双钙钛矿La_2NiMnO_6掺杂体系结构及物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双钙钛矿锰氧化物因其独特的结构和磁电性质,以及在自旋电子学器件方面的潜在应用,成为了锰氧化物领域研究的一个热点。在本论文中,我们选取最典型的双钙钛矿锰氧化物La2NiMn06作为主要研究对象,按照结构决定性能这一条材料学的基本规律,以调节B位Ni/Mn有序度为核心,实现对材料磁和输运性质的调控,并探讨了结构和物性之间的内在联系。具体内容如下:
     第一章,从钙钛矿氧化物材料的基本结构和物性出发,介绍具有庞磁电阻效应的钙钛矿锰氧化物中一些基本概念,基于这些概念,重点综述了以La2NiMn06为代表的双钙钛矿锰氧化物的一些基本性质以及研究现状。
     第二章,制备并研究了La2NiMn06多晶块材的磁,电输运及磁电阻性能。磁性测量数据表明在样品中存在着由Ni/Mn反位无序形成的反相边界。变温电阻率呈现半导体行为,可以用三维变程跃迁模型很好地进行描述,表明样品的电荷传导机制服从三维变程跃迁模型。测量扫场的磁电阻发现,磁电阻随磁场变化曲线分成明显的高场和低场两段区域,这与表现出隧穿磁电阻效应的普通锰氧化物体系磁电阻类似。综合以上实验现象,我们认为,La2NiMn06体系出现低场磁电阻的本质原因是电子跃迁通过反相边界的自旋相关散射受到磁场调控。
     第三章,在La位用Ca或sr对La2NiMn06空穴掺杂,研究了样品结构,价态,磁性质等随着掺杂浓度变化的规律。研究发现,随着空穴掺杂浓度的增加,A位平均价态的降低是通过B位Ni价态的提高,即从+2价变+3价来进行补偿。同时,随着掺杂浓度的增加,样品B位Ni/Mn反位无序引发的反铁磁反相边界增多。反铁磁反相边界和Ni/Mn有序铁磁区耦合产生了交换偏置效应。在上述工作基础上,通过对比在固定掺杂浓度下,分别用二价Ca, Sr和Ba元素掺杂样品的晶体结构和磁性能,进一步研究了它们随着A位平均离子半径的变化规律。
     第四章,通过在Ni位用非磁性离子Zn掺杂,得到La1.8Sro.2Ni1-xZnxMn06(0≤x≤0.5)的系列样品,晶体结构和磁性能研究发现铁磁转变温度(Tc)随着Zn掺杂量的增加而减小,而饱和磁矩(Ms)的值是先增加,在x=0.2处,达到最大值,但随着Zn掺杂量进一步增加则减小。这一行为可以理解为,非磁性的Zn离子在掺杂过程中,同时部分取代了铁磁和反铁磁区域的Ni离子,这两个不同位置的取代对饱和磁矩产生了相反的效果。交换偏置场(HE),矫顽场(HC),和饱和场(Hs)随着Zn掺杂量的变化趋势进一步确认了这一推测。
     第五章,在本章节中,以La1.8Sr0.2NiMnO6为母体材料,对B位Ni/Mn比例为1:1的附近作微调,得到La1.8Sro.2Ni1-xMn1+x06(|x|≤0.2)的系列样品并进行了晶体结构和磁性能表征。利用双钙钛矿锰氧化物研究中的一些概念,如反位无序,超交换相互作用,来理解这些结果。我们发现,当样品中Ni/Mn比例在1:1时,材料有序度最高,铁磁转变温度也达到最大值。磁场强度随温度变化曲线显示,出现低温磁转变的样品和体系中存在Mn4+/Mn3+有很大的关联。结合进一步的低温磁滞回线测量和分析表明,双钙钛矿La2NiMn06出现反位无序时,Ni-O-Ni可能为反铁磁相互作用,而Mn-O-Mn则为顺磁相互作用。
     第六章,本章通过对比La2NiMn06研究了同构的Y2NiMnO6的晶体结构和磁性能。通过Rietveld结构精修拟合X射线衍射数据,发现Ni/Mn高度有序的排列在双钙钛矿的B位,但仍然有少量Ni/Mn无序排列区。磁性能测量发现样品在远高于长程铁磁转变温度(Tc=85K)的某个温区,就有短程磁相互作用产生。根据结构和磁性能的分析,可以得到以下微观图像:短程铁磁有序是由于Ni/Mn反位无序破坏了Ni/Mn长程铁磁有序而导致的。外加电场下的磁性能测量结果显示,材料并没有出现理论预测的E*型自旋结构,证实了Y2NiMnO6低温铁磁性能的稳定性。
Double perovskite manganites with a general formula A2BB'O6or AA'bb'o6(where A and A' are alkaline-earth and/or rare-earth metals and B and B'are manganese and other transition metals) have attracted much attention due to their unique structural and magnetic properties, and potential applications in the spintronic devices. In this dissertation, we mostly focused on the investigation of La2NiMnO6compound, a typical double perovskite material, and its related compounds. According to the basic law in the material science that structure determines performance, we have tried to tune the magnetic and transport properties of La2NiMnO6by adjusting the Ni/Mn ordering degree. Furthermore, we have investigated the inherent relationship between the microstructure and the physical properties. Details are as follows:
     In chapter one:beginning from the basic structure and properties, we introduced some basic concepts related to the perovskite oxides with colossal magnetoresistance (CMR) effect. Based on those concepts and the related theory, the recent developments and studys on the basic structure and properties of La2NiMnO6, a foretype of double perovskite, have been reviewed and discussed.
     In chapter two:the magnetic, transport, and magnetoresistance properties of the polycrystalline La2NiMnO6were investigated. The magnetic data show that the antiphase boundaries composed by the Ni/Mn antisite disorders were existed. The temperature dependent resistivity exhibits the semiconducting behaviors which can be well fitted by the3-D variable range hopping model. The field dependent magnetoresistance curve, which showes a similar characteristic to that in tunneling magnetoresistance manganites, can be divided into high-and low-field regions. Based on those results, we proposed that the nature of the magnetoresistance in La2NiMnO6is the spin dependent scattering when the electron hopping across the antiphase boundary.
     In chapter three:by doping the La with Ca or Sr, the hole-doping effect on the structure, local valence, and magnetic properties of La2NiMnO6compound has been studied. It is found that as the doping content increasing, the average valence of A-site decreases, which is compensated by the valence increasing of part Ni2+ions to Ni3+ions. Meanwhile, the antiferromagetic antiphase boundary composed by the Ni/Mn antisite disorder is increased. The exchange bias effect is appeared, which can be attributed to the coupling between the antiferromagnetic antiphase boundary and the Ni/Mn ordered ferromagnetism. Furthermore, the change of the structural and magnetic properties dependent on the A-site average ionic radii in La1.8RE0.2NiMnO6has been discussed. During the discussion, the doping content is kept unchang by using two-valence Ca, Sr, and Ba, respectively, as a dopant.
     In chapter four:the magnetic properties of Zn doped polycrystalline La1.8Sr0.2Ni1-xZnxMn06samples (0≤x≤0.5) with a double perovskite structure have been investigated. It is found that the ferromagnetic transition temperature (Tc) decreases with the increase of Zn doping content, while the value of saturated magnetic moments (Ms) increases at first, and after reaching a maximum at Zn doping content x-0.2, and it decreases as the Zn doping continue to be increased. Usually, the substitution of nonmagnetic Zn ions for the magnetic Ni ions can be related in Ni/Mn ordered and disordered sublattices. As a result, two opposite influences on magnetic properties are expected, i.e. both the ferromagnetic interaction between Ni and Mn ions in Ni/Mn ordered region and the antiferromagnetic interaction between Ni-O-Ni ions in antisite disordered region are weakened simultaneously. It is suggested that the nonmagnetic ion substitution breaks the Ni-O-Mn ferromagnetic superexchange chains in the Ni/Mn ordered region and results in the decrease of Tc, and the competition of the two opposite influences causes the change of Ms. The weakening of exchange bias (EB) effect further confirms the existence of the above-mentioned two opposite influences.
     In chapter five:the structure and low-temperature magnetic properties of Lai.8Sro.2Ni1-xMn1+xO6(|x|≤0.2) compounds have been invesgated. X-Ray diffraction shows that the samples with different Ni/Mn ratio are single phase with a rhombohedral structure and the lattice parameters monotonously increase with Ni content increasing (Mn content decreasing correspondingly). The Raman spectra and magnetic measurement data reveal that both the Ni/Mn ordering degree and ferromagnetic transition temperature reach the maximum when the proportion of Ni/Mn is1:1. As Ni/Mn ratio is less than one, i.e. the proportion biases to Mn side, the ferromagnetic transition temperature decreases. At the same time, an extra magnetic transition emerges at the lower temperature, which may be attributed to the double exchange interaction between Mn3+and Mn4+. When Ni/Mn ratio is greater than or equal to1:1, the sample exhibits exchange bias effect, which may come from the coupling between Ni/Mn ordered ferromagnetic domains and Ni-O-Ni antiferromagnetic spins.
     In chapter six, the crystal structure and magnetic properties of polycrystalline Y2NiMnO6have been investigated. Rietveld refinement based on the X-Ray diffraction data reveal that Ni/Mn are highly ordered on the B-site of the ideal perovskite ABO3unit cell, with small amount of Ni/Mn random distribution phase coexisting. Magnetometer measurement shows that the short-range FM ordered state begins to develop below T*~130K and a standard PM-FM transition appears at Tc-85K, the long-range FM ordering begins to form below Tc. The crystal structural and magnetic results can be interpreted as the scenario that short-range magnetic ordering is induced by Ni/Mn antisite disorder against long-range ferromagnetic ordering of the Ni/Mn sublattice. Heat capacity and magnetic property measurements under an external electric field confirm the robust ferromagnetic state of polycrystalline Y2NiMnO6sample.
引文
[1]W. A. Deer, R. A. Howie, J. Zussman:An Introduction to the Rock Forming Minerals. Prentice Hall, Harlow 1992
    [2]R. H. Buttner, E. N. Maslen:Structural parameters and electron difference density in BaTiO3. In:Acta Cryst.B48, Nr.6, S.764(1992)
    [3]S. Hoon Oh and Hyun M. Jang, Phys. Rev. B 63,132101(2007)
    [4]Y. Y. Guo, T. Wei, Q. Y. He, and J.-M. Liu, J. Phys.:Condens. Mater 21,485901(2009)
    [5]T. Kimura,T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426,55(2003)
    [6]Y. Tokura, Y. Tomioka J. Magn. Magn. Mater.200,1(1999)
    [7]S. Francis, and Galasso, Inorg. Synth.14,142(1973)
    [8]P. Bouvier, and J. Kreise, J. Phys.:Condens. Matter.13, L925(2001)
    [9]M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett.58,908(1987)
    [10]R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett.71, 2331(1993)
    [11]J. Wang, B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh., Science 299,1719(2003)
    [12]Timothy B. Adams, Derek C. Sinclair, and Anthony R. West, Adv. Mater.14 1321 (2002)
    [13]T. McGuire, and R. Potter., IEEE Transactions on Magnetics 11,1018 (1975)
    [14]G Giuliani, EPL 81,60002(2008)
    [15]G. Binasch, P. Griinberg, F. Saurenbach, and W. Zinn, Institut fur Festkorperforschung, Kernforschungsanlage Julich G.m.b.H., Postfach 1913, D-5170 Julich, West Germany,31 May 1988.]
    [16]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Laboratoire de Physique des Solides, Universite Paris-Sud, F-91405 Orsay, France; P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Laboratoire Central de Recherches, Thomson CSF, B.P.10, F-91401 Orsay, France,24 August 1988.
    [17]M. N. Baibich,J. M. Broto, A. Fert, F. Nguyen Van Dau, andF. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett.61,2472(1988)
    [18]焦正宽,曹光旱,磁电子学,浙江大学出版社(2005)
    [19]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau and F. Petroff, Phys. Rev.Lett.61, 2472(1988)
    [20]R. E. Camley and J. Barnas, Phys. Rev. Lett.63,664(1989)
    [21]B. A. Gurney, V.S. Speriosu, J. P. Nozieres, H. Lefakis, D. R. Wilhoit and O. U. Need, Phys. Rev. Lett.71,4023(1993)
    [22]S. Jin, T. H. Tiefel, M. McCormach, R. A. Fastnacht, R. Ramesh and L.H.Chen,Science 264, 413(1994)
    [23]G C. Xiong, Q. Li, H. L. Ju, S. N. Mao, L. Senapati, X. X. Xi, R. L. Greene, and T. Venkatesan,Appl. Phys Lett.66,1427(1995)
    [24]Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689(1996)
    [25]Y. Morimoto, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature 380,141(1996)
    [26]Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater.200,1 (1999)
    [27]P. Dai, Jiandi Zhang, H. A. Mook, S. H. Liou, P. A. Dowben, and E. W. Plummer, Phys. Rev. B 54,R3694(1996)
    [28]H. A. Jahn, and E.Teller, Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,161,220(1937)
    [29]S. S. Satpathy, Zoran S. Popovic, and Filip R. Vukajlovic, Phys. Rev. Lett.76,960(1996)
    [30]Y. Tokura, Rep. Prog. Phys.69,797(2006)
    [31]J. B. Goodenough, Phys. Rev.100,564(1955)
    [32]C. Zener, Phys. Rev.82,403(1951)
    [33]A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett.74,5144(1995)
    [34]H. Nojiri, K. Kaneko, M. Motokawa, K. Hirota, Y. Endoh, and K. Takahashi, Phys. Rev. B 60, 4142(1999)
    [35]Myron B. Salamon, and Marcelo Jaime, Rev. Mod. Phys.73,583(2001)
    [36]M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature 399,560(1999)
    [37]M. Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285, 1540(1999)
    [38]K. I. Kugel, A. L. Rakhmanov, and A. O. Sboychakov, Phys. Rev. Lett.95 267210(2005)
    [39]P. J. M. Bastiaansen, and H. J. F. Knops, J. Phys. Chem. Solids 59,297(1998)
    [40]J. Bary, M. Mayr, V. Martin-Mayor, A. Moreo and E. Dagotto, Phys. Rev. Lett.87, 277202(2001)
    [41]Igor Zutic, Jaroslav Fabian, and S. Das Sarma, Rev. Mod. Phys.76323(2004)
    [42]E. Dagotto, New J. Phys.767(2005)
    [43]H. A. Kramers, Physica 1,182 (1934)
    [44]P. W. Anderson, Phys. Rev.79,350 (1950)
    [45]W. H. Meiklejohn, C. P. Bean, Phys. Rev.102,413 (1956)
    [46]B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit, J. Appl. Phys.69,4774(1991)
    [47]J. Nogues, and I. K. Schuller, J. Magn. Magn. Mater.192,203(1999)
    [48]M. Thakur, M. Patra, K. De, S. Majumdar, and S. Giri, J. Phys.:Condens. Matter 20, 195215(2008)
    [49]R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, Appl. Phys. Lett.68, 2291(1996)
    [50]H. Y. Hwang, S. W. Cheong, N. P. Ong,and B. Batlogg, Phys. Rev. Lett.77,2041(1996)
    [51]M. T. Anderson, K. B. Greenwood, G. A. Taylor, K. R. Poeppelmeier, Prog. Solid St. Chem., 22,197(1993)
    [52]F. Galasso, and W. Darby, J. Phys. Chem.66,131 (1962)
    [53]N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. (Weinheim, Ger.) 17, 2225 (2005)
    [54]R. I. Dass, and J. B. Goodenough, Phys. Rev. B 67,014401(2003)
    [55]K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395 677(1998)
    [56]M. Garcia-Hernandez, J. L. Martinez, M.J. Martinez-Lope, M.T. Casais, and J. A. Alonso, Phys. Rev. Lett.86,2443(2001)
    [57]Adam J. Hauser, Robert E. A.Williams, Rebecca A. Ricciardo, Arda Gene, Manisha Dixit, Jeremy M. Lucy,Patrick M.Woodward, Hamish L. Fraser, and Fengyuan Yang, Phys. Rev. B, 83,014407(2011)
    [58][H. Z. Guo, A. Gupta, T. G. Calvarese, and M. A. Subramanian, Appl. Phys. Lett.89, 262503(2006)
    [59]M. P. Singh, S. Charpentier, K. D. Truong, and P. Fournier, Appl. Phys. Lett.90,211915(2007)
    [60]X. Luo, B. Wang, Y. P. Sun, X. B. Zhu and W. H. Song, J. Phys.:Condens. Matter 20, 465211 (2008)
    [61]Haizhong Guo, Arunava Gupta, Maria Varela, Stephen Penny cook, and Jiandi Zhang, Phys. Rev.579,172402(2009)
    [62]S. Kazan, F. A. Mikailzade, M. Ozdemir, B. Aktas, B. Rameev, A. Intepe, and A. Gupta, Appl. Phys. Lett.97,072511(2010)
    [63]Y. Sakurai, I. Ohkubo, Y Matsumoto, H. Koinuma, and M. Oshima, J. Appl. Phys 110, 063913(2011)
    [64]M. Zhu, Y. Lin, Edward W. C. Lo, Q. Wang, Z. J. Zhao, and W. H. Xie, Appl. Phys. Lett.100, 062406(2012)
    [65]Y. J. Bai, Y. J. Xia, H. P. Li, L. Han, Z. C. Wang, X. J. Wu, S. H. Lv, X. J. Liu, and J. Meng, J. Phys. Chem. C 116,16841(2012)
    [66]J. Kanamori,J. Phys. Chem. Solids 10,87(1959) g.and P. Fournier,Appl.Phys. Lett.,91,042504(2007)
    [68]X. Luo, Y.P. Sun, B. Wang, X.B. Zhu, W.H. Song, Z.R. Yang, and J.M. Dai, Solid State Commun.149,810(2009)
    [69]G Blasse, J. Phys. Chem. Solids 26,1969 (1965)
    [70]K.Asai, H. Sekizawa, and S.Iida, J. Phys. Soc. Jpn.47,1054(1979)
    [71]M. Sonobe, K. Asai, J. Phys. Soc. Jpn.61,4193(1992)
    [72]M. C. Sanchez, J. Garcia, J. Blasco, G Subias, and J. Perez-Cacho, Phys. Rev. B 65, 144409(2002)
    [73]C.L. Bulll, D. Gleeson and K. S. Knight, J. Phys.:Condens. Matter,15,4927(2003)
    [74]Shiming Zhou, Lei Shi, Haipeng Yang, and Jiyin Zhao, Appl. Phys. Lett.91,172505(2007)
    [75]S. M. Zhou, Y. Q. Guo, J. Y. Zhao, S. Y. Zhao, and L. Shi, Appl. Phys. Lett.96,262507(2010)
    [76]D. Haskel, G Fabbris, N. M. Souza-Neo, M. van Veenendaal, G Shen, A. E. Smith, and M. A. Subramanian, Phys. Rev. B 84,100403(R)(2011)
    [77]J. B. Goodenough and R. I. Dass, Int. J. Inorg. Mater.2,3(2000).
    [78]J. Navarro, L. I. Balcells, F. Sandiumenge, M. Bibes, A. Roig, B. Martinez, and J. Fontcuberta, J. Phys.:Condens. Matter 13,8481 (2001)
    [79]J. Linden, M. Karppinen, T. Shimada, Y. Yasuawa, and H. Yamauchi, Phys. Rev. B 68, 174415 (2003)
    [80]X. J. Wang, Y. Sui, Y. Li, L. Li, X. Q. Zhang, Y. Wang, Z. G Liu, W. H. Su, and J. K. Tang, Appl. Phys. Lett.95,252502 (2009)
    [81]Y. Kobayashi, M. Shiozawa, K. Sato, K. Abe, and K. Asai, J. Phys. Soc. Jpn.77, 084701(2008)
    [82]M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127,8889(2005)
    [83]H. Hughes, M. M. B. Allix, C. A. Bridges, J. B. Claridge, X. J. Kuang, H. Niu, S. Taylor, W. H. Song, M. J. Rosseinsky, J. Am. Chem. Soc.127,13790(2005)
    [84]R. Ranjith, Asish K. Kundu, M. Filippi, B. Kundys, W. Prellier, B. Raveau, Laverdiere, M. P. Singh, and S. Jandl, Appl. Phys. Lett.92,062909(2008)
    [85]John B. Claridge, Helen Hughes, Craig A. Bridges, Mathieu Allix,Matthew R. Suchomel, Hongjun Niu, Xiaojun Kuang, Matthew J. Rosseinsky,Natalia Bellido, Dominique Grebille, Olivier Perez, Charles Simon,Denis Pelloquin, Stephen J. Blundell, Tom Lancaster, Peter J. Baker.Francis L. Pratt, and P. Shiv Halasyamani, J. Am. Chem. Soc.131,14000(2009)
    [86]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426,55(2003)
    [87]M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsevand R. V. Pisarev, Nature 419, 818(2002)
    [88]Sanjeev Kumar, Gianluca Giovannetti, Jeroen van den Brink, and Silvia Picozzi, Phys. Rev. B 82,134429 (2010)
    [89]K. Asai, K. Fujiyoshi, N. Nishimori, Y. Satoh, Y. Kobayashi, and M. Mizoguchi, J. Phys. Soc. Jpn.67,4218(1998)
    [90]R. J. Booth, R. Fillman, H. Whitaker, Abanti Nag, R. M. Tiwari, K. V. Ramanujachary, J. Gopalakrishnan, S. E. Lofland, Mater. Res.Bull.44,1559(2009)
    [91]M. H. Tang, Y. G. Xiao, B. Jiang, J. W. Hou, J. C. Li, and J. He, Appl. Phys. A 105,679 (2011)
    [92]J.-S. Kang, H. J. Lee, D. H. Kim, S. Kolesnik, B. Dabrowski, K. Swierczek, Jieun Lee, Bongjae Kim, and B. I. Min, Phys. Rev. B 80,045115 (2009)
    [93]Bongjae Kim, Hong Chul Choi, Beom Hyun Kim, and B. I. Min, Phys. Rev. B 81,224402 (2010)
    [94]张立德,牟季美,纳米材料和纳粹结构,北京:科学出版社(2000)
    [95]P. A. Joy, Y. B. Khollam, and S. K. Date, Phys. Rev. B 62,8608(2000)
    [96]P. A. Joy, Y. B. Khollam, S. N. Patole, and S. K. Date, Mater. Lett.46,261(2000)
    [97]V. L. Joseph Joly, P. A. Joy, S. K. Date and C. S. Gopinath, J. Phys.:Condens. Matter 13,649 (2001)
    [98]V. L. Joseph Joly, Y. B. Khollam, P. A. Joy, C. S. Gopinath and S. K. Date, J. Phys.:Condens. Matter.13,11001(2001)
    [99]V. L. Joseph Joly, P. A. Joy, S. K. Date, Solid State Commun.121,219(2002)
    [100]V. L. Joseph Joly, S. K. Date and P. A. Joy, J. Phys.:Condens. Matter 16,155 (2004)
    [101]V. L. Joseph Joly, P. A. Joy, and S. K. Date, Phys. Rev. B 65,184416(2002)
    [102]Shuangyi Zhao, Lei Shi, Shiming Zhou, Jiyin Zhao, Haipeng Yang, and Yuqiao Guo, J. Appl. Phys.106,123901(2009)
    [103]R. I. Dass, J.-Q. Yan, and J. B. Goodenough, Phys. Rev. B,68,064415(2003)
    [104]D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, and D. D. Sarma, Phys. Rev. Lett.108, 127201(2012)
    [105]Md G Masud, Arijit Ghosh, J Sannigrahi and B K Chaudhuri, J. Phys..Condens. Matter.24, 295902(2012)
    [106]H. Guo, J. Burgess, S. Street, A. Gupta, T. G. Calvarese and M. A. Subramanian, Appl. Phys. Lett.89,022509(2006)
    [107]M. Hashisaka, D. Kan, A. Masuno, M. Takano, and Y. Shimakawa, Appl. Phys. Lett.89, 032504 (2006)
    [108]M.N.Iliev,H.Guo,and A.Gupta,Appl.Phys.Lett.90,151914(2007)
    [109]H. Z. Guo, J. Burgess, E. Ada, S. Street, and A. Gupta, M. N. Iliev, A. J. Kellock, C. Magen, M. Varela, and S. J. Pennycook, Phys. Rev. B 77,174423(2008)
    [110]Maiko Sakai, Atsunobu Masuno, Daisuke Kan, Masayuki Hashisaka, Kazuhide Takata,Masaki Azuma, Mikio Takano, and Yuichi Shimakawa, Appl. Phys. Lett.90,072903 (2007)
    [111]Y. Shimakawa, D. Kan, M. Kawai, M. Sakai, S. Inoue, M. Azuma, S. Kimura, and O. Sakata, J. Phys. Soc. Jpn.46, L845(2007)
    [112]M. N. Iliev, M. M. Gospodinov, M. P. Singh, J. Meen, K. D. Truong, P. Fournier, and S. Jandl, J. Appl. Phys.106,023515(2009)
    [113]A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76,064412(2007)
    [114]D. J. Singh, and Chul Hong Park, Phys. Rev. Lett.100,087601(2008)
    [115]Hena Das, Umesh V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. Lett.100, 186402(2008)
    [116]Bongjae Kim, Hong Chul Choi, Beom Hyun Kim, and B. I. Min, Phys. Rev. B 81,224402 (2010)
    [1]N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. (Weinheim, Ger.) 17^ 2225 (2005).
    [2]P. Padhan, H. Z. Guo, P. LeClair, and A. Gupta, Appl. Phys. Lett.,92,022909(2008)
    [3]D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, and D. D. Sarma, Phys. Rev. Lett.108,127201(2012)
    [4]R. I. Dass, J.-Q. Yan, and J. B. Goodenough, Phys. Rev. B 68,064415 (2003)
    [5]M. N. Iliev, M. V. Abrashev, A. P. Litvinchuk, V. G. Hadjiev, H. Guo, and A. Gupta, Phys. Rev. 575,104118(2007)
    [6]H. Z. Guo, J. Burgess, E. Ada, S. Street, and A. Gupta, M. N. Iliev, A. J. Kellock, C. Magen, M. Varela, and S. J. Pennycook, Phys. Rev. B,77,174423(2008)
    [7]Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater.200,1 (1999)
    [8]K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395 677(1998)
    [9]Garcia-Hernandez, J. L. Martinez, M. J. Martinez-Lope, M. T. Casais, and J. A. Alonso, Phys. Rev. Lett.,86,2443(2001)
    [10]Y. Sui, X. J. Wang, Z. N. Qian, J. G. Cheng, Z. G Liu, J. P. Miao, Y. Li, W. H. Su, and C. K. Ong, Appl. Phys. Lett.85,269 (2004).
    [11]J. B. Goodenough and R. I. Dass, Int. J. Inorg. Mater.2,3(2000)
    [12]H. Y. Hwang, S. W. Cheong, N. P. Ong,and B. Batlogg, Phys. Rev. Lett.77,2041(1996)
    [1]S. Jin, T. H. Tiefel, M. McCormach, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science 264, 413 (1994).
    [2]P. Schiffer, A. P. Ramirez, W. Bao, S. W. Cheong, Phys. Rev. Lett.75,3336 (1995)
    [3]R. Mahendiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell and P. Schiffer, Phys. Rev. Lett.89,286602(2002)
    [4]T.Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, and Y. Tokura, Science 274, 1698 (1996)
    [5]T. Kimura, Phys Rev. Lett.79,3720 (1997)
    [6]J. H. Park, S. N. Cheong, and C.T. Chen, Phys. Rev. B 55,11072 (1997)
    [7]T. R. N. Kutty and John Philip, J. Phys.:Condens. Matter 12,7747(2000)
    [8]F. Gong, W. Tong, S. Tan, and Y. H. Zhang, Phys. Rev. B 68,174401(2003)
    [9]D. J. Singh, and Chul Hong Park, Phys. Rev. Lett.100,087601 (2008)
    [10]H. Das, U. V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. Lett.100,186402 (2008)
    [11]M. P. Singh, K. D. Truong, S. Jandl, and P. Founier, J. Appl. Phys.107,09D917 (2010)
    [12]R. I. Dass, J.-Q. Yan, and J. B. Goodenough, Phys. Rev. B 68,064415 (2003)
    [13]M. Garcfa-Hernandez, J. L. Martinez, M. J. Martinez-Lope, M. T. Casais, and J. A. Alonso, Phys. Rev. Lett.86,2443 (2001).
    [14]C.Meneghini, Sugata Ray, F. Liscio, F.Bardelli, S. Mobilio, and D. D. Sarma, Phys. Rev. Lett. 103,046403 (2009).
    [15]a) J.B. Goodenough, Phys. Rev.100,564 (1955). b) J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
    [16]M. P. Singh, C. Grygiel, W. C. Sheets, Ph. Boullary, M. Hervieu, W. Prellier, B. Mercey, Ch. Simon, and B. Raveau, Appl. Phys. Lett.91,012503 (2007).
    [17]S. Y. Zhao, L. Shi, S. M. Zhou, J. Y. Zhao, H. P. Yang, and Y. Q. Guo, J. Appl. Phys.106, 123901(2009).
    [18]E. Langenberg, J. Rebled, S. Estrada, C. J. M. Daumont, J. Ventura, L. E. Coy, M. C. Polo, M. V. Garcia-Cuenca, C. Ferrater, B. Noheda, F. Peiro, M. Varela, and J. Fontcuberta, J. Appl. Phys.108,123907(2010).
    [19]J.-S. Kang, H. J. Lee, D. H. Kim, S. Kolesnik, B. Dabrowski, K. Swierczek, Jieun Lee, Bongjae Kim, and B. I. Min, Phys. Rev. B 80,045115 (2009).
    [20]X. J. Wang, Y. Sui, Y. Li, L. Li, X. Q. Zhang, Y. Wang, Z. G. Liu, W. H. Su, and J. K. Tang, Appl. Phys. Lett.95,252502 (2009).
    [21]V. L. Joseph Joly, P. A. Joy, S. K. Date, and C. S. Gopinath, Phys. Rev. B 65,184416 (2002)
    [22]D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut,O. Karis, P. Nordblad, and D. D. Sarma, Phys. Rev. Lett.108,127201(2012)
    [23]J. S. Kang, S. M. Lee, D. H. Kim, S. Kolesnik, B. Dabrowski, B. G. Park, J. Y. Kim, Jieun Lee, Bongjae Kim, and B. I. Min, J. Appl. Phys.105,07D721(2009)
    [24]Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater.200,1 (1999)
    [25]M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127,8889(2005)
    [26]Rabindra Nath Mahato, K. Kamala Bharathi, K. Sethupathi, V. Sankaranarayanan, R. Nirmala, A. K. Nigam, and Jagat Lamsal, J. Appl. Phys.105,07A908 (2009)
    [27]J.R. Carvajal, FULLPROF, version 2 K, Laboratoire Leon Brillouin CEA-CNRS, (2000)
    [28]R. D. Shannon, Acta Cryst. A32,751(1976)
    [29]M. N. Iliev, H. Guo and A. Gupta, Appl. Phys. Lett.90,151914(2007)
    [30]K. D. Truong, M. P. Singh, S. Jandl, and P. Fournier, Phys. Rev. B 80,134424 (2009)
    [31]K. Asai, K. Fujiyoshi, N. Nishimori, Y. Satoh, Y. Kobayashi, and M. Mizoguchi, J. Phys. Soc. Jpn.67,4218(1998)
    [32]F. Galasso, and W. Darby, J. Phys. Chem.66,131 (1962)
    [33]Bongjae Kim, Hong Chul Choi, Beom Hyun Kim, and B. I. Min, Phys. Rev. B 81,224402 (2010).
    [34]M. C. Sanchez, J. Garcia, J. Blasco, G. Subias, and J. Perez-Cacho, Phys. Rev. B 65,144409 (2002).
    [35]G. Subias, J. Garcia, M. G. Proietti, and J. Blasco, Phys. Rev. B 56,8183 (1997).
    [36]E. K. Hemery, G. V. M. Williams, and H. J. Trodahl, Phys. Rev. B 74,054423 (2006).
    [37]M. Kitamura, I. Ohkubo, M. Kubota, Y. Matsumoto, H. Koinuma, and M. Oshima, Appl. Phys. Lett.94,132506(2009).
    [38]M. P. Singh, K. D. Truong, S. Jandl, and P. Fournier, Phys. Rev. B 79,224421 (2009).
    [39]D. Niebieskikwiat, M.B. Salamon, Phys. Rev. B 72,174422(2005).
    [40]R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reingers, J. Appl. Phys.75 6659(1994).
    [41]A. P. Malozemoff, Phys. Rev. B 35,3679(1987).
    [42]H. Guo, J. Burgess, S. Street, A. Gupta, T. G. Calvarese, and M.A. Subramanian, Appl. Phys. Lett.89,022509 (2006).
    [43]H.Z.Guo,A.Gupta,T. G. Calvarese,and M.A.Subramanian,Appl.Phys.Lett.89,262503 (2006).
    [44]S.M.Zhou,Y Q.Guo,J.Y Zhao,S.Y Zhao,and L.Shi,Appl.Phys.Lett.96,262507(2010).
    [45]Y K.Tang,Y Sun,and Z.H.Cheng,Phys.Rev.B 73,174419(2006).
    [46]M.Thakur,M.Patra,K.De,S.Majumdar and S. Giri,J. Phys.:Condens.Matter 20, 195215(2008).
    [47]S.Karmakar,S.Taran,E.Bose,and B.K.Chaudhuri,Phys.Rev.B 77,144409(2008).
    [48]Myron B.Salamon,and Marcelo Jaime,Rev.Mod.Phys.73,583(2001)
    [49]Y.Tokura nd Y Tomioka,J.Magn.Magn.Mater.200,1(1999)
    [50]P W. Anderson,Phys.Rev.79,350(1950)
    [1]N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. (Weinheim, Ger.) 17, 2225 (2005).
    [2]R. I. Dass, J.-Q. Yan, and J. B. Goodenough, Phys. Rev. B 68,064415 (2003).
    [3]M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127,8889 (2005).
    [4]H. Guo, J. Burgess, S. Street, A. Gupta, T. G. Calvarese, and M.A. Subramanian, Appl. Phys. Lett.89,022509 (2006).
    [5]S. M. Zhou, L. Shi, H. P. Yang, and J. Y. Zhao, Appl. Phys. Lett.91,172505 (2007).
    [6]a) J.B. Goodenough, Phys. Rev.100,564 (1955). b) J. Kanamori, J. Phys. Chem. Solids 10, 87(1959).
    [7]K. D. Truong, M. P. Singh, S. Jandl, and P. Fournier, Phys. Rev. B 80,134424 (2009).
    [8]J. -S. Kang, H. J. Lee, D. H. Kim, S. Kolesnik, B. Dabrowski, K. Swierczek, Jieun Lee, Bongjae Kim, and B. I. Min, Phys. Rev. B 80,045115 (2009).
    [9]Bongjae Kim, Hong Chul Choi, Beom Hyun Kim, and B. I. Min, Phys. Rev. B 81,224402 (2010).
    [10]Guo et al Tunable exchange bias effect in Sr-doped double perovskite LaaNiMnO6 accepted by J. Phys.:D, in press.
    [11]X. J. Wang, Y. Sui, Y. Li, L. Li, X. Q. Zhang, Y. Wang, Z. G. Liu, W. H. Su, and J. K. Tang, Appl. Phys. Lett.95,252502 (2009).
    [12]J. B. Goodenough and R. I. Dass, Int. J. Inorg. Mater.2,3(2000).
    [13]J. Linden, M. Karppinen, T. Shimada, Y. Yasukawa, and H. Yamauchi, Phys. Rev. B 68, 174415(2003).
    [14]Y. Sui, X. J. Wang, Z. N. Qian, J. G. Cheng, Z. G. Liu, J. P. Miao, Y. Li, W. H. Su, and C. K. Ong, Appl. Phys. Lett.85,269 (2004).
    [15]Y. Sui, X. J. Wang, J. G. Cheng, Z. G. Liu, J. P. Miao, X. Q. Huang, Z. Lu and Z. N. Qian, W. H. Su, J. K. Tang, C. K. Ong, J. Appl. Phys.98,064505(2005).
    [16]R. D. Shannon, Acta Cryst. A32,751(1976).
    [17]A. I. Shames, E. Rozenberg, G. Gorodetsky, and Ya. M. Mukovskii, Phys. Rev. B 68, 174402(2003)
    [18]S. M. Zhou, Y. Q. Guo, J. Y. Zhao, S. Y. Zhao, and L. Shi, Appl. Phys. Lett.96,262507 (2010).
    [19]宛德福,马兴隆,磁性物理学,北京:电子工业出版社(1999).
    [1]M. T. Anderson, K. B.Greenwood, G. A.Taylor, and K.R.Poeppelmeir,Prog.Solid State Chem. 22,197(1993).
    [2]N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater.(Weinheim, Ger.),17, 2225(2005).
    [3]J. B. Goodenough, Phys. Rev.,100,564(1955).
    [4]J. S. Kang, S. M. Lee, D. H. Kim, S. Kolesnik, B. Dabrowski, B. G. Park, J. Y. Kim, Jieun Lee, Bongjae Kim, and B. I. Min, J. Appl. Phys.,105,07D721(2009).
    [5]V. N. Singh, and P. Majumdar, EPL,94,47004(2011).
    [6]S. M. Zhou, L. Shi, H. P. Yang, and J. Y. Zhao, Appl. Phys. Lett.,91,172505(2007).
    [7]D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, and D. D. Sarma, Phys. Rev. Lett.,108,127201(2012).
    [8]X. J. Wang, Y. Sui, Y Li, L. Li, X. Q. Zhang, Y. Wang, Z. G Liu, W. H. Su, and J. K. Tang, Appl. Phys. Lett.,95,252502(2009)
    [9]J. B. Goodenough, A. Wold, R. J. Arnott, and M. Menyuk, Phys. Rev.,124,373(1961).
    [10]Shuangyi Zhao, Lei Shi, Shiming Zhou, Jiyin Zhao, Haipeng Yang, and Yuqiao Guo, J. Appl. Phys.,106,123901(2009).
    [11]J.-S. Kang, H. J. Lee, D. H. Kim, S. Kolesnik, B. Dabrowski, K. Swierczek, Jieun Lee, Bongjae Kim, and B. I. Min, Phys. Rev. B,80,045115(2009).
    [12]R. D. Shannon, Acta Cryst., A32,751(1976).
    [13]M. N. Iliev, M. V. Abrashev, A. P. Litvinchuk, V. G. Hadjiev, H. Guo, and A. Gupta, Phys. Rev. B.75,104118(2007).
    [14]V. L. Joseph Joly, Y. B. Khollam, P. A. Joy, C. S. Gopinath and S. K. Date, J. Phys.:Condens. Matter.,13,11001(2001).
    [15]V. L. Joseph Joly, S. K. Date and P. A. Joy, J. Phys.:Condens. Matter 16,155(2004).
    [16]V. L. Joseph Joly, P. A. Joy, and S. K. Date, Phys. Rev. B,65,184416(2002).
    [1]R. I. Dass, J. Q. Yan, and J. B. Goodenough, Phys. Rev. B 68,064415(2003).
    [2]N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Adv. Mater. (Weinheim, Ger.) 17 2225(2005).
    [3]M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am.Chem. Soc. 127,8889(2005).
    [4]A. Ciucivara, B. Sahu, and L. Kleinman, Phys. Rev. B 76,064412(2007).
    [5]M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, and Y. Shimakawa, Appl. Phys. Lett.90,072903(2007).
    [6]M. P. Singh, K. D. Truong, S. Jandl, and P. Fournier, Phys. Rev. B 79,224421(2009).
    [7]P. Padhan, P. LeClair, A. Gupta, M. A. Subramanian and G. Srinivasan, J. Phys.:Condens. Matter 21,306004(2009).
    [8]M. Kitamura, I. Ohkubo, M. Kubota, Y. Matsumoto, H. Koinuma, and M. Oshima, Appl. Phys. Lett.94,132506(2009).
    [9]S. Kumar, G Giovannetti, J. van den Brink, and S. Picozzi, Phys. Rev. B 82,134429(2010).
    [10]X. Fabreges, S. Petit, I. Mirebeau, S. Pailhes, L. Pinsard, A. Forget, M. T. Fernandez-Diaz, and F. Porcher, Phys. Rev. Lett.103,067204(2009).
    [11]M. Mouallem-Bahout, T. Roisnel, G Andr6, D. Guteirrez, C. Moure, and O. Pefia, Solid State Commun.129,255(2004).
    [12]O. Pefia, M.Bahout, D. Guteirrez, J.F. Fernandez, P. Duran, and C. Moure, J. Phys. Chem. Solids 61,2019(2000).
    [13]Yanwei. Ma, Aixia. Xu, Xiaohang Li, Xianping Zhang, M. Guilloux-Viry, O. Pefia, S. Awaji andK. Watanabe, Appl. Phys. Lett.89,152505(2006).
    [14]J.R. Carvajal, FULLPROF, version 2 K, Laboratoire Leon Brillouin CEA-CNRS, (2000).
    [15]a) J. B. Goodenough, Phys. Rev.100,564(1955). b) J. Kanamori, J. Phys. Chem. Solids 10, 87(1959).
    [16]B. Kim, H.C. Choi, B.H. Kim, and B.I. Min, Phys. Rev. B 81,224402(2010).
    [17]H. Z. Guo, A. Gupta, T. G. Calvarese and M. A. Subramanian, Appl. Phys. Lett.89, 262503(2006).
    [18]S. M. Zhou, L. Shi, H. P. Yang, and J. Y. Zhao, Appl. Phys. Lett 91,172505(2007).
    [19]A. I. Shames, E. Rozenberg, G. Gorodetsky, and Ya. M. Mukovskii, Phys. Rev. B 68, 174402(2003).
    [20]A. Shengelaya, G. M. Zhao, H. Keller, and K. A. Miiller, Phys. Rev. Lett.77,5296(1996).
    [21]A. Shengelaya, G M. Zhao, H. Keller, K. A. Muller, and B. I. Kochelaev, Phys. Rev. B 61, 5888(2000).
    [22]S. M. Zhou, Y. Q. Guo, J. Y. Zhao, S. Y. Zhao, and L. Shi, Appl. Phys. Lett.96,262507(2010).
    [23]Toru Kyomen, Ryutaro Yamazaki, and Mitsuru Itoh, Chem. Mater.16,179(2004).