., et al., Glucagon-like peptide-1causes pancreatic duodenalhomeobox-1protein translocation from the cytoplasm to the nucleus of pancreaticbeta-cells by a cyclic adenosine monophosphate/protein kinase A-dependentmechanism. Endocrinology,2001.142(5): p.1820-7.
    [48]. Li, Y., et al., Glucagon-like peptide-1receptor signaling modulates beta cellapoptosis. J Biol Chem,2003.278(1): p.471-8.
    [49]. Farilla, L., et al., Glucagon-like peptide-1promotes islet cell growth andinhibits apoptosis in Zucker diabetic rats. Endocrinology,2002.143(11): p.4397-408.
    [50]. Li, Y., et al., beta-Cell Pdx1expression is essential for the glucoregulatory,proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes,2005.54(2): p.482-91.
    [51]. Bregenholt, S., et al., The long-acting glucagon-like peptide-1analogue,liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun,2005.330(2): p.577-84.
    [52]. Hui, H., et al., Glucagon-like peptide-1inhibits apoptosis of insulin-secretingcells via a cyclic5'-adenosine monophosphate-dependent protein kinase A-and aphosphatidylinositol3-kinase-dependent pathway. Endocrinology,2003.144(4): p.1444-55.
    [53]. Farilla, L., et al., Glucagon-like peptide1inhibits cell apoptosis andimproves glucose responsiveness of freshly isolated human islets. Endocrinology,2003.144(12): p.5149-58.
    [54]. Kim, J.Y., et al., Exendin-4protects against sulfonylurea-induced beta-cellapoptosis. J Pharmacol Sci,2012.118(1): p.65-74.
    [55]. Vilsboll, T., et al., Similar elimination rates of glucagon-like peptide-1inobese type2diabetic patients and healthy subjects. J Clin Endocrinol Metab,2003.88(1): p.220-4.
    [56]. Intensive blood-glucose control with sulphonylureas or insulin comparedwith conventional treatment and risk of complications in patients with type2diabetes(UKPDS33). UK Prospective Diabetes Study (UKPDS) Group. Lancet,1998.352(9131): p.837-53.
    [57]. Buteau, J., et al., Glucagon-like peptide-1prevents beta cell glucolipotoxicity.Diabetologia,2004.47(5): p.806-15.
    [58]. Baggio, L.L., J.G. Kim and D.J. Drucker, Chronic exposure to GLP-1Ragonists promotes homologous GLP-1receptor desensitization in vitro but does notattenuate GLP-1R-dependent glucose homeostasis in vivo. Diabetes,2004.53Suppl3:p. S205-14.
    [59]. Kim, M.J., et al., Exendin-4induction of cyclin D1expression in INS-1beta-cells: involvement of cAMP-responsive element. J Endocrinol,2006.188(3): p.623-33.
    [60]. Wang, Q. and P.L. Brubaker, Glucagon-like peptide-1treatment delays theonset of diabetes in8week-old db/db mice. Diabetologia,2002.45(9): p.1263-73.
    [1]Wilson CG, Schupp M, Burkhardt BR, et al. Liver-Specific Over-expression ofPancreatic-Derived Factor (PANDER) Induces Fasting Hyperglycemia in Mice[J].Endocrinology.2010Nov;151(11):5174-84.
    [2]Carnegie JR, Robert-Cooperman CE, Wu J, et al. Characterization of theexpression, localization, and secretion of PANDER in alpha-cells[J]. Mol CellEndocrinol.2010Aug30;325(1-2):36-45.
    [3]Robert-Cooperman CE, Carnegie JR, Wilson CG, et al. Targeted disruption ofpancreatic-derived factor (PANDER, FAM3B) impairs pancreatic beta-cell function[J].Diabetes.2010Sep;59(9):2209-18.
    [4] Yang J, Wang C, Li J, et al. PANDER binds to the liver cell membrane and inhibitsinsulin signaling in HepG2cells[J]. FEBS Lett.2009Sep17;583(18):3009-15.
    [5] Zhu Y, Xu G, Patel A, et al. Cloning, expression, and initial characterization of anovel cytokine-like gene family[J]. Genomics.2002Aug;80(2):144-50.
    [6] Aurora R, Rose GD. Seeking an ancient enzyme in Methanococcus jannaschiiusing ORF, a program based on predicted secondary structure comparisons[J]. ProcNatl Acad Sci U S A.1998Mar17;95(6):2818-23.
    [7] Burkhardt BR, Yang MC, Robert CE, et al. Tissue-specific and glucosecose-responsive expression of the pancreatic derived factor (PANDER) promoter[J].Biochim Biophys Acta.2005Sep25;1730(3):215-25.
    [8] Wang O, Cai K, Pang S, et al. Mechanisms of glucose-induced expression ofpancreatic-derived factor in pancreatic beta-cells[J]. Endocrinology.2008Feb;149(2):672-80.
    [9] Cao X, Gao Z, Robert CE, et al. Pancreatic-derived factor (FAM3B), a novel isletcytokine, induces apoptosis of insulin-secreting beta-cells[J]. Diabetes.2003Sep;52(9):2296-303.
    [10] Xu W, Gao Z, Wu J, et al. Interferon-gamma-induced regulation of the pancreaticderived cytokine FAM3B in islets and insulin-secreting betaTC3cells[J]. Mol CellEndocrinol.2005Aug30;240(1-2):74-81.
    [11] Burkhardt BR, Cook JR, Young RA, et al. PDX-1interaction and regulation ofthe Pancreatic Derived Factor (PANDER, FAM3B) promoter[J]. Biochim BiophysActa.2008Oct;1779(10):645-51.
    [12] Yang J, Robert CE, Burkhardt BR, et al. Mechanisms of glucose-inducedsecretion of pancreatic-derived factor (PANDER or FAM3B) in pancreaticbeta-cells[J]. Diabetes.2005Nov;54(11):3217-28.
    [13] Cao X, Yang J, Burkhardt BR, et al. Effects of overexpression of pancreaticderived factor (FAM3B) in isolated mouse islets and insulin-secreting betaTC3cells[J]. Am J Physiol Endocrinol Metab.2005Oct;289(4):E543-50.
    [14] Yang J, Gao Z, Robert CE, et al. Structure-function studies of PANDER, an isletspecific cytokine inducing cell death of insulin-secreting beta cells[J]. Biochemistry.2005Aug30;44(34):11342-52.
    [15] Hoorens A, Stangé G, Pavlovic D, et al. Distinction betweeninterleukin-1-induced necrosis and apoptosis of islet cells[J]. Diabetes.2001Mar;50(3):551-7.
    [16] Zhou YP, Teng D, Dralyuk F, et al. Apoptosis in insulin-secreting cells. Evidencefor the role of intracellular Ca2+stores and arachidonic acid metabolism. J ClinInvest.1998Apr15;101(8):1623-32[J].
    [17] Thomas FT, Ricordi C, Contreras JL, et al. Reversal of naturally occuringdiabetes in primates by unmodified islet xenografts without chronicimmunosuppression[J]. Transplantation1999Mar27;67(6):846-54.
    [18] Datta R, Kojima H, Banach D, et al. Activation of a CrmA-insensitive,p35-sensitive pathway in ionizing radiation-induced apoptosis[J]. J Biol Chem.1997Jan17;272(3):1965-9.
    [19] Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome c frommitochondria: a primary site for Bcl-2regulation of apoptosis[J]. Science.1997Feb21;275(5303):1132-6. Comment in: Science.1997Feb21;275(5303):1081-2.
    [20] Heim MH. The Jak-STAT pathway: cytokine signalling from the receptor to thenucleus. J Recept Signal Transduct Res[J].1999Jan-Jul;19(1-4):75–120.
    [21] Burkhardt BR, Greene SR, White P, et al. PANDER-induced cell-death geneticnetworks in islets reveal central role for caspase-3and cyclin-dependent kinaseinhibitor1A (p21)[J]. Gene.2006Mar15;369:134-41.
    [22] Jin YH, Yoo KJ, Lee YH, et al. Caspase3-mediated cleavage of p21WAF1/CIP1associated with the cyclin A-cyclin-dependent kinase2complex is a prerequisite forapoptosis in SK-HEP-1cells[J]. J Biol Chem.2000Sep29;275(39):30256-63.
    [23] Sgorbissa A, Benetti R, Marzinotto S, et al. Caspase-3and caspase-7but notcaspase-6cleave Gas2in vitro: implications for microfilament reorganization duringapoptosis[J]. J Cell Sci.1999Dec;112(Pt23):4475-82.
    [24] Narayan SB, Rakheja D, Pastor JV, et al. Over-expression of CLN3P, the Battendisease protein, inhibits PANDER-induced apoptosis in neuroblastoma cells: furtherevidence that CLN3P has anti-apoptotic properties[J]. Mol Genet Metab.2006Jun;88(2):178-83.