TRAIL/TRAIL受体介导炎症反应及其信号传递途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤坏死因子相关的凋亡诱导配体(TRAIL)发现于1995年,是肿瘤坏死因子(TNF)超家族的成员。目前,在人类中已发现5种TRAIL受体,分别是:DR4、DR5、DcR1、DcR2和OPG。在这些受体中,DR4和DR5的胞内区拥有完整的死亡结构域,因此能够介导相关信号途径的激活。而DcR1却没有死亡结构域,DcR2也只有一个截短的死亡结构域,OPG是这五种受体中唯一的可溶性蛋白,这三种受体均不能介导细胞凋亡。
     TRAIL能够诱导肿瘤细胞的凋亡而对大部分正常细胞没有毒害,因此TRAIL被视为有着临床应用前景的肿瘤治疗药物。与TRAIL处理一样,TRAIL受体过表达同样可以在很多细胞系中诱导细胞凋亡。一旦与TRAIL结合以后,TRAIL受体能够募集一系列接头分子,从而引发相应的信号传递途径。
     TRAIL及其受体相关的研究工作大部分都集中在细胞凋亡上,至今人们对其生理学功能仍知之甚少。与其它TNF超家族成员相比,TRAIL在免疫系统广泛表达,包括激活的T细胞,B细胞,NK细胞,树突状细胞,中性粒细胞和单核细胞。并且DR4和DR5也广泛表达于许多正常组织,例如脾,外周血淋巴细胞和胸腺。虽然TRAIL及其受体同时表达于众多正常细胞,但是并不诱导这些细胞的凋亡。这些事实表明TRAIL和TRAIL受体除了诱导细胞凋亡以外,还有更为复杂的生理功能。
     为了探寻TRAIL受体的生理功能,我们分别在293T,MDA-MB-231和HCT-116中过表达DR4和DR5,以检测TRAIL受体过表达能否激活炎症反应。我们发现DR4或DR5过表达能够诱导IL-8、TNF-α、CCL20、MIP-2和MIP-1β等炎症因子的分泌,而且这一过程依赖于NF-κB的激活;DR4或DR5过表达激活炎症炎症因子的分泌是死亡受体胞外区非依赖的;TRAF2-NIK-IKKα/β和FADD-Caspases信号途径都与TRAIL受体过表达引起的炎症反应和NF-κB激活有关。
     我们进一步利用人重组可溶性TRAIL处理293T和HCT-116细胞,发现TRAIL上调IL-8,CCL20,MIP-2,MIP-1β和MCP-1的表达,这一过程依赖于NF-κB的激活;RIP对TRAIL诱导的炎性趋化因子分泌是不可缺少的,但TRADD和TRAF2与此过程关系不大:p38 MAPK在TRAIL诱导趋化因子的过程中起重要调节作用;我们还在HCT116的皮下移植瘤模型中证实TRAIL同样可以在体内激活炎性趋化因子的分泌。
     本项研究报告了TRAIL及其受体可介导一系列炎性细胞因子的释放,并揭示了其信号转导途径,为TRAIL及其受体的生理功能研究和临床应用提供了新的资料。
Tumor necrosis factor-related apoptosis-inducing ligand(TRAIL),which is also designated as Apo-2 ligand,is a typical member of the structurally related TNF family.To date five TRAIL receptors have been identified in human:TRAIL-R1(DR4),TRAIL-R2 (DR5),TRAIL-R3(DcR1,TRID),TRAIL-R4(DcR2,TRUNDD) and OPG (osteoprotegerin).Among these receptors,DR4 and DR5 possess an intracellular tail containing the death domain,which mediated cell death by apoptosis.In contrast,DcR2 possesses a truncated death domain and DcR1 have no death domain.Osteoprotegerin is a soluble TRAIL receptor,which is known to participate in regulation of bone density.
     TRAIL has been known to induce apoptosis in a variety of tumor cells and some vitally infected cells,but not in most normal cells.Thus TRAIL and TRAIL death receptor specific agonistic antibodies have attracted considerable attention for their potential use in cancer therapy.TRAIL receptor overexpression as well as TRAIL treatment induced apoptosis in different cell lines.Once engaged,TRAIL receptors recruit a number of adaptor proteins and subsequently a signaling cascade is activated.
     Most investigations about TRAIL focused on its ability to induce apoptosis in cancer cells;however,the physiological function of TRAIL and TRAIL receptors is much less well understood.Compared with other members of TNF superfamily,TRAIL are widely expressed in the immune system,including activated T cells,B cells,natural killer cells, dendritic cells,neutrophils,and monocytes.DR4 and DR5 are detected in most human tissues,such as spleen,peripheral blood leukocytes,and thymus.Although TRAIL and its receptors are both expressed in many normal cells,TRAIL seldom initiates apoptosis in these cells.The fact suggests that the physiological roles of TRAIL and TRAIL receptors are more complex than just inducing apoptosis of cancer cells.
     In order to shed a light on the physiological roles of TRAIL receptors,we transfected 293T cells with expression plasmids of DR4 or DR5 to determine whether TRAIL receptors overexpression activated inflammatory cytokines release.To our knowledge,this is the first demonstration that TRAIL receptors overexpression activates inflammatory cytokine release in a NF-κB dependent signaling pathway.We described that DR4 and DR5-mediated inflammation and apoptosis was extra cellular domain independent. Furthermore,TRAF2-NIK-IKKα/βsignaling cascade,which plays an essential role in TNF-induced NF-κB activation,is involved in TRAIL receptors overexpression-activated signaling pathway.And FADD-Caspases signaling pathway,which was reported to be mostly related to apoptosis,was elucidated to be essential for TRAIL receptors-mediated inflammation.
     To present further evidence,we treated 293T and HCT-116 cells with rsTRAIL to determine whether TRAIL induced inflammatory cytokines release.We elucidated that TRAIL induced IL-8,CCL20,MIP-2,MIP-1βand MCP-1 secretion in a NF-κB dependent manner.RIP was proved to be essential for TRAIL-induced chemokines release,while TRADD and TRAF2 were not required.It was also demonstrated that p38 MAPK was involved in TRAIL-induced chemokines release without any effect on NF-κB activity, which suggested that some other transcription factors were also activated by TRAIL. Furthermore,using xenografi tumor model,we illustrated that TRAIL induced chemokines release in vivo.
     These data provide novel evidences for the physiological functions of TRAIL and TRAIL receptor,and throw some light on their clinical application.
引文
1. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3:673-682.
    
    2. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J et al. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276: 111-113.
    
    3. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J 1997; 16: 5386-5397.
    
    4. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 1997; 7: 821-830.
    
    5. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997; 7: 1003-1006.
    
    6. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997; 186: 1165-1170.
    
    7. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273: 14363-14367.
    
    8. Ashkenazi A, Dixit VM Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999;11:255-260.
    
    9. Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 1999; 59: 2770-2775.
    
    10. Schneider P, Olson D, Tardivel A, Browning B, Lugovskoy A, Gong D et al. Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2003; 278: 5444-5454.
    11. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157-163.
    
    12. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155-162.
    
    13. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000; 2:241-243.
    
    14. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000; 12: 611-620.
    
    15. Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 2000; 12: 599-609.
    
    16. Ashkenazi A, Dixit VM Death receptors: signaling and modulation. Science 1998; 281: 1305-1308.
    
    17. Hsu H, Xiong J, Goeddel DV The TNF receptor 1 -associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995; 81:495-504.
    
    18. Malinin NL, Boldin MP, Kovalenko AV, Wallach D MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 1997; 385: 540-544.
    
    19. Ling L, Cao Z, Goeddel DV NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 1998; 95: 3792-3797.
    
    20. Rothe M, Wong SC, Henzel WJ, Goeddel DV A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994; 78:681-692.
    
    21. Hsu H, Shu HB, Pan MG, Goeddel DV TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299-308.
    
    22. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4: 387-396.
    
    23. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997; 91:243-252.
    
    24. Trauzold A, Wermann H, Arlt A, Schutze S, Schafer H, Oestern S et al. CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-kappaB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene 2001; 20:4258-4269.
    
    25. Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D et al. TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 2003; 107: 2250-2256.
    
    26. Harper N, Farrow SN, Kaptein A, Cohen GM, MacFarlane M Modulation of tumor necrosis factor apoptosis-inducing ligand- induced NF-kappa B activation by inhibition of apical caspases. J Biol Chem 2001; 276: 34743-34752.
    
    27. Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D et al. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 2005; 280:40599-40608.
    
    28. Choi C, Kutsch O, Park J, Zhou T, Seol DW, Benveniste EN Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol 2002; 22: 724-736.
    
    29. Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunol 2003; 171: 1526-1533.
    
    30. Secchiero P, Corallini F, di Iasio MG, Gonelli A, Barbarotto E, Zauli G TRAIL counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating CCL8 and CXCL10 chemokine expression and release. Blood 2005; 105: 3413-3419.
    
    31. Zauli G, Pandolfi A, Gonelli A, Di Pietro R, Guarnieri S, Ciabattoni G et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sequentially upregulates nitric oxide and prostanoid production in primary human endothelial cells. Circ Res 2003; 92: 732-740.
    
    32. Silverman N, Maniatis T NF-kappaB signaling pathways in mammalian and insect innate immunity.Genes Dev 2001; 15: 2321-2342.
    
    33. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388: 548-554.
    34. Park A, Baichwal VR Systematic mutational analysis of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD. J Biol Chem 1996; 271: 9858-9862.
    
    35. Rothe M, Sarma V, Dixit VM, Goeddel DV TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 1995; 269: 1424-1427.
    
    36. Tewari M, Dixit VM Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem 1995; 270: 3255-3260.
    
    37. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice. Nat Immunol 2003; 4:255-260.
    
    38. Cretney E, Uldrich AP, Berzins SP, Strasser A, Godfrey DI, Smyth MJ Normal thymocyte negative selection in TRAIL-deficient mice. J Exp Med 2003; 198: 491-496.
    
    39. Diehl GE, Yue HH, Hsieh K, Kuang AA, Ho M, Morici LA et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 2004; 21: 877-889.
    
    40. Vandenabeele P, Declercq W, Beyaert R, Fiers W Two tumour necrosis factor receptors: structure and function. Trends Cell Biol 1995; 5: 392-399.
    
    41. Cha SS, Kim MS, Choi YH, Sung BJ, Shin NK, Shin HC et al. 2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity 1999; 11: 253-261.
    
    42. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999; 4:563-571.
    
    43. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996; 384: 638-641.
    
    44. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505-512.
    
    45. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817-827.
    
    46. Luschen S, Ussat S, Scherer G, Kabelitz D, Adam-Klages S Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J Biol Chem 2000; 275:24670-24678.
    
    47. Kabra NH, Kang C, Hsing LC, Zhang J, Winoto A T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci U S A 2001; 98: 6307-6312.
    
    48. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002; 419:395-399.
    
    49. Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 1998; 91:4624-4631.
    
    50. Rathore N, Matta H, Chaudhary PM An evolutionary conserved pathway of nuclear factor-kappaB activation involving caspase-mediated cleavage and N-end rule pathway-mediated degradation of IkappaBalpha. J Biol Chem 2004; 279: 39358-39365.
    
    51. Wajant H, Haas E, Schwenzer R, Muhlenbeck F, Kreuz S, Schubert G et al. Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J Biol Chem 2000; 275:24357-24366.
    
    52. Weckmann M, Collison A, Simpson JL, Kopp MV, Wark PA, Smyth MJ et al. Critical link between TRAIL and CCL20 for the activation of T(H)2 cells and the expression of allergic airway disease.Nat Med 2007; 13: 1308-1315.
    
    53. Frese S, Frese-Schaper M, Andres AC, Miescher D, Zumkehr B, Schmid RA Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Res 2006; 66: 5867-5874.
    
    54. Kim H, Kim EH, Eom YW, Kim WH, Kwon TK, Lee SJ et al. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res 2006;66: 1740-1750.
    
    55. Nimmanapalli R, Perkins CL, Orlando M, O'Bryan E, Nguyen D, Bhalla KN Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 2001; 61: 759-763.
    56. Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T et al. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 1997; 7:831-836.
    
    57. Muhlenbeck F, Haas E, Schwenzer R, Schubert G, Grell M, Smith C et al. TRAIL/Apo2L activates c-Jun NH2-terminal kinase (JNK) via caspase-dependent and caspase-independent pathways. J Biol Chem 1998; 273: 33091-33098.
    
    58. Chou AH, Tsai HF, Lin LL, Hsieh SL, Hsu PI, Hsu PN Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J Immunol 2001; 167: 1347-1352.
    
    59. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001; 7: 383-385.
    
    60. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 2000; 6: 564-567.
    
    61. Griffith TS, Rauch CT, Smolak PJ, Waugh JY, Boiani N, Lynch DH et al. Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 1999; 162: 2597-2605.
    
    62. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001; 7: 954-960.
    
    63. Guo Y, Chen C, Zheng Y, Zhang J, Tao X, Liu S et al. A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 2005; 280: 41940-41952.
    
    64. Hoffmann O, Priller J, Prozorovski T, Schulze-Topphoff U, Baeva N, Lunemann JD et al. TRAIL limits excessive host immune responses in bacterial meningitis. J Clin Invest 2007; 117: 2004-2013.
    
    65. Moser B, Loetscher P Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2: 123-128.
    
    66. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995; 270:27348-27357.
    
    67. Keane MP, Arenberg DA, Lynch JP, 3rd, Whyte RI, Iannettoni MD, Burdick MD et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol 1997; 159: 1437-1443.
    
    68. Kohler RE, Caon AC, Willenborg DO, Clark-Lewis I, McColl SR A role for macrophage inflammatory protein-3 alpha/CC chemokine ligand 20 in immune priming during T cell-mediated inflammation of the central nervous system. J Immunol 2003; 170: 6298-6306.
    
    69. Hulkower K, Brosnan CF, Aquino DA, Cammer W, Kulshrestha S, Guida MP et al. Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J Immunol 1993; 150:2525-2533.
    
    70. Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D et al. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 2006; 25: 7434-7439.
    
    71. Lin Y, Devin A, Cook A, Keane MM, Kelliher M, Lipkowitz S et al. The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase.Mol Cell Biol 2000; 20: 6638-6645.
    
    72. Lee TH, Huang Q, Oikemus S, Shank J, Ventura JJ, Cusson N et al. The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase. Mol Cell Biol 2003; 23: 8377-8385.
    
    73. Yeh WC, Shahinian A, Speiser D, Kraunus J, Billia F, Wakeham A et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice.Immunity 1997;7: 715-725.
    
    74. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8: 297-303.
    
    75. Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G et al. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. Embo J 1996; 15: 1914-1923.
    
    76. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W et al. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 1998;273: 3285-3290.
    
    77. Schwenger P, Alpert D, Skolnik EY, Vilcek J Activation of p38 mitogen-activated protein kinase by sodium salicylate leads to inhibition of tumor necrosis factor-induced IkappaB alpha phosphorylation and degradation.Mol Cell Biol 1998;18:78-84.
    1) Grell M,Zimmermann G,Hulser D,Pfizenmaier K,Scheurich P.TNF receptors TR60and TR80 can mediate apoptosis via induction of distinct signal pathways.J Immunol 1994,153(5):1963-72.
    2) Tartaglia LA,Ayres TM,Wong GH,Goeddel DV.A novel domain within the 55 kd TNF receptor signals cell death.Cell 1993,74(5):845-53.
    3) Micheau,O.and Tschopp,J.(2003).Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.Cell 2003,114(2):181-90.
    4) Kim PK,Dutra AS,Chandrasekharappa SC,Puck JM:Genomic structure and mapping of human FADD,an intracellular mediator of lymphocyte apoptosis.J Immunol 1996,157:5461-5466.
    5) Chinnaiyan AM,O'Rourke K,Tewari M,Dixit VM:FADD,a novel death domain-containing protein,interacts with the death domain of Fas and initiates apoptosis.Cell 1995,81:505-512.
    6) Muzio M,Chinnaiyan AM,Kischkel FC,O'Rourke K,Shevchenko A,Ni J,Scaffidi C,Bretz JD,Zhang M,Gentz R,Mann M,Krammer PH,Peter ME,Dixit VM.FLICE,a novel FADD-homologous ICE/CED-3-like protease,is recruited to the CD95(Fas/APO-1) death--inducing signaling complex.Cell 1996,85(6):817-27.
    7) Eberstadt M,Huang B,Chen Z,Meadows RP,Ng SC,Zheng L,Lenardo MJ,Fesik SW:NMR structure and mutagenesis of the FADD(Mort1) death-effector domain.Nature 1998,392:941-945.
    8) Hsu H,Xiong J,Goeddel DV.The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995, 81(4):495-504.
    
    9) Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994, 78(4):681-92.
    
    10) Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996, 87(3):565-76.
    
    11) Pimentel-Muinos FX, Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 1999,11 (6):783-93.
    
    12) Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995, 83(7):1243-52.
    
    13) Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995, 81(4):513-23.
    
    14) Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996,4(4):387-96.
    
    15) Medzhitov R, Preston Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997,388(6640):394-397.
    
    16) Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999, 283(5401):543-6.
    
    17) Shimazy R, Akashi S, Ogata H, et al. MD2, a molecule that confers lipopolysaccaride responsiveness on Toll like receptor 4. J Exp Med 1999,189:17777.
    
    18)Poltorak A , He X, Smiruova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in the Tlr gene. Science, 1998,282(5396):2085-2088.
    
    19) Wesche H, Henzel WJ, Shillinglaw W, et al. MyD88: an adaptor that recruits IRAK to the IL-1 receptor complex. Immunity 1997, 7(6):837-847.
    
    20) Burns K, Clatworthy J, Martin L, et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-I receptor. Nat Cell Biol 2000,2(4):346-351.
    
    21) Jeferies CA, Doyle S, BronnerC. et al. Brutongtyrosine kinaseis a Toll/interleukin-1 receptor domain-binding protein that participates in nuclearfactor kappaB activation by Toll-like receptor4. J Biol Chem 2003,278(28):26258-26264.
    
    22) Horug T, Barton GM, Flavell RA, et al. The adaptor molecule TIRAP provides signaling specificity for Toll-like receptors. Nature 2002,420(6913):329-333.
    
    23) YamamotoM , Sato S, Hemmi H , et al . Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway . Science 2003,301(5633):640—643.
    
    24) Oshiumi H, Sasai M , Shida K, et al. TICACM-2: a bridging adaptor recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 2003,278(50):49751-49762.
    
    25) Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005,19(6):727-40.
    
    26) Meylan E, Hofmann K, Blanehetean V, et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF- k B activation. Nat Immunol 2004, 5(5): 503-507.
    
    27) Balachandran S, Thomas E, Barber GN. A FADD-dependent innate immune mechanism in mammalian cells. Nature 2004,432(7015):401-5.