泛素连接酶CRRF与肿瘤发生发展之间关系的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侵袭性(Invasion)和转移性(metastasis)是恶性肿瘤的主要特征,也是目前肿瘤研究和治疗中的重点和难点。肿瘤的侵袭转移是一个多步骤,多阶段的复杂过程,与肿瘤细胞的运动性、血管发生能力、自身免疫逃逸以及黏附性等都有着密切的关系。目前肿瘤的诊断和治疗以肿瘤大小、淋巴结转移数目、其它器官和组织是否转移作为标准,临床上对于某些肿瘤相关分子的免疫组化检测已经成为常规的判断肿瘤恶性程度的指标,但同时临床上的免疫组化检测并没有相对公认的金指标,无法以单一分子作为判断标准,因此新的分子检测指标的引入将对于提高临床上肿瘤恶性程度判断的准确性提供新的更为可靠的线索。
     本实验室发现和正在研究的CRRF蛋白(Cancer Related RING finger)在功能上未有报道,我们对基因芯片进行初步分析发现CRRF在多种恶性肿瘤中的表达水平高于正常组织和外周血单核细胞。同时对六种侵袭能力不同的食管癌细胞进行CRRF的表达检测时,发现其在三种侵袭能力较强的KYSE180、KYSE450、E.C.9706中能够检测到,而于另三种侵袭能力较弱的KYSE2、KYSE410、KYSE450细胞中检测不到,提示着CRRF蛋白的存在与否与肿瘤细胞的侵袭水平相关。为了确定这一现象并在接近体内水平检测CRRF的表达与肿瘤恶性程度的关系,我们利用免疫组化对大样本量的胰腺癌组织和结肠癌组织的CRRF表达水平进行检测,发现CRRF主要在恶性程度较高的Ⅱ级和Ⅲ级肿瘤样本中表达比例较高,而在恶性程度较低高分化的Ⅰ级组织样本中阳性率比例较低。这一结果表明CRRF的表达状态与肿瘤恶性程度的演进有一定的联系。这一结果表明CRRF蛋白质可能在某些类型肿瘤恶化过程中起着调节的作用。
     CRRF编码基因全长为1146个碱基,共编码381个氨基酸。CRRF蛋白具有N端蛋白酶相关结构域(PA domain)和C端指环结构域(RING finger domain)。N端PA结构域在多种类型的蛋白酶以及植物囊泡分选受体中有发现,但目前功能未知。PA结构域还发现能够与指环结构域位于同一蛋白质中形成一类PA-RING蛋白家族,CRRF既是家族成员之一。CRRF蛋白结构中还具有N端的信号肽和位于中间位置的跨膜区,我们通过试验证明CRRF定位于细胞浆中并呈点状分布,同时CRRF溶于表面活性剂Triton X-114而不溶于水相,推测CRRF可能是一个TypeⅠ跨膜蛋白。另外,利用衣霉素(Tunicamycin)处理细胞及PNGase F处理蛋白样品,发现CRRF的分子量减少,提示CRRF是一个N-糖基化修饰蛋白,进一步确定第88位天冬酰胺是CRRF的糖基化修饰位点。通过体外及细胞水平的泛素化检测,我们证明了CRRF具有泛素连接酶活性,并且泛素结合酶UbcH5a和UbcH5c也参与CRRF发挥其功能。对指环结构域保守氨基酸进行突变则其泛素连接酶活性即减弱甚至丧失,说明指环结构域结构的保守性及重要性。此上对CRRF蛋白性质的鉴定表明CRRF是一个位于细胞内膜系统中具有泛素连接酶活性的糖蛋白。
     同时我们也发现在胰腺癌实体瘤和淋巴瘤Jurkat、Raji中,CRRF的表达与细胞对于As2O3引起的细胞凋亡的抵抗能力有关。在高表达CRRF的实体瘤和淋巴瘤细胞Raji中,细胞表现出对As2O3的敏感;而在不表达或少量表达CRRF的实体瘤和淋巴瘤细胞Jurkat中,细胞则表现出明显的抵抗,凋亡比例较少。根据已有报道,As2O3引起细胞中活性氧(Reactive Oxygen Species,ROS)的产生引起细胞分化和凋亡,因此以上现象提示着CRRF可能作用于细胞中的活性氧自由基清除酶系统而使得细胞对As2O3的敏感性存在差异。
     为在分子水平上阐明CRRF的作用机理,我们对其相互作用蛋白(包括底物)进行了筛选和鉴定。筛选得到SNARE相关蛋白Snapin能够与其相互作用,并通过GST pull down、免疫沉淀、共定位试验得以验证,并且证明CRRF蛋白的C末端介导了两者的相互作用。在体外系统中,Snapin能够被CRRF泛素化。有趣的是,Snapin的表达水平在细胞转染不同剂量CRRF时的检测发现Snapin在高剂量CRRF转染的细胞中表达量反而增加,二者呈正相关,并非是经典的促进Snapin的降解。此结果提示虽然Snapin作为CRRF的泛素化底物,但CRRF可能在其它方面调节Snapin的功能,并不是介导其降解。
Invasion and metastasis of neoplasm cause lethal malignancy and poor therapy.The tumor metastasis is a multiple step and complex process that involved in such as tumor cells motility,angiogenesis,survival from the circulation.Immunohistochemisty has been widely used in the clinical diagnosis.Detection of some of cancer-related molecular markers indicates the malignance of tumor,raising evidence for clinical treatment. However,new molecular cancer-related markers should be explored and applied in order to accurately justify the malignance of patients.
     CRRF is a novel gene and its expression level is higher in malignant cancers than that of normal tissues according to analysis of genes expression by microarray.At the same time,CRRF protein could be detected in three higher invasive esophageal cancer cells KYSE180,KYSE450 and E.C.9706,but in another three esophageal cancer cells KYSE2,KYSE410 and KYSE510 the expression of CRRF could not be detected.It suggested that CRRF is relative to invasive ability of cancer cells.In order to identify the relationship of CRRF expression and the malignance in cancer patients,CRRF expression was detected in pancreatic cancer and colon cancer tissue arrays.The CRRF expression was significantly positively related with moderate and poor differentiated cancer tissues and not to well differentiated cancer tissues,that indicated that CRRF expression is involved in cancer malignance.
     The coding region of CRRF gene contains 1146 bases,it encodes 381 amino acids. According to domains analysis,two main domains,N-terminal protease-associated domain(PA domain) and C-terminal RING finger domain were predicted.CRRF protein also contains signal peptide and transmembrane domain.CRRF showed punctuated localization in cytosol and dissolved in Triton X-114,suggested a possible TypeⅠtransmembrane protein.In addition,molecular weight of CRRF decreased after cells treated with Tunicamycin and protein samples treated with PNGase F.Using N-glycosylated putative point mutations,Asn88 was identified as the N-glycosylated site of CRRF.In vitro and in vivo ubiquitination assay suggested that CRRF demonstrates E3 ligase activity and UbcH5a and UbcH5c mediates this activity.Mutations in RING finger domain of CRRF abolished the E3 ligase activity,suggested the conservation and importance of RING finger domain for the function of CRRF.
     CRRF expression is also found to be related with solid tumor and lymphoma cancer cells sensitivity to As2O3.Pancreatic cancer cells and Raji cells,which express higher CRRF,showed sensitive to As2O3.However,pancreatic caner cells and Jurkat cells, which are hard to detect CRRF expression,showed insensitive to As2O3.
     Snapin was screened and identified as CRRF interacting protein.Proximal C terminal of CRRF mediated the interaction between CRRF and Snapin.Using in vitro ubiquitination assay CRRF ubiquitinates Snapin.Finally,Snapin and CRRF were co-transfected into COS-7 cells to detect the expression relationship between these two proteins,higher Snapin protein level is detected in higher CRRF protein expressed cells. This data suggested CRRF mediating Snapin ubiquitination maybe is involved in Snapin other function and not for proteasome degradation.
引文
1. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P,Gitelman I, Richardson A, Weinberg RA: Twist, a master regulator of morphogenesis,plays an essential role in tumor metastasis. Cell 2004, 117:927-939
    
    2. Yagi T, Takeichi M: Cadherin superfamily genes: functions, genomic organization,and neurologic diversity. Genes Dev 2000, 14:1169-1180
    
    3. Hogan B L: Morphogenesis. Cell 1999,96:225-233
    
    4. Aberle H, et al: Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 1994, 107:3655-3663
    
    5. Vasioukhin V, Bauer C, Yin M, et al: Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 2000,100:209-219
    
    6. Giancotti F G & Rouslahti E: Integrin signaling. Science 1999,285:1028-1032
    
    7. Reynolds A B, et al: Identification of a new catenin:the tyrosine kinase substrate pl20cas associates with E-cadherin complexes. Mol Cell Biol 1994, 14:8333-8342
    
    8. Efstathiou J A& Pignatelli M:Modulation of epithelial cell adhesion in gastrointestinal homostasis. American Journal of Pathology 1998,153(2):341-347
    
    9. Vasioukhin V, Bauer C, Degenstein L, et al: Hyperproliferation and defects in epithelial polarity upon conditional ablation of a-catenin in skin. Cell 2001,104:605-17
    
    10. Conacci-Sorrel M, Zhurinsky J, Ben Ze'ev A: The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 2002, 109:987-91
    
    11. Van Aken E, De Wever O, Correia da Rocha AS, et al: Defective E-cadherin/catenin complexes in human cancer. Virchows Arch 2001, 439:725-51
    
    12. Buda A, Pignatelli M: Cytoskeletal network in colon cancer: from genes to clinical application. Int J Biochem cell Biol 2004,36:759-765
    
    13. Frixen U H, Behrens J, Sachs M, et al: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991, 113: 173-85
    14. Perl A K, Wilgenbus P, Dahl U, et al: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998,392:190-193
    
    15. Stockinger A, Egar A, Wolf J, et al: E-cadherin regulates cell growth by modulating proliferation-dependent P-catenin transcription activity. J Cell Biol 2001,154:1185-1196
    
    16. Jamora C and Fuchs E: Intercellular adhesion, signaling and the cytoskeleton. Nat Cell Biol 2002,4:101-108
    
    17. Vasioukhin V, Bauer C, Degenstein L, et al: Hyperproliferation and defects in epithelial polarity upon conditional ablation of a-catenin in skin. Cell 2001,104:605-617
    
    18. Kallakury B V, et al: Decreased expression of catenins (a and P), p120CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 2001, 92:2786-2795
    
    19. Torimura T, Ueno T, Kin M, et al: Autocrine motility factor enhances hepatoma cell invasion across the basement membrane through activation of α1 integrins.Hapatology 2001, 34:62-71
    
    20. Bjorge J D, Jakymiw A, Fujita D J: Selected glimpses into the activation and function of Src kinase. Oncogene 2000,19: 5620-5635
    
    21. Frame M C: Src in cancer: Deregulation and consequences for cell behavior. Biochem Biophys Acta 2002, 1602:114-130
    
    22. Avizienyte E, Wyke A W, Jones R J, et al: Src-induced deregulation of E-cadherin in colon cancer cells requires integrin signaling. Nat Cell Biol 2002,4:632-638
    
    23. Bretscher A, Edwards K, Fehon R G: ERM proteins and merlin: integrators at the cell cortex. Nat Rew Mol Cell Biol 2002, 3:586-599
    
    24. Tsukita S and Yonemura S: Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 1999,274:34507-34510
    
    25. Takenouchi H, Kiyokawa N, Taguchi T, et al: Shiga toxin binding to globotriaosyl ceramide induces intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells. J Cell Sci 2004,117:3911-3922
    
    26. Geiger K D, Stoldt P, Schlote W, et al: Ezrin immunoreactivity is associated with increasing malignancy of astrocytic tumors but is absent in oligodendrogliomas. Am J Pathol 2000, 157:1785-1793
    
    27. McNiven M, Baldassarre M, Buccione R: The role of dynamin in the assembly and function of podosomes and invadopodia. Front Biosci 2004,9: 1944-1953
    
    28. Kureishy N, Sapountzi V, Prag S, et al: Fascins, and their roles in cell structure and function. Bioessays 2002,24:350-361
    
    29. Strsdal T E, Rottner K, Disanza A, et al: Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol 2004, 14:303-311
    
    30. Millard T H, Sharp S J and Machesky L M: Signaling to actin assembly via the WASP(Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex.Biochem J 2004, 380:1-17
    
    31. Mizutani K, Miki H, He H, et al: Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res 2002, 62:669-674
    
    32. Kaverina I, Stradal T E and Gimona M: Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J Cell Sci 2003, 116: 4915-4924
    
    33. Yamaguchi H, Lorenz M, Kempiak S, et al: Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005, 168:441-452
    
    34. Ghosh M, Song X, Mouneimne G, et al: Cofilin promotes actin polymerization and defines the direction of cell motility. Science 2004, 304: 743-746
    
    35. Anagawa R, Furukawa Y, Tsunoda T, et al: Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasia 2001, 3:395-401
    
    36. Wang W, Goswami S, Lapidus K, et al: Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors.Cancer Res 2004, 64: 7022-7029
    
    37. Buccione R, Orth J D and McNiven M A: Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 2004, 5:647-657
    
    38. McNiven M A, Baldassarre M and Buccione R: The role of dynamin in the assembly and function of podosomes and invadopodia. Front Biosci 2004, 9:1944-1953
    
    39. NaKahara H, Otani T, Sasaki T, et al: Involvement of cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells 2003,8:1019-1027
    
    40. Keely P J, Westwick J K, Whitehead I P, et al: Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 1997,390:632-636
    
    41.Nakahara H, Howard L, Thompson E W, et al: Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA 1997,94:7959-7964
    
    42. Donovan S , Shannon K M, Bollag G: GTPase activating proteins: critical regulators of intracellular signaling. Biochim Biophys Acta 2002, 1602:23-45
    
    43. Sahai E, Marshall C J: Rho-GTPases and cancer. Nat Rev Cancer 2002,2:133-142
    
    44. Amano M , Fukata Y , Kaibuchi K: Regulation and functions of Rho-associated kinase. Exp Cell Res. 2000, 261:44-51
    
    45. Clark E A , Golub T R., Lander E S ,et al: Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000, 406:532-535
    
    46. Ridley A J Rho GTPases and cell migration. J. Cell Sci. 2001, 114:2713-2722
    
    47. Bar-Sagi D, Hall A. Ras and Rho GTPase: A family reunion. Cell 2000, 103:227-238
    
    48. Walsh A B, Bar-Sagi D. Differential activation of the Rac pathway by Ha-Ras and K-Ras. J Biol Chem 2001, 276:15609-15615
    
    49. Qin L X and Tang Z Y: Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: a review of the literature. J Cancer Res Clin Oncol 2004, 130:497-513
    50. Laack E, Kohler A, Kugler C, et al: Pretreatment serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in non-small-cell lung cancer. Ann Oncol 2002, 13:1550-1557
    
    51. Mitsiades N, Yu W H, Poulaki V, et al: Matris metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 2001,61:577-581
    
    52. Noe V, Fingleton B, Jacobs K, et al: Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1.J Cell Sci 2001,114:111-118
    
    53. Nicolson G L, Nawa A, Toh Y, et al: Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin Exp Metastasis 2003, 20:19-24
    
    54. Lee J H, Welch D R: Suppression of metastasis in human breast carcinoma MDA-MB-431 cells after transfection with the metastasis suppress or gene Kiss1.Cancer Res 1997,57:2384-2387
    
    55. Yan C, Wang H, Boyd D D, et al: Kissl represses 92 kDa typeIV collagenase expression by down-regulating NF-kappaB binding to the promoter as a consequence of I kappaBalpha-induced block of p65/p50 nuclear translocation. J Biol Chem 2001,276: 1164-1172
    
    56. Muir A I, Chamberlain L, Elshourbagy N A, et al: AXOR12, a novel human G protein-coupled receptor, activated by the peptide Kiss-1. J Biol Chem 2001,276:28969-28975
    
    57. Ohtaki T, Shintani Y, Honda S, et al: Metastasis suppressor gene Kiss-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001, 411:613-617
    
    58. Hori A, Honda S, Asada M, et al: Metastin suppress the motility and growth of CHO cells transfected with its receptor. Biochem Biophys Res Commun 2001,286:958-963 59. Kotani M, Detheux M, Vandenbogaerde A, et al: The metastasis suppressor gene Kiss-1 encodes kiss peptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001,276:34631-34636
    60. Masui T, Dio R, Mori T, et al: Metastin and its variant forms suppress migration of pancreatic cancer cell. Biochem Biophysi Res Commu 2004, 315:85-92
    
    61. Koshiba T, Hosotani R, Wada M, et al: Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma. Cancer 1998, 82:642-650
    
    62. Brazil D P and Hemmings B A: Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem Sci 2001,26:657-664
    
    63. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001,70:503-33
    
    64. Aaron Ciechanover. The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO Journal 1998, 17:7151-7160
    
    65. 48. Fuchs SY, Lee CG, Pan ZQ, Ronai Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell. 2002 Aug 23;110(4):531
    
    66. 39. Keith D, Wilkinson Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome 2000, 11:141-148
    
    67. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD.The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases.Trends Cell Biol. 2000 Oct;10(10):429-39
    
    68. Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000 Sep 1;102(5):549-52
    
    69. Borden KL. RING domains: master builders of molecular scaffolds? J Mol Biol.2000 Feb 4;295(5):1103-12.
    
    70. Pintard L, Willems A, Peter M. Cullin-based ubiquitin ligases: CuI3-BTB complexes join the family. EMBO J. 2004 Apr 21;23(8):1681-7
    
    71. Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol. 1999;15:435-67.
    
    72. Peters JM. SCF and APC: the Yin and Yang of cell cycle regulated proteolysis. Curr Opin Cell Biol. 1998 Dec;10(6):759-68
    73. Page AM, Hieter P.The anaphase-promoting complex: new subunits and regulators.Annu Rev Biochem. 1999;68:583-609.
    
    74. Melchior F, Hengst L. SUMO-1 and p53. Cell Cycle. 2002 Jul-Aug;1(4):245-9
    
    75. Semple CA; RIKEN GER Group; GSL Members. The comparative proteomics of ubiquitination in mouse. Genome Res. 2003 Jun;13(6B): 1389-94
    
    76. Jiang WG, Raz A, Douglas-Jones A, Mansel RE. Expression of autocrine motility factor (AMF) and its receptor, AMFR, in human breast cancer. J Histochem Cytochem. 2006 Feb;54(2):231-41
    
    77. Otto T, Birchmeier W, Schmidt U, Hinke A, Schipper J, Rubben H, Raz A. Inverse relation of E-cadherin and autocrine motility factor receptor expression as a prognostic factor in patients with bladder carcinomas.Cancer Res. 1994 Jun 15;54(12):3120-3
    
    78. Burger AM, Gao Y, Amemiya Y, Kahn HJ, Kitching R, Yang Y, Sun P, Narod SA,Hanna WM, Seth AK.A novel RING-type ubiquitin ligase breast cancer-associated gene 2 correlates with outcome in invasive breast cancer. Cancer Res. 2005 Nov 15;65(22):10401-12
    
    79. Tranque P, Crossin KL, Cirelli C, Edelman GM, Mauro VP. Identification and characterization of a RING zinc finger gene (C-RZF) expressed in chicken embryo cells. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3105-9
    
    80. Yang W, Zhang Y, Ma G, Zhao X, Chen Y, Zhu D. Identification of gene expression modifications in myostatin-stimulated myoblasts. Biochem Biophys Res Commun.2005 Jan 21;326(3):660-6
    
    81. Mahon P, Bateman A. The PA domain: a protease-associated domain. Protein Sci.2000 Oct;9(10):1930-4
    
    82. Ilardi JM, Mochida S, Sheng ZH. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci. 1999 Feb;2(2):119-24
    
    83. Chheda MG, Ashery U, Thakur P, Rettig J, Sheng ZH. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol. 2001 Apr;3(4):331-8
    
    84. Evans GJ, Morgan A. Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity. Biochem Soc Trans. 2003 Aug;31(Pt 4):824-7
    
    85. Thakur P, Stevens DR, Sheng ZH, Rettig J. Effects of PKA-mediated phosphorylation of Snapin on synaptic transmission in cultured hippocampal neurons. J Neurosci.2004 Jul 21;24(29):6476-81
    
    86. Buxton P, Zhang XM, Walsh B, Sriratana A, Schenberg I, Manickam E, Rowe T.Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Biochem J. 2003 Oct 15;375(Pt 2):433-40
    
    87. Tian JH, Wu ZX, Unzicker M, Lu L, Cai Q, Li C, Schirra C, Matti U, Stevens D,Deng C, Rettig J, Sheng ZH. The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells. J Neurosci. 2005 Nov 9;25(45):10546-55
    
    88. Ruder C, Reimer T, Delgado-Martinez I, Hermosilla R, Engelsberg A, Nehring R, Dorken B, Rehm A. EBAG9 adds a new layer of control on large dense-core vesicle exocytosis via interaction with Snapin. Mol Biol Cell. 2005 Mar; 16(3): 1245-57
    
    89. Nazarian R, Starcevic M, Spencer MJ, Dell'Angelica EC. Reinvestigation of the dysbindin subunit of BLOC-1 (biogenesis of lysosome-related organelles complex-1) as a dystrobrevin-binding protein. Biochem J. 2006 May 1;395(3):587-98
    
    90. Anandasabapathy N, Ford GS, Bloom D, Holness C, Paragas V, Seroogy C, Skrenta H, Hollenhorst M, Fathman CG, Soares L. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity.2003 Apr;18(4):535-47
    
    91. Guais A, Siegrist S, Solhonne B, Jouault H, Guellaen G, Bulle F. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes. Gene. 2006 Jun 7;374:112-20
    92. Yamada HY, Gorbsky GJ. Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene. 2006 Mar 2;25(9):1330-9
    
    93. Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol. 2004 Sep;5(9):883-90
    
    94. Dimitris P. Xirodimas, Mark K. Saville, Jean-Christophe Bourdon, Ronald T. Hay,and David P. Lane. Mdm2-Mediated NEDD8 Conjugation of p53 Inhibits Its Transcriptional Activity. Cell 2004 118: 83-97
    
    95. Wu X, Yen L, Irwin L, Sweeney C, Carraway KL 3rd. Stabilization of the E3 ubiquitin ligase Nrdpl by the deubiquitinating enzyme USP8. Mol Cell Biol. 2004 Sep;24(17):7748-57
    
    96. Boutell C, Canning M, Orr A, Everett RD. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol. 2005 Oct;79(19):12342-54
    
    97. Zhou L, Jing Y, Styblo M, Chen Z, Waxman S. Glutathione-S-transferase pi inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood. 2005 Feb 1;105(3): 1198-203
    
    98. Talbot K, Cho DS, Ong WY, Benson MA, Han LY, Kazi HA, Kamins J, Hahn CG,Blake DJ, Arnold SE. Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Hum Mol Genet. 2006 Oct 15;15(20):3041-54
    
    99. Chou JL, Huang CL, Lai HL, Hung AC, Chien CL, Kao YY, Chern Y. Regulation of type VI adenylyl cyclase by Snapin, a SNAP25-binding protein. J Biol Chem. 2004 Oct 29;279(44):46271-9
    
    100. Yuan X, Shan Y, Zhao Z, Chen J, Cong Y. Interaction between Snapin and G-CSF receptor. Cytokine. 2006 Feb 21;33(4):219-25
    
    101. Chen M, Lucas KG, Akum BF, Balasingam G, Stawicki TM, Provost JM, Riefler GM, Jornsten RJ, Firestein BL. A novel role for snapin in dendrite patterning:interaction with cypin. Mol Biol Cell. 2005 Nov;16(11):5103-14
    
    102. Su L, Lineberry N, Huh Y, Soares L, Fathman CG. A novel E3 ubiquitin ligase substrate screen identifies Rho guanine dissociation inhibitor as a substrate of gene related to anergy in lymphocytes. J Immunol. 2006 Dec 1;177(11):7559-66
    103. Fukui K, Yang Q, Cao Y, Takahashi N, Hatakeyama H, Wang H, Wada J, Zhang Y, Marselli L, Nammo T, Yoneda K, Onishi M, Higashiyama S, Matsuzawa Y,Gonzalez FJ, Weir GC, Kasai H, Shimomura I, Miyagawa J, Wollheim CB, Yamagata K. The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation. Cell Metab. 2005 Dec;2(6):373-84
    1 Koepp DM,Harper JW,Elledge SJ.How the cyclin became a cyclin:Regulated proteolysis in the cell cycle.Cell,1999,97(4):431-434
    2 Ghosh S,May MJ,Kopp EB.NF-kappa B and Rel proteins:Evolutionarily conserved mediators of immune responses.Annu Rev Immunol,1998,16:225-260
    3 Schwartz LM,Myer A,Kosz L,et al.Activation of polyubiquitin gene expression during developmentally programmed cell death.Neuron,1990,5(4):411-419
    4 Rock KL,Goldberg AL:Degradation of cell proteins and the generation of MHC class I-presented peptides.Annu Rev Immunol,1999,17:739-779
    5 Deshaies RJ.SCF and Cullin/Ring H2-based ubiquitin ligases.Annu Rev Cell Dev Biol,1999,15:435-467
    6 Kurland JF,Tansey WP.Crashing waves of destruction:the cell cycle and APC(Cdh1)regulation of SCF(Skp2).Cancer Cell,2004,5(4):305-316
    7 Guardavaccaro D,Pagano M.Oncogenic aberrations of cullin-dependent ubiquitin ligases.Oncogene,2004,23(11):2037-2049
    8 Slotky M,Shapira M,Ben-Izhak,et al.The expression of the ubiquitin ligase subunit Cks1 in human breast cancer.Breast Cancer Res.2005,7(5):R737-744
    9 Shibahara T,Onishi T,Franco OE,et al.Down-regulation of Skp2 is related with p27-associated cell cycle arrest induced by phenylacetate in human prostate cancer cells.Anticancer Res.2005,25(3B):1881-1888
    10 Strohmaier H,Spruck CH,Kaiser P,et al.Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line.Nature,2001,413(6853):316-322
    11 Spruck CH,Strohmaier H,Sangfelt O,et al.hCDC4 gene mutations in endometrial cancer.Cancer Res,2002,62(16):4535-4539
    12 Wang Q,Moyret-Lalle C,Couzon F,et al.Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene, 2003, 22(10): 1486-1490
    
    13 Park KH, Choi SE, Eom M, et al. Downregulation of the anaphase- promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships. Breast Cancer Res. 2005, 7(2): R238-247
    
    14 Hsu JY, Reimann JD, Sorensen CS, et al. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdhl). Nat Cell Biol, 2002, 4(5): 358-366
    
    15 Maki CG, Huibregtse JM and Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res, 1996, 56(11): 2649-2654
    
    16 Mirnezami AH, Campbell SJ, Darley M, et al. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol, 2003,13(14): 1234-1239
    
    17 Haupt Y, Maya R, Kazaz A and Oren M. Mdm2 promotes the rapid degradation of p53. Nature, 1997 , 387(6630): 296-299
    
    18 Higashitsuji H, Liu Y, Mayer RJ, et al. The oncoprotein gankyrin negatively regulates p53 and RB by enhancing proteasomal degadation. Cell Cycle. 2005, 4(10):1335-1337
    
    19 Hashizume R, Fukuda M, Maeda I, et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem, 2001,276(18): 14537-14540
    
    20 Scully R, Chen J, OchsRL, et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell, 1997, 90(3): 425-435
    
    21 Moynahan ME, Chiu JW, Koller BH, et al. Brca1 controls homology-directed DNA repair. Mol Cell, 1999, 4(4): 511-518
    
    22 Trujillo KM, Yuan SS, Lee EY, et al. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem, 1998,273(34): 21447-21450
    
    23 Ruffner H, Joazeiro CA, Hemmati D, et al. Cancer-predisposing mutations within the RING domain of BRCA1: Loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci USA, 2001, 98(9): 5134-5139
    
    24 McCarthy EE, Celebi JT, Baer R, et al. Loss of Bard1, the heterodimeric partner of the Brcal tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol, 2003, 23(14): 5056-5063
    
    25 Thai TH, Du F, Tsan JT, et al. Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet, 1998,7(2): 195-202
    
    26 Schwartz LM, Myer A, Kosz L, et al. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron, 1990, 5(4): 411-419
    
    27 Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for inhibition of caspase-3 by XIAP. Cell, 2001,104(5): 781-790
    
    28 Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature, 2002, 416(6878): 345-347
    
    29 Dimmeler S, Breitschopf K, Haendeler J, et al. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med, 1999,189(11): 1815-1822
    
    30 Yaron A, Hatzubai A, Davis M, et al. Identification of the receptor component of the IκBa-ubiquitin ligase. Nature, 1998, 396(6711): 590-594
    
    31 Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res, 1999, 59(11): 2615-2622
    
    32 Teicher BA, Ara G, Herbst R, et al. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res, 1999, 5(9): 2638-2645
    
    33 Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res, 2001, 61(7): 3071-3076
    
    34 Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med, 2003,348(26): 2609-2617