超高分子量HPAM溶液流变行为与双螺带螺杆桨搅拌流场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超高分子量部分水解聚丙烯酰胺(HPAM)溶液在我国三次采油技术中的广泛应用,聚合物驱配制工艺中的熟化单元成为制约采油工程正常运行的关键。对熟化单元中的HPAM溶液流变行为、搅拌装置混合性能以及HPAM溶液搅拌流场特性进行研究成为一项迫切需要深入研究的课题。
     为从微观上加深对驱油用HPAM的认识,借助于Brookhaven多角度激光散射仪对HPAM分子微观流体力学半径分布进行了测量。HPAM分子量越高,平均流体力学半径也越大;为全面考察HPAM溶液的流变行为,采用HAAKE Rheostress 150流变仪对HPAM溶液进行了稳态剪切流变性和小振幅动态振荡剪切流变性研究。结果发现,聚合物溶液的弹性能量非常显著,表观粘度具有剪切稀化的性质;在相同分子量下,聚合物溶液的浓度越高,其表观粘度、第一法向应力差、弹性模量和粘性模量越大。
     根据HPAM溶液的流变特征,得到了能够满意表征HPAM溶液的粘弹性本构方程-KBKZ本构方程。在方程参数确定过程中,提出了一种通过构造目标函数,采用非线性规划方法求极值点的一步法求解全部模型参数的方法。并通过合理简化,降低了KBKZ本构方程松弛时间谱个数。
     为全面考察适合于聚合物熟化搅拌装置-双螺带螺杆搅拌桨的混合性能,采用多重参考系法对这种搅拌桨在牛顿流体、非牛顿流体、气-液两相和固-液两相流中的搅拌流场进行了数值模拟研究。结果发现,双螺带螺杆搅拌桨能使流体在槽内产生轴向大循环;流体剪切稀化性质越显著,搅拌槽内无因次速度及循环量数均有不同程度的降低。双螺带螺杆桨对搅拌槽内气-液两相流体的气相具有汇聚和排出作用;在搅拌固-液两相流时,搅拌槽底部中间及槽底部边缘易形成死角,改型后的双螺带螺杆-锚式组合桨一定程度上改善了固液混合状况。
     采用粒子成像测速(PIV)技术对HPAM溶液搅拌流场进行了研究,发现双螺带螺杆桨在粘弹性流体中的搅拌流场呈现轴向大循环的特征。溶液的弹性使槽内流体的平均速度和平均剪切速率有所降低。
     本文研究结果不仅对三次采油聚合物地面配制工程具有重要的实用价值和理论意义,同时对聚合物溶液流变性本质、流体混合机理等基础性研究具有一定的现实意义。
With the widespread application of partial hydrolyzed polyacrylamide (HPAM) solution with ultrahigh molecular weight in the tertiary recovery technology in China, the maturation unit, one process in the preparation of polymer flooding, has become the critical step in the regular operations of oil recovery engineering, which lead to the rheological behavior of HPAM solutions, mixing performance of the stirring apparatus, as well as the HPAM solution flow field in maturation tank need to be further studied.
     In order to understanding the microscopic properties of HPAM, the hydromechanical radius distribution of HPAM molecular were measured by using Brookhaven laser scattering apparatus. It is found that the higher the molecular weight of HPAM is, the lager the average hydromechanical radius is. Overall investigations on the rheological behavior of HPAM solutions with different concentrations and molecular weights were conducted by means of HAAKE Rheostress 150 rheometer under the scan modes of steady shear flow and dynamic oscillation shear flow. It is shown that, the polymer solutions have significant elastic energy and the apparent viscosity exhibit shear thinning behavior. At the same molecular weight, the apparent viscosity, first normal stress difference, elastic modulus and viscous modulus increase with increasing polymer solution concentration.
     According to the rheological characteristics of HPAM solutions obtained from experiments, the KBKZ constitutive model was achieved to describe the viscoelastic properties of the polymer solutions, In the process of determining model parameters, a novel method, which can solve all the model parameters using one step by minimizing a established objective function with the principle of nonlinear programming method, was proposed. Through proper simplification, the relaxation time spectrums in the KBKZ equation were reduced.
     To comprehensively investigate the mixing performance of double helical ribbon and screw impeller, which is suitable for mixing polymer solutions, three dimensional numerical simulation for Newtonian, non-Newtonian fluid, gas-liquid and solid-liquid two phase flow fields generated by this impeller were conducted by using multiple reference frames impeller method. The results show that, the double helical ribbon and screw impeller makes fluid in stirred tank form large axial circulation. The more significant shear thinning properties the fluid have, the lower normalized axial velocity and circulation number in the flow field. The double helical ribbon and screw impeller plays a role to converge and discharge gas for the gas-liquid flow in the stirred tank. However, when the impeller agitates the solid-liquid fluid flow, it is easy to form retention in the central and circumferential region on the bottom of stirred tank. In this case, a combined double helical ribbon screw and anchor agitator has been developed to improve the mixing effect .
     The HPAM solution flow field stirred by double helical ribbon and screw impeller in stirred tank were measured by particle image velocimeter (PIV), it is found that, there is a great axial circulation in the viscoelastic fluid flow field. Because of the elastic properties of the HPAM solutions, the average velocity and average shear rate in the flow field, to some extent, have been declined.
     The results of the present work give practical and theoretical values for the polymer solution preparation above ground in enhanced oil recovery engineering, it also help to deeply understand the rheological nature of the polymer solution and the mixing mechanisms of the mechanically agitated tank.
引文
[1]高树棠,苏树林,张景纯等,聚合物驱提高石油采收率,北京:石油工业出版社,1996.
    [2] Littman W., Polymer flooding, Amsterdam: Elsevier Science Publishers, 1988.
    [3]叶仲斌等,提高采收率原理,北京:石油工业出版社,2000.
    [4] Moritis G., New technology, improved economics boost EOR hopes, Oil Gas J., 1996: 39-61.
    [5]韩明,基·米勒,李宇乡,黄原胶水溶液的性质,油田化学,1990,7(3):284-288.
    [6]梁凤来,高温三次采油技术用黄原胶的稳定性,油田化学,1990,7(2):198-202.
    [7] Poettmann F.H., Sencondary and tertiary oil recorvery processes, Oklahoma: Interstate Oil Compact Commission, 1974.
    [8]王德民,程杰成,杨清彦,粘弹性聚合物溶液能够提高岩心的微观驱油效率,石油学报,2000,21(5):45-51.
    [9]夏惠芬,孔凡顺,吴军政等,聚合物溶液的弹性效应对驱油效率的作用,大庆石油学院学报,2004,28(6):29-31,38.
    [10]夏惠芬,王德民,刘中春等,粘弹性聚合物溶液提高微观驱油效率的机理研究,石油学报,2001,22(4):60-65.
    [11]刘春泽,程林松,夏惠芬,粘弹性聚合物溶液对残余油膜的作用机理,西南石油学院学报,2006,28(2):85-88.
    [12]刘洋,刘春泽,粘弹性聚合物溶液提高驱油效率机理研究,中国石油大学学报,2007,31(2):91-104.
    [13]张玉丰,吴晓东,郭树强等,高浓度、超高相对分子质量聚合物体系性能与驱油效果评价,油田化学,2006,23(4):345-348,324.
    [14]廖广志,牛金刚,邵振波等,大庆油田工业化聚合物驱效果及主要做法,大庆石油地质与开发,2004,23(1):48-51,4.
    [15] Zhang L., Zhang D., Jiang B., The rheological behavior of salt tolerant polyacrylamide solutions, Chem. Eng. Technol., 2006, 29(3): 395-400.
    [16]姜斌,新型聚合物水解搅拌装置应用研究及搅拌流场的数值模拟:[博士学位论文],天津;天津大学,2006.
    [17]武军,李和平,高分子物理及化学,北京:中国轻工业出版社,2001.
    [18] De Gennes P.G., Scalling concepts in polymer physics, Itheca: Cornell University Press, 1979.
    [19] Flory P.J., Principles of Polymer Chemistry, Itheca: Cornell University Press, 1953.
    [20] Bueche F., Physical Properties of Polymers, New York: Interscience, 1962.
    [21] Einstein A., Furth R., Cowper A.D., Investigations on the theory of the brownian movement, New York: Dover Publications, 1956.
    [22]何曼君,张红东,陈维孝等,高分子物理,上海:复旦大学出版社,2007.
    [23]江体乾,工业流变学,北京:化学工业出版社,1995.
    [24]江体乾,化工流变学,上海:华东理工大学出版社,2004.
    [25] Tanner R.I., Tanner E., Heinrich Hencky: a rheological pioneer, Rheol. Acta, 2003, 42(1/2): 93-101.
    [26]郑晓松,聚合物溶液的弹性粘度理论及应用:[博士学位论文],大庆;大庆石油学院,2004.
    [27] Seright R.S., The effects of mechanical degradation and viscoelastic behavior on injectivity of polyacrylamide solutions, SPE Journal, 1983, 23(3): 475-485.
    [28]佟曼丽,聚合物稀溶液在多孔介质中的粘弹效应,天然气工业,1987,7(1):64-71.
    [29] Southwick J.G., Manke C.W., Molecular degradation, injectivity, and elastic properties of polymer solutions, SPE Reservoir Engineering, 1988, 3(4): 1193-1201.
    [30]吴其哗,高分子材料流变学,北京:高等教育出版社,2006.
    [31] Bird R.B., Armstrong R.C., Hassager O., Dynamics of polymeric liquids, volume1: fluid mechanics, New York: Wiley-Interscience, 1987.
    [32] Nickell R.E., Tanner R.I., Caswell B., The solution of viscous incompressible jet and free-surface flows using finite-element methods, J. Fluid Mech., 1974, 65(1): 189-206.
    [33] Meissner J, Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples, Pure Appl. Chem., 1975, 42(4): 551-612.
    [34] Huang D.C., White J.L., Extrudate swell from slit and capillary dies: an experimental and theoretical study, Polym. Eng. Sci., 1979, 19(9): 609-616.
    [35] Koopmans R.J. Extrudate swell of high density polyethylene PartⅡ: time dependence and effects of cooling and sagging, Polym. Eng. Sci., 1992, 32(23): 1750-1754.
    [36] Goublomme A., Draily B., Crochet M.J., Numerical prediction of extrudate swell of a high-density polyethylene, J. Non-Newtonian Fluid Mech., 1992, 44(1): 171-195.
    [37]魏进家,姚志强,一种界面活性剂减阻溶液的流变特性,化工学报,2007,58(2):335-340.
    [38] Fuller G.G., Cathey C.A., Hubbard B., et al, Extensional viscosity measurements for low-viscosity fluids, Journal of Rheology, 1987, 31(3): 235-249.
    [39] Dontula P., Pasquali M., Scriven L.E., et al, Can extensional viscosity be measured with opposed nozzle devices, Rheology Acta, 1997, 36(4): 429-448.
    [40] Purnode B., Crochet M.J., Polymer solution characterization with the FENE-P model, J. Non-Newtonian Fluid Mech., 1998, 77(1/2): 1-20.
    [41] Ostwald W.O., The velocity function of viscosity of disperse systems, Kolloid Zeitschrift, 1925, 36, 99, 157, 258.
    [42] Carreau P.J., De Kee D., Daroux M., An analysis of the viscous behavior of polymeric solutions, Can. J. Chem. Eng., 1979, 57: 135-141.
    [43] Herschel W.H., Bulkley T., Measurement of consistency as applied to rubber-Benzene solutions, Am. Soc. Test Pro., 1926, 26(2): 621-633.
    [44] White J.L., Metzner A.B., Measurement of normal stresses, Trans. Soc. Rheol., 1963, 7: 295-301.
    [45] Dewitt T.W., Markovitz H., Padden F.J., et al, Concentration dependence of the rheological behavior of the polyisobutylene-decalin systerm, J. Colloid Sci., 1955, 10(2): 175-188.
    [46] Bird R.B., Curtiss C.F., Armstrong R.C., et al, Dynamics of polymeric fluids, New York: Wiley, 1987.
    [47] Wagner M.H., Analysis of time-dependent non-liner stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol Acta, 1976, 15(2): 136-142.
    [48] Zimm B.H., Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys., 1956, 24(2): 269-278.
    [49] Giesekus H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. non-Newtonian Fluid Mech., 1982, 11(1/2): 69-109.
    [50] Phan-Thien N., Tanner R.I., A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech., 1977, 2: 353-365.
    [51] Leonov A.I., On a class of constitutive equations for viscoelastic liquids, J. Non-Newtonian Fluid Mech., 1987, 25: 1-59.
    [52] De Gennes P.G., Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys., 1971, 55: 572-579.
    [53]董记月,新型搅拌器开发研究:[硕士学位论文],杭州;浙江大学,1997.
    [54]刘桦,三种新型搅拌器的传热和功耗:[硕士学位论文],杭州;浙江大学,1997.
    [55] Delaplace G., Leuliet J.C., Relandeau V., Circulation and mixing times for helical ribbon impellers, review and experiments, Experiments in Fluids, 2000, 28(2): 170-182.
    [56] Ulbrecht J., Mixing of viscoelastic fluids by mechanical agitation, The Chemical Engineering Journal, 1974, 286, 347-353.
    [57] White J.L., Chankraiphon S., Ide Y., Rheological behaviour and flow patterns around agitators in polymer solutions, Journal of Rheology, 1977, 21(1): 1-18.
    [58] Carreau P.J., Patterson J., Yap C.Y., Mixing of viscoelastic fluids with helical ribbon agitators-I. mixing time and flow patterns, The Canadian Journal of Chemical Engineering, 1976, 54(3): 135-142.
    [59] Chavan V.V., Ulbrecht J.J., Power correlations for close-clearance helical impeller in non-Newtonian liquids, Ind. Eng. Chem. Proc. Des. Dev., 1973, 12(4): 472-476.
    [60] Yap C.Y., Patterson W.I., Carreau P. J., Mixing with helical ribbon agitators,Ⅲ. non-Newtonian fluids, AIChE J., 1979, 25(3): 516-521.
    [61] Nienow A.W., Wisdom D.J., Solomon J., Machon V., Vicek J., The effect of rheological complexities on power consumption in an aerated, agitated vessel, Chem. Eng. Comm., 1983, 19(4/6): 273-293.
    [62] Ducla J.M., Desplanches H., Chevalier J.L., Effective viscosity of non-newtonian fluids in a mechanically stirred tank, Chem. Eng. Comm., 1983, 21(1/3): 29-36.
    [63] Carreau P.J., De Kee D.C.R., Chhabra R.P., Rheology of Polymeric Systems, Cincinatti: Hanser-Gardner Publications, 1997.
    [64] Boger D.V., Binnington R., Separation of elastic and shear thinning effects in the capillary rheometer, Journal of Rheology, 1977, 21(4): 515-534.
    [65] Prud’homme R.K., Shaqfeh E., Effect of elasticity on mixing torque requirements for rushton turbines impellers, AIChE J.,1984, 30(3): 485-486.
    [66] Brito-De la Fuente E., Leuliet J.C., Choplin L., et al, On the role of elasticity on mixing with a helical ribbon impeller, Chemical Engineering Research and Design, 1991, 69(A4): 324-331.
    [67] Carreau P.J., Chhabra R.P., Cheng J., Effect of rheological properties on power consumption with helical ribbon impellers, AIChE J., 1993, 39(9): 1421-1430.
    [68] Bertrand F., Tanguy P. A., Brito de la Fuente E., et al, Numerical modeling of the mixing flow of second-order fluids with helical ribbon impellers, Comput. Methods Appl. Mech. Engrg., 1999, 180(3/4): 267-280.
    [69]王凯,朱秀琳,锚式搅拌槽中高粘弹性流体的流速分布及其功率消耗,化工学报,1989,40(6):710-719.
    [70] Ulbrecht J.J., Patterson G.K., Mixing of liquids by mechanical agitation. London: Gordon and Breach Science Publishers, 1985.
    [71] Laidler P.,Ulbrecht J.J., Numerical analysis of flow in close-clearance mixer, Chem. Eng. Sci., 1978, 33(12): 1615-1622.
    [72] Hiraoka S., Yamada I., Mizoguchi K., Numerical analysis of flow behavior of highly viscous fluid in agitated vessel, J. Chem. Engng. Jan., 1978, 11(6): 487-493.
    [73] Hiraoka S., Yamada I., Mizoguchi K., Two dimensional model analysis of flow behavior of highly viscous non-Newtonian fluid in agitated vessel with paddle impeller, J. Chem. Engng. Jan., 1979, 12(1): 56-62.
    [74] Kuriyama M., Inomata H., Arai K., et al, Numerical solution for the flow of highly viscous fluid in agitated vessel with anchor impeller, AIChE J., 1982, 28(3): 385-391.
    [75] Komori S., Takata K., Murakami Y., Flow structure and mixing mechanism in an agitated thin-film Evaporator with vertically aligned blades, J. Chem. Engng. Jap., 1989, 22(4): 346-351.
    [76] Komori S., Takata K., Murakami Y., Flow structure and mixing mechanism in an agitated thin-film evaporator, J. Chem. Engng. Jap., 1988, 21(6): 639-644.
    [77]韩式方,非牛顿流体本构方程和计算解析理论,北京:科学出版社,2000.
    [78]周国忠,聂毅强,包雨云等,搅拌槽内非牛顿流体流动场的数值模拟,北京化工大学学报,2002,29(4):4-7.
    [79] Arratia P.E., Shinbrot T., Alvarez M.M., et al, Mixing of non-Newtonian fluids in steadily forced systems, Phys. Rev. Lett., 2005, 94(8): 084501-1~084501-4.
    [80] Shekhar S.M., Jayanti S., Mixing of pseudoplastic fluids using helical ribbon impellers, AIChE J., 2003, 49(11): 2768-2772.
    [81] Tanguy P.A., Thibault F., Brito-De La Fuente E., et al, Mixing performance induced by coaxial flat blade-helical ribbon impellers rotating at different speeds, Chem. Engr. Sci., 1997, 52(11): 1733-1741.
    [82] Thibault F., Tanguy P.A., Power-draw analysis of a coaxial mixer with Newtonian and non-Newtonian fluids in the laminar regime, Chem. Eng. Sci., 2002, 57(18): 3861-3872.
    [83] Curran S.J., Hayes R.E., Afacan A., et al, Experimental Mixing study of a yield stress fluid in a laminar stirred tank, Ind. Eng. Chem. Res., 2000, 39 (1): 195-202.
    [84] Beraudo C., Fortin A., Coupez T., et al, A finite element method for computing the flow of multi-mode viscoelastic fluids: comparison with experiments, J. Non-Newtonian Fluid Mech., 1998, 75(1): 1-23.
    [85] Seyssiecq I., Tolofoudye A., Desplanche S.H., et al, Viscoelastic liquids in stirred vessels-Part I: Power consumption in unaerated vessels, Chem. Eng. Technol., 2003, 26(11): 1155-1165.
    [86] Yu B., Wei J.J., Kawaguchi Y., Swirling flow of a viscoelastic fluid with free surface-Part II: Numerical analysis with extended marker-and-cell method, Journal of Fluids Engineering, 2006, 128(1): 77-87.
    [87] Song J.H., Yoo J.Y., Numerical simulation of viscoelastic flow through a sudden contraction using a type dependent difference method, J. Non-Newtonian Fluid Mech., 1987, 24 (2): 221-243.
    [88]黄树新,江体乾,粘弹流体流动的数值模拟研究进展,力学进展,2001,31(1):276-288.
    [89] Shervin C.R., Raughley D.A., Romaszewski R.A., Flow visualization scaleup studies for the mixing of viscoelastic fluids, Chem. Eng. Sci., 1991, 46(11): 2867-2873.
    [90] Cheng J., Carreau P.J., Aerated mixing of viscoelastic fluids with helical ribbons impellers, Chem. Eng. Sci., 1994, 42(12): 1965-1972.
    [91] Brito-De La Fuente E., Choplin L., Tanguy P.A., Mixing with helical ribbon impellers: effect of highly shear thinning behavior and impeller geometry, Chemical Engineering Research and Design, 1997, 75(1): 45-52.
    [92] Youcefi A., Anne-Archard D., Boisson H.C., et al, On the influence of liquid elasticity on mixing in a vessel agitated by a two-bladed impeller, J. Fluids Eng., 1997, 119(3): 616-622.
    [93] Lane G.L., Schwarz M.P., Evans G.M., Predicting Gas-Liquid Flow in a Mechanically Stirred Tank, Applied Mathematical Modelling, 2002, 26(2): 223-235.
    [94]孙海燕,搅拌槽内流场数值模拟和表面曝气的研究:[博士学位论文],北京;中国科学院,2003.
    [95] Zhang Y., Yang C., Mao Z., Large eddy simulation of the gas-liquid flow in a stirred tank, AIChE J., 2008, 54(8): 1963-1974.
    [96] Kee N.C.S., Tan B.H., CFD simulation of solids suspension in mixing vessels, Can. J. Chem. Eng., 2002, 80(4): 721-726.
    [97] Derksen J.J., Van den Akker H.E.A., Large eddy simulations on the flow driven by a Rushton turbine AIChE J., 1999, 45(2): 209-221.
    [98] Fan L., Mao Z., Wang Y., Numerical simulation of turbulent solid-liquid two-phase flow and orientation of slender particles in stirred tank, Chem. Eng. Sci., 2005, 60(24): 7045-7056.
    [99]包雨云,高正明,施力田,多相流搅拌反应器研究进展,化工进展,2005,24(10):58-64.
    [100] Harvey P.S., Greaves M., Turbulent flow in an agitated vessel, Part I: Predictive model, Chem. Eng. Res. Des., 1982, 60(4): 195-200.
    [101] Harvey P.S., Greaves M., Turbulent flow in an agitated vessel, part II: Numerical solution and model prediction, Trans Inst. Chem. Eng., 1982, 60(2): 201-210.
    [102] Middleton J.C., Pierce F., Lynch P.M., Computations of flow fields and complex reaction yield in turbulent stirred reactors and comparison with experimental data. Chemical Engineering Research and Design, 1986, 64(1): 18-22.
    [103] Kresta S.M., Wood P.E., Prediction of the three-dimensional turbulent flow in stirred tank. AIChE J., 1991, 37: 448-460.
    [104]张永震,韩振为,计算流体力学在搅拌混合过程模拟中的应用,科技通报,2005,21(3):332-336.
    [105] Takeda H., Narasaki K., Kitajima H., et al, Numerical simulation of mixing flows in agitated vessels with impellers and baffles, Computers and Fluids, 1993, 22(2/3): 223-228.
    [106]王卫京,毛在砂,用改进的内外迭代法数值模拟Rushton涡轮搅拌槽流场,过程工程学报,2002,2(3):193-198.
    [107] Kelly W., Gigas B., Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime. Chem. Eng. Sci., 2003, 58(10): 2141-2152.
    [108] Bhattacharya S., Kresta S.M., CFD simulations of three-dimensional wall jets in a stirred tank. Canadian Journal of Chemical Engineering, 2002, 80(4): 695-709.
    [109] Tabor G., Gosman A.D., Issa R.I., Fluid mixingⅴ, Great Britain: Institution of Chemical Engineering, 1996.
    [110] Luo J.Y., Issa R.I., Gosman A.D., Prediction of impeller induced flows in mixing vessels using multiple frames of reference, I. Chem. E. Symposium Series, 1994, 136: 549-556.
    [111] Bakker A., Laroche R.D., Wang M.H.,et al, Sliding mesh simulation of laminar flow in stirred reactors, Trans. IchemE., 1997, 75(A): 42-44.
    [112]马青山,聂毅强,包雨云等,搅拌槽内三维流场的数值模拟,化工学报,2003,54(5):612-618.
    [113]王嘉骏,冯连芳,王凯等,LDV和CFD在流体混合中的应用进展,化学工程,2001,29(4):62-65.
    [114]冯连芳,王嘉骏,王凯等,流体混合技术新进展,化学工程,2002,30(2):70-74.
    [115]华怀峰,黄歧善,翁志学等,激光测速技术及其在化工搅拌流场测量中的应用,化工进展,2002,21(51):338-341.
    [116]韩丹,李龙,程云山等,现代搅拌技术的研究进展,食品与机械,2004,20(4):31-34.
    [117]樊建华,搅拌槽内流场的时空特性研究:[博士学位论文],北京;清华大学,2004.
    [118]盛森之,沈熊,飞速发展的流体测量技术,北京:北京大学出版社,1997.
    [119]于鲁强,刮壁搅拌桨的流动、功耗和传热及数值解析:[博士学位论文],杭州;浙江大学,1996.
    [120] Yeh Y., Cummins H.Z., Localized fluid flow measurements with an He-Ne laser spectrometer, Appl. Phys. Lett., 1964, 4(10): 176-178.
    [121] Adrian R.J., Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry, Appl. Opt., 1984, 23(11): 1690-1691.
    [122] Adrian R., Yao C., Development of pulsed laser velocimetry (PLV) for measurement of turbulent flow, In: Patterson G., Zakin J.L., eds. Proceeding so of the Eingth Biennial Symposium on Turblence, Rolla: Univ. of Missouri Press, 1984: 170-186.
    [123] Adrian R.J., Multi-point optical measurements of simultaneous vectors in unsteady flows-a review, Int. J. Heat Fluid Flow, 1986, 7(2): 127-145.
    [124] Adrian R.J., Durao D.F.G., Durst F., et al, Laser Anemometry in Fluid Mechanics-Ⅲ. , Lisbon: Ladoan, 1988.
    [125] Adrian R.J., Particle imaging techniques for experimental fluid mechanics, Annual review of fluid mechanics, 1991, 23: 261-304.
    [126] Gray C., Greated C.A., The application of particle image velocimetry to study of water waves, Opt. Lasers Eng., 1988, 9: 265-276.
    [127] Arroyo M.P., Yonte T., Quintanilla M., et al, Velocity measurements in convective flows by particle image velocimetry using a low power laser, Opt. Eng., 1998, 27: 641-649.
    [128] Grant I, Smith G.H., Modern developments in particle image velocimetry, Opt. Lasers Eng., 1988, 9(3/4): 245-264.
    [129]李鑫钢,余国琮,周革,液滴群速度场的激光粒子成像测速法,化学工程,1995,23(1):49-56.
    [130]李鑫钢,斜板上液液聚结分相动力学研究:[博士学位论文],天津;天津大学,1992.
    [131]周革,粒子成像测速技术及其应用:[博士学位论文],天津;天津大学,1991.
    [132] Lin T.J., Reese J., Hong T., et al, Quantitative analysis and computation of two dimensional bubble columns, AIChE Journal, 1996, 42(2): 301-318.
    [133]吴飞雪,董守平,时铭显,激光粒子成像技术测定旋风分离器内颗粒浓度场的实验研究,石油大学学报,2000,24(6):72-76.
    [134] Miyazaki K., Chen G., Yamamoto F., et al, PIV measurement of particle motion in spiral gas solid two-phase flow, Experimental Thermal and Fluid Science, 1999, 19(4): 194-203.
    [135] Van Santen H., Kleijn C.R., Van den Akker H.E.A., Mixed convection in radial flow between horizontal plates-II. Experiments, Int. J. Heat Mass Transfer, 2000, 43(9): 1537-1546.
    [136] Thulasidas T.C., Abrabam M.A., Cerro R.L., Flow patterns in liquid slugs during bubble train flow inside capillaries, Chem. Eng. Sci., 1997, 52 (17): 2947-2962.
    [137]李道山,康万利,朱洪军,聚丙烯酰胺水溶液粘弹性研究,油田化学,2003,20(4):347-350.
    [138]夏惠芬,王德民,关庆杰等,聚合物溶液的粘弹性实验,大庆石油学院学报,2002,26(2):105-108.
    [139] Ghannam M.T., Esmail M.N., Rheological properties of aqueous polyacrylamide solutions, Journal of Applied Polymer Science, 1998, 69(8): 1587-1597.
    [140]冯开才,李谷,符若文等,高分子物理实验,北京:化学工业出版社,2004.
    [141]董朝霞,林梅钦,李明远等,光散射技术在研究高分子溶液和凝胶方面的应用,高分子通报,2001,(5):25-33.
    [142]朱怀江,孙尚如,罗健辉等,南阳油田驱油用聚合物的水动力学半径研究,石油钻采工艺,2005,27(6):47-50.
    [143]董朝霞,吴肇亮,林梅钦等,交联聚合物线团的形态和尺寸研究,高分子学报,2002,(4):493-497.
    [144]章宇斌,齐崴,苏荣欣等,动态光散射分析下不同物化条件下酪蛋白的聚集行为及其胶束尺寸,分析化学,2007,35(6):809-813.
    [145]淡宜,王琪,徐僖等,聚(丙烯酰胺-丙烯酸)/聚(丙烯酰胺-二甲基二烯丙基氯化铵)聚电解质复合溶液动态光散射研究,高分子学报,1997,(3):360-366.
    [146] Kulicke W.M., Kniewske R., Klein J., Preparation, characterization, solution properties and rheological behavior of polyacrylamide, Progress in Polymer Science, 1982, 8(4): 373-486.
    [147]杨瑞芳,龙勉,吴西,流变学理论基础及其应用,重庆:重庆大学出版社出版,1998.
    [148]张美珍,柳百坚,谷晓昱,聚合物研究方法,北京:中国轻工业出版社,2000.
    [149]林建忠,阮晓东,陈邦国等,流体力学,北京:清华大学出版社,2005.
    [150] Lamberto D.J., Alvarez M.M., Muzzio F.J., Experimental and computational investigation of the laminar flow structure in a stirred tank, Chemical Engineering Science, 1999, 54(7): 919-942.
    [151] Escudie R., Line A., Analysis of turbulence anisotropy in a mixing tank, Chemical Engineering Science, 2006, 61(9): 2771-2779.
    [152]吴莹,闵键,李志鹏等,搅拌槽内流动结构的粒子图像测速技术研究,北京化工大学学报,2007,34(6):561-565.
    [153]高殿荣,郭明杰,李岩等,变速搅拌混沌混合的PIV试验研究,机械工程学报,2006,42(8):44-49.
    [154] Kilander J., Rasmuson A, Energy dissipation and macro instabilities in a stirred square tank investigated using an LE PIV approach and LDA measurements, Chemical Engineering Science, 2005, 60(24): 6844-6856.
    [155] Fox R.W., McDonale A.T., Introduction to fluid mechanics, New York: Wiley, 1994.
    [156] Dupuis D., Lewandowski F.Y., Steiert P., et al, Shear thickening and time-dependent phenomena: the case of polyacrylamide solutions, Journal of Non-Newtonian Fluid Mechanics, 1994, 54: 11-32.
    [157] Zhang Y.F., Gao P., Chen M.M., et al, Rheological bahavior of Partially hydrolyzed polyacrylamide hydrogel produced by chemical gelation, Journal of Macromolecular Science Part B-Physics, 2008, 47(1): 26-38.
    [158] Bu H.T., Yang Z.Z, Huang L., Effect of thermal history on rheological properties of partially hydrolyzed polyacrylamide/anionic surfactant SDS complex systems, Chinese chemical letters, 2002, 13(5): 456-459.
    [159] Nijenhuis K., Mensert A., Zitha P.L.J., Viscoelastic behavior of partly hydrolysed polyacrylamide/chromium (III) gels, Rheol. Acta, 2003, 42(1/2): 132-141.
    [160] Mancini F., Montanari L., Peressini D., et al, Influence of alginate concentration and molecular weight on functional properties of mayonnaise, Lebensm.–Wiss. u.-Technol., 2002, 35(6): 517-525.
    [161] Hsieh T.-T., Tiu C., Simon G.P., et al, Rheology and miscibility of thermotropic liquid crystalline polymer blends, Journal of Non-Newtonian fluid Mechanics, 1999, 86(1/2): 15-35.
    [162] Lai G.L., Li Y., Li G.Y., Effect of concentration and temperature on the rheological behavior of collagen solution, International Journal of Biological macromolecules, 2008, 42(3): 285-291.
    [163]康万利,孟令伟,牛井岗等,矿化度影响HPAM溶液粘度机理,高分子材料科学与工程,2006,22(5):175-177.
    [164] Sullivan S.P., Sederman A.J., Johns M.L., et al, Verification of shear-thinning LB simulations in comples geometries, J. Non-Newtonian Fluid Mech., 2007, 143(2/3): 59-63.
    [165]刘春泽,粘弹性聚合物溶液在波纹管中的流动及对残余油膜的驱替机理:[硕士学位论文],大庆;大庆石油学院,2004.
    [166]张立娟,岳湘安,刘中春等,粘弹性流体在盲端孔隙中的流场,水动力学研究与进展A辑,2002,17(6):748-755.
    [167] Bird R.B., Dotson P.J., Johnson N.L., Polymer solution rheology based on a finitely extensible bead-spring chain model, J. Non-Newtonian fluid Mech, 1980, 7(2): 213-235.
    [168] Cheng Y., Munekata M., Matsuzaki K., et al, Numerical analysis of viscoelastic flow based on FENE-P model using high-order accuracy finite difference method, Technical Reports of the Kumamoto University, 1999, 48(2): 381-393.
    [169] Iu A.W., Bornside D.E., Armstrong R.C., et al, Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparisons of predictions for microstructure and flow fields, J. Non-Newtonian Fluid Mech, 1998, 77(3): 153-190.
    [170] Wagner M.H., Analysis of time-dependent non-liner stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol Acta, 1976, 15(2): 136-142.
    [171] Tanner R.I., Engineering Rheology, Oxford University Presss, 1985.
    [172]黄树新,鲁传敬,用Wagner型本构方程表征低密度聚乙烯熔体的粘弹性及其非线性依时特性的预测,2004,(6):818-825.
    [173] Greener J., Connelly R.W., The response of viscoelastic liquids to complex strain histories: the thixotropic loop, J. Rheol., 1986, 30(2): 285-300.
    [174] Rajagopalan D., Armstrong R.C., Brown R.A., Comparison of computational efficiency of flow simulations with multimode constitutive equations: integral and differential models, J. Non-Newtonian Fluid Mech., 1993, 46(2/3): 243-273.
    [175]黄树新,鲁传敬,用KBKZ型本构方程表征Boger流体黏弹性,力学与实践,2004,26(2):26-29.
    [176]黄树新,鲁传敬,Boger流体的松弛谱对非线性粘弹性表征的影响,应用力学学报,2007,24(1):37-41.
    [177] Himmelblau D.M., Applied nonlinear programming, New York: McGraw-Hill Book Company, 1972.
    [178] Winter H.H., Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check, J. Non-Newtonian Fluid Mechanics, 1997, 68(2/3): 225-239.
    [179]陈文芳,袁龙蔚,许元泽,流变学进展,北京:学术期刊出版社,1986.
    [180] Deen N.G., Van S.A.M., Kuipers J.A.M., Multi-scale modeling of dispersed gas-liquid two-phase flow, Chem. Eng. Sci., 2004, 59(8/9): 1853-1861.
    [181]刘德新,精馏塔板气液两相流体力学和传质CFD模拟与新塔板的开发:[博士学位论文],天津;天津大学,2007.
    [182] Schiller L., Naumann Z., A drag coefficient correlation, Z.Ver. Deutsch. Ing., 1935, 77: 318-325.
    [183] Law D., Battaglia F., Heindel T.J., Model validation for low and high superficial gas velocity bubble column flows, Chem. Eng. Sci., 2008, 63(18): 4605-4616.
    [184] Novak V., Rieger F., Homogenization with helical screw agitators, Trans. Inst. Chem. Eng., 1969, 47(10): 335-340.
    [185] Rieger F., Novak V., Power consumption of agitators in highly viscous non-Newtonian liquids, Trans. Inst. Chem. Eng., 1973, 51, 105-111.
    [186]王凯,冯连芳,混合设备设计,北京:机械工业出版社,2000.
    [187]吴英桦,粘性流体混合及设备,北京:中国轻工业出版社出版,1993.
    [188] Metzner A.B, Otto R.E., Agitation of non-Newtonian fluids, AIChE Journal, 1957, 3(1): 3-11.
    [189] Foucault S., Ascanio G., Tanguy P.A., Coaxial mixer hydrodynamics with Newtonian and non-Newtonian fluids, Chem. Eng. Technol., 2004, 27 (3): 324-329.
    [190] Micale G., Brucato A., Grisafi F., et al, Prediction of flow fields in a dual-impeller stirred vessel, AIChE Journal, 2004, 45(3): 445-464.
    [191] Ranade V.V., Dommeti S.M.S., Computational snapshot of flow generated by axial impeller in baffled stirred vessels, Chemical Engineering Research and Design, 1996, 74(4): 476-484.
    [192] Thibault F., Tanguy P.A., Power-draw analysis of a coaxial mixer with Newtonian and non-Newtonian fluids in the laminar regime, Chemical Engineering Science, 2002, 57(18): 3861-3872.
    [193] Aubin J., Naude I., Bertrand J., et al, Blending of Newtonian and shear-thinning fluids in a tank stirred with a helical screw agitator, Chemical Engineering Research and Design, 2000, 78(8): 1105-1114.
    [194] Barailler F., Heniche M., Tanguy P.A., CFD analysis of a rotor-stator mixer with viscous fluids, Chemical Engineering Science, 2006, 61: 2888-2894.
    [195] Letellier B., Xuereb C., Swaels P., et al, Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach, Chem. Eng. Sci., 2002, 57: 4617-4632.
    [196] Iranshahi A., Heniche M., Bertrand F., et al, Numerical investigation of the mixing efficiency of the Ekato Paravisc impeller, Chem. Eng. Sci., 2006, 61(8): 2609-2617.
    [197] Heniche M., Tanguy P.A., Reeder M.F., et al, Numerical investigation of blade shape in static mixing, AIChE J., 2005, 51(1): 44-58.
    [198]王嘉骏,冯连芳,顾雪萍等,内外单螺带搅拌器的Metzner常数,高校化学工程学报,1999,13(5):442-446.
    [199] Han L.,Liu Y., Luo H., Numerical simulation of gas holdup distribution in a standard Rushton stirred tank using discrete particle method, Chin. J. Chem. Eng., 2007, 15(6): 808-813.
    [200]宋月兰,高正明,李志鹏,多层新型桨搅拌槽内气-液两相流动的实验与数值模拟,过程工程学报,2007,7(1):24-28.
    [201] Micale G., Montante G., Grisafi F., et al, CFD simulation of particle distribution in stirred vessels, Chemical Engineering Research and Design, 2000, 78(3): 435-444.
    [202]王振松,良超,雄斌,液搅拌内槽底流场的CFD模拟,北京化工大学学报,2005,32(4):5-9.
    [203] Oshinowo L.M., Bakker A., CFD modeling of solids suspensions in stirred tanks, Symposium on Computational Modeling of Matals, Minerals and Materials, TMS Annual Meeting, Seattle, WA, 2002: 17-21.
    [204] Groisman A, Steinberg V, Elastic turbulence in a polymer solution flow, Nature, 2000, 405: 53-55.
    [205]范毓润,挤出胀大的有限元分析和实验:[博士学位论文],杭州;浙江大学,1988.