ATXN1在髓母细胞瘤和ALDH1在食管癌干性维持与侵袭中的作用及其分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,肿瘤干细胞(cancer stem cells,CSCs;也称肿瘤起始细胞:tumor initiatingcells,TICs)理论认为肿瘤是一个异质性的细胞群体,在这个细胞群体中存在一小部分具有自我更新、多向分化能力的细胞,并且这些细胞具有较强的侵袭、成瘤和耐受放化疗的能力。肿瘤干细胞理论的兴起为我们深入认识肿瘤的发生发展机制并探寻新的治疗靶点开辟了新的途径。本研究主要包括以下两部分内容:
     第一部分ATXN1对髓母细胞瘤干性与侵袭特性的调控作用及其分子机制
     髓母细胞瘤(medulloblastoma)是儿童最常见的恶性脑肿瘤,临床预后差。我们使用成球培养法从髓母细胞瘤中分离/富集了髓母细胞瘤干细胞,并发现其具有高侵袭性及高成瘤能力的特性。通过本课题组在肺癌和胃癌中对成球细胞与普通贴壁细胞的基因表达谱芯片分析,我们筛选出ATXN1这个差异性表达的基因并发现其在髓母细胞瘤成球细胞中高表达。通过免疫组化染色发现髓母细胞瘤中ATXN1的表达与其临床预后密切相关,因此进一步研究了ATXN1在调控髓母细胞瘤自我更新及侵袭中的作用及可能的分子机制。本部分实验主要方法、研究结果及结论如下:
     1、髓母细胞瘤原代细胞的培养及细胞系的建立。
     为了更好的了解髓母细胞瘤细胞的生物学特性并满足实验研究的需要,我们收集了5例髓母细胞瘤原代标本进行细胞培养;并且成功建立了一株发生于成人的髓母细胞瘤细胞系。对建系后的细胞采用光镜、电镜、免疫组化、流式细胞术、染色体分析和移植瘤等实验对细胞株生物学特性进行了研究。
     2、使用成球培养法成功分离/富集髓母细胞瘤干细胞,并进行了生物学特性鉴定。
     (1)用无血清的干细胞培养基对髓母细胞瘤细胞Daoy、ons76和D283培养,三个细胞均能成球生长;(2)实时定量PCR检测发现细胞球细胞(sphere cells, SC)较单层培养细胞(monolayer cell,MN)高表达干性相关基因Bmi1、Nanog、Nestin、Oct4和Sox2及基质金属蛋白酶MMP2、MMP7、MMP9和MMP13;(3)免疫荧光检测表明Daoy-SC高表达Nestin、Sox2和CD133,低表达GFAP、MBP和βⅢ-tubulin;(4)Daoy-SC细胞于含血清的培养基中培养时则高表达GFAP、MBP和βⅢ-tubulin,不表达Nestin、Sox2和CD133;(5)Transwell实验表明Daoy-SC比Daoy-MN具有更强的侵袭能力;(6)裸鼠皮下移植瘤实验表明同数量级的Daoy-SC比Daoy-MN细胞具有更强的肿瘤形成能力。上述结果从干性和侵袭相关基因的表达、多向分化能力、侵袭和成瘤能力等几个方面证实了成球生长的细胞具有TICs的特性。
     3、通过基因芯片筛选出在胃癌和肺癌成球细胞中均高表达分子ATXN1,发现ATXN1在调控髓母细胞瘤的迁移、侵袭,自我更新及成瘤能力中均具有重要作用。
     (1)实时定量PCR检测发现ATXN1在髓母细胞瘤干细胞中高表达;(2)利用慢病毒干扰Daoy和ons76细胞ATXN1的表达后,可以显著抑制髓母细胞瘤细胞的迁移、侵袭、克隆形成和成瘤能力;(3)过表达ATXN1则增强髓母细胞瘤细胞D283的侵袭和成瘤能力。
     4、ATXN1在髓母细胞瘤手术切除标本中的表达情况及其意义。
     对262例髓母细胞瘤临床标本进行免疫组化染色,结果显示ATXN1的表达与髓母细胞瘤的病理组织学分型和分子亚型相关。对124例有随访的髓母细胞瘤所做的生存曲线结果显示ATXN1的表达与患者的生存时间成负相关(P=0.0023),表明ATXN1可以用作判断髓母细胞瘤预后的指标。
     5、探讨ATXN1在调控髓母细胞瘤侵袭和自我更新能力方面的可能分子机制。
     (1)利用慢病毒干扰Daoy细胞ATXN1的表达后,可以显著抑制髓母细胞瘤干性相关基因Nanog和侵袭相关基因MMP2的表达,同时Hedgehog信号通路的下游关键分子Gli1的表达也明显下调;(2)过表达D283细胞的ATXN1表达后,同样可以增强其干性相关基因Nanog和侵袭相关基因MMP2的表达,并且Gli1的表达也增强;(3)用Hedgehog信号通路的激动剂shh配体及抑制剂环耙明(KAAD-cyclopamin)作用同样可以上调及下调ATXN1的表达,说明ATXN1的表达受Hedgehog信号通路影响;(4)利用siRNA干扰Gli1的表达后可降低Nanog和MMP2的表达,而ATXN1的表达却没不受影响,因而我们推测ATXN1做为Gli1的上游发挥作用,进而影响Nanog和MMP2的表达。
     第二部分ALDH1在食管癌干性维持与侵袭中的作用及其分子机制研究
     食管鳞状细胞癌(ESCC,Esophageal squamous cell carcinoma)是常见的消化道恶性肿瘤。由于ESCC具有高侵袭及转移的特性因而其预后不佳。而CSC假说则认为肿瘤内的TICs与其它细胞相比具有更强的侵袭和转移能力是造成手术不易彻底切除和术后复发的根源。ESCC中TICs的标志物尚不清楚,而乙醛脱氢酶1(ALDH1,Aldehydedehydrogenase1)是一个与多种肿瘤的TICs功能相关的蛋白质。我们推测ALDH1也可作为人ESCC中TICs的标志物,因而检测了ALDH1在ESCC中的表达及其意义。本部分实验主要方法、研究结果及结论如下:
     1、ESCC中ALDH1~(high)的细胞表现出TIC的特征。ALDH1~(high)细胞高表达干性相关基因Sox2和Bmi1,并且ALDH1~(high)比ALDH1low的细胞具有更强的成球能力、平板克隆形成能力和成瘤能力。
     2、ALDH1~(high)的细胞具有更强的侵袭和转移能力。体外基质胶侵袭实验及裸鼠尾静脉注射肺转移模型都证实ALDH1~(high)的细胞比ALDH1low的细胞具有更强的侵袭及转移能力。并且ALDH1~(high)的细胞高表达MMP2、 MMP7、MMP9和vimentin,低表达E-cadherin。表明ALDH1~(high)细胞具有EMT表型相关的高侵袭和转移特性。
     3、ALDH1的表达与食管的不典型增生和恶性程度相关。ALDH1的表达与病理组织学分级(P=0.004)、浸润深度(P=0.000)、淋巴结转移(P=0.002)和UICC分期(P=0.000)相关。
     4、ALDH1的表达与患者的生存期呈显著的负相关,可作为临床预后判断的指标。
Recently, the cancer stem cell (CSC) hypothesis suggests that tumors are organized intoa hierarchy in which only a rare clonal population of cells, termed CSCs or tumor initiatingcells (TICs), have the ability to initiate, proliferate, and maintain tumor growth. Emerging ofCSCs hypothesis provides us a new way insight into the mechanism underlining tumorinitiation and progression. This article included two parts as follows:
     PartⅠ: The role and correlated molecular mechanisms of ATXN1in stemness andinvasion of medulloblastoma.
     Medulloblastoma is the most common malignant brain tumor in children. Despite recentimprovements in cure rates, survivors suffer from serious therapy-related side-effects. Manysurviving children have long-term cognitive and/or neuroendocrine adverse effects. Todemonstrate the existence of medulloblastoma TICs (MTICs) and explore their malignantbehavior, we established a method of sphere forming culture to gain the tumor spheres frommedulloblastoma cell lines. Tumor sphere cells possessed multi-potent differentiation ability,highly invasion and tumorigenicity, indicating that tumor spheres enriched MTICs.
     Ataxin1(ATXN1) is a polyglutamine protein of unknown function, whose mutant formcauses spinocerebellar ataxia type1(SCA1). ATXN1over-expressed in both lung cancer andgastric cancer stem cells, was also found over-expressed in MTICs. Then, the roles andcorrelated molecular mechanisms of ATXN1in stemness and invasion of medulloblastomawere explored. Main methods, results and conclusions of this part as follows:
     1. The primary culture and establishment of medulloblastoma cell line from Chineseadult patients. For better comprehend the biologic traits of medulloblastoma and satisfy theneeds of experimental research, five cases of medulloblastoma specimen were collected andproceed cell culture. Fortunately, one primary medulloblastoma cell line was successfully established. Light microscopy, electro microscopy, immunohistochemistry, flow cytometry,karyotype analysis and tumor implantation experiments were carried out to characterize thebiological behaviors.
     2. Tumor spheres formed from medulloblastoma possess stem cell properties.(1)medulloblastoma cell lines of Daoy, ons76and D283could grow as tumor sphere in serumfree conditioned medium.(2) Compared with monolayer cells (MN), sphere cells (SC) highlyexpressed stemness-related genes Bmi1, Nanog, Nestin, Oct4and Sox2. Invasion-relatedgenes MMP2, MMP7, MMP9and MMP13were all over-expressed in SC compared to MN.(3) Immunofluorescence staining results indicated that Daoy-SC with increased-expression ofstemness-related protein Nestin, Sox2and CD133, decreased expression of differentiatedmarker GFAP, MBP and βⅢ-tubulin.(4) Cultured Daoy-SC in medium supplemented with10%FBS, the cells could be induced to express GFAP, MBP and βⅢ-tubulin positive cells.(5)Transwell matrigel invasion assay was performed to assess the invasion capacity, we foundthat indicating Daoy-SC possess higher invasion capacity compare to Daoy-MN.(6)Xenograft assay showed that Daoy-SC were highly tumorigenic. Those data suggested thatsphere cells possess stem cell properties.
     3. Our results demonstrated that ATXN1plays an important role in immigration, invasion,self-renewal and tumorigenesis in medulloblastoma.(1) ATXN1was found highly expressedin MTICs by real time PCR and Western blot.(2) Silenced ATXN1expression inmedulloblastoma cells by shRNA, the abilities of sphere formation, invasion andtumorigenesis were impaired.(3) Over-expressing ATXN1, the abilities of invasion andtumorigenesis of D283cells were increased.
     4. ATXN1expression has important clinical significance in patients withmedulloblastoma. Immunohistochemistry (IHC) was used to detect the expression of ATXN1in262specimens of medulloblastoma, the result showed that the expression of ATXN1wascorrelated with histological subtypes and molecular subgroups. Patients with lower ATXN1expression had longer overall survival time than higher ones (P=0.0023), indicating thatATXN1is an indicator of poor prognosis in medulloblastoma.
     5. The possible molecular mechanisms of ATXN1in invasion and self-renewal abilitiesof medulloblastoma cells were explored.(1) Silenced ATXN1expression in Daoy cells byshRNA, the expression of stemness-related gene Nanog and invasion-related gene MMP2 were down-regulated, meanwhile, Gli1, the key molecular of Hh signal pathway, wasdown-regulated significantly.(2) Overexpressed ATXN1in D283cells, Nanog, MMP2andGli1were all up-regulated significantly.(3) The Shh ligand and KAAD-cyclopamine couldstimulate or inhibit the expression of Gli1and ATXN1in Daoy cells. These results imply thepresence of a positive loop between ATXN1and Gli1.(4) Silencing Gli1expression bysiRNA resulted in decreased expression of Nanog and Gli1, but expression of ATXN1was notinfluenced, so we supposed ATXN1might be an upstream factor of Gli1to exert effect.
     PartⅡ: ALDH1plays important roles in esophageal squamous cell carcinoma(ESCC) stemness maintenance, invasion and metastasis.
     ESCC is one of the most frequent fatal malignancies. The five year survival rate ofESCCs after surgery and chemotherapy remains low due to highly invasive and metastaticnature of ESCC. Recent studies suggest that TICs are responsible for invasion andmetastasis of many tumor types. Therefore the biomarkers related to invasion and metastasisof TICs need to be identified in ESCC.
     Aldehyde dehydrogenase1(ALDH1) is a TIC-associated protein in various malignanttumors and its level correlates with the patient outcome. We hypothesize that ALDH1mayalso be used to detect and enrich TICs and the level of ALDH1~(high)cells in tumor may predictthe prognosis of human ESCC. Main methods, results and conclusions of this part as follows:
     1. ALDH1~(high)ESCC cells exhibited TICs properties. We examined the proportion ofALDH1~(high)cells contained in ESCC cell line EC109, and found that the sorted ALDH1~(high)cells possessed higher capabilities of tumor sphere formation as well as colonies formationas compared to ALDH1lowones. The ALDH1~(high)cells also showed increased expression ofthe stemness genes Sox2and Bmi1and higher tumorgenecity compred to ALDH1lowcells.
     2. ALDH1~(high)cells possessed highly invasive and metastatic capabilities with EMTphenotype. Matrigel invasion assay indicated that ALDH1~(high)cells had a greaterinvasiveness as compared to ALDH1lowones. Moreover, the ALDH1~(high)cells formed lungmetastasis in five of six (5/6) mice, whereas no metastasis was found by the ALDH1lowones.Gene expression analysis further showed that the ALDH1~(high)cells expressed higher levelsof matrix metalloproteinase (MMP)-2,-7,-9and vimentin, and lower level of E-cadherin,indicating their highly invasive and metastatic capabilities related to EMT phenotype.
     3. ALDH1expression was correlated with esophageal dysplasia and ESCC malignancy. ALDH1was not detected in normal esophageal epithelia, but detectable in the dysplasticbasal cells to some extents. Furthermore, the cytoplasmic ALDH1was elevated in theexpression levels along with the increasing grades of dysplasia and the formation ofcarcinoma in situ. The expression of ALDH1was positively correlated with histologicalgrade (P=0.004), invasion depth (P=0.000), lymph node metastasis (P=0.002) andUICC stage (P=0.000) of ESCCs.
     4. ALDH1is associated with ESCC outcome and can be used as a biomarker forpatient prognosis.
引文
1T. Reya, S.J. Morrison, M.F. Clarke, et al. cancer, and cancer stem cells [J]. Nature414(2001)105-111.
    2M.F. Clarke, J.E. Dick, P.B. Dirks, et al. Cancer stem cells--perspectives on current status and future directions: AACRWorkshop on cancer stem cells [J]. Cancer research66(2006)9339-9344.
    3C.A. O'Brien, A. Kreso, C.H. Jamieson, Cancer stem cells and self-renewal [J]. Clinical cancer research16(2010)3113-3120.
    4E. Sugihara, H. Saya, Complexity of cancer stem cells [J]. International journal of cancer.132(2013)1249-1259.
    5A.A. Brandes, M.K. Paris, Review of the prognostic factors in medulloblastoma of children and adults [J]. Critical
    6reviews in oncology/hematology50(2004)121-128.P. Frange, C. Alapetite, G. Gaboriaud, et al. From childhood to adulthood: long-term outcome of medulloblastomapatients. The Institut Curie experience (1980-2000)[J]. Journal of neuro-oncology95(2009)271-279.
    1X. Yuan, J. Curtin, Y. Xiong, et al. Isolation of cancer stem cells from adult glioblastoma multiforme [J]. Oncogene23(2004)9392-9400.
    2A. Inagaki, A. Soeda, N. Oka, et al. Long-term maintenance of brain tumor stem cell properties under at non-adherentand adherent culture conditions [J]. Biochemical and biophysical research communications361(2007)586-592.
    3C. Jodice, P. Malaspina, F. Persichetti, et al. Effect of trinucleotide repeat length and parental sex on phenotypic variationin spinocerebellar ataxia I [J]. American journal of human genetics54(1994)959-965
    4A. Matilla-Duenas, R. Goold, P. Giunti. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellarataxia type1[J]. Cerebellum7(2008)106-114.
    1A. Rossi, V. Caracciolo, G. Russo, et al. Medulloblastoma: from molecular pathology to therapy [J]. Clinical cancerresearch14(2008)971-976.
    2A. Ray, M. Ho, J. Ma, et al. A clinicobiological model predicting survival in medulloblastoma [J]. Clinical cancerresearch10(2004)7613-7620
    3R.J. Packer, G. Vezina, Management of and prognosis with medulloblastoma: therapy at a crossroads [J]. Arch Neurol65(2008)1419-1424.
    1P.F. Jacobsen, D.J. Jenkyn, J.M. Papadimitriou, Establishment of a human medulloblastoma cell line and itsheterotransplantation into nude mice [J]. Journal of neuropathology and experimental neurology44(1985)472-485.
    2H.S. Friedman, P.C. Burger, S.H. Bigner, et al. Establishment and characterization of the human medulloblastoma cellline and transplantable xenograft D283Med [J]. J Neuropath Exp Neur44(1985)592-605.
    3H.S. Friedman, P.C. Burger, S.H. Bigner, et al. Phenotypic and genotypic analysis of a human medulloblastoma cell lineand transplantable xenograft (D341Med) demonstrating amplification of c-myc [J]. The American journal of pathology130(1988)472-484.
    4F. Giangaspero, A. Pession, D. Trere, et al. Establishment of a human medulloblastoma cell line (BO-101) demonstratingskeletal muscle differentiation [J]. Tumori77(1991)196-205.
    5T. Mikami, K. Kurisu, K. Kawamoto, et al. Establishment and characterization of human medulloblastoma xenograft line[J]. Hiroshima J Med Sci40(1991)41-45.
    6M. Yamada, K. Shimizu, K. Tamura, et al. Establishment and biological characterization of human medulloblastoma celllines [J]. No To Shinkei41(1989)695-702.
    7A. Korshunov, M. Remke, W. Werft, et al. Adult and pediatric medulloblastomas are genetically distinct and requiredifferent algorithms for molecular risk stratification [J]. Journal of clinical oncology,28(2010)3054-3060.
    1P. Dalerba, R.W. Cho, M.F. Clarke, Cancer stem cells: models and concepts [J]. Annu Rev Med58(2007)267-284.
    2J.E. Visvader, G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions [J].
    3Nat Rev Cancer8(2008)755-768.L. Cheng, S. Bao, J.N. Rich, Potential therapeutic implications of cancer stem cells in glioblastoma [J]. BiochemPharmacol80(2010)654-665.
    1S.K. Singh, C. Hawkins, I.D. Clarke, et al. Identification of human brain tumour initiating cells [J]. Nature432(2004)396-401.
    2T.A. Read, M.P. Fogarty, S.L. Markant, et al. Identification of CD15as a marker for tumor-propagating cells in a mousemodel of medulloblastoma [J]. Cancer cell15(2009)135-147.
    3M.F. Clarke, J.E. Dick, P.B. Dirks, et al. Cancer stem cells--perspectives on current status and future directions: AACRWorkshop on cancer stem cells [J]. Cancer research66(2006)9339-9344.
    4B.A. Reynolds, S. Weiss, Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonicCNS precursor is a stem cell [J]. Developmental biology175(1996)1-13.
    1R. Roy, J. Yang, M.A. Moses, Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in humancancer [J]. J Clin Oncol27(2009)5287-5297.
    1B. Ortensi, M. Setti, D. Osti, G. Pelicci, Cancer stem cell contribution to glioblastoma invasiveness [J]. Stem cell research&therapy4(2013)18.
    2J.T. Chang, S.A. Mani, Sheep, wolf, or werewolf: Cancer stem cells and the epithelial-to-mesenchymal transition [J].Cancer letters (2013).
    3N. Facompre, H. Nakagawa, M. Herlyn, D. Basu, Stem-like cells and therapy resistance in squamous cell carcinomas [J].
    4Adv Pharmacol65(2012)235-265.A. Matilla-Duenas, R. Goold, P. Giunti, Clinical, genetic, molecular, and pathophysiological insights into spinocerebellarataxia type1[J]. Cerebellum7(2008)106-114.
    1D.W. Ellison, J. Dalton, M. Kocak, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, andnon-SHH/WNT molecular subgroups [J]. Acta neuropathologica121(2011)381-396.
    1A.M. Duenas, R. Goold, P. Giunti, Molecular pathogenesis of spinocerebellar ataxias [J]. Brain,129(2006)1357-1370.
    2C. Jodice, P. Malaspina, F. Persichetti, et al. Effect of trinucleotide repeat length and parental sex on phenotypic variationin spinocerebellar ataxia I [J]. Am J Hum Genet,54(1994)959-965.
    1Y. Lee, J.D. Fryer, H. Kang, et al. ATXN1protein family and CIC regulate extracellular matrix remodeling and lungalveolarization [J]. Developmental cell,21(2011)746-757.
    1X. Wang, C. Venugopal, B. Manoranjan, et al. Sonic hedgehog regulates Bmi1in human medulloblastoma braintumor-initiating cells [J]. Oncogene31(2012)187-199.
    1M. Zbinden, A. Duquet, A. Lorente-Trigos, et al. NANOG regulates glioma stem cells and is essential in vivo acting in a
    2cross-functional network with GLI1and p53[J]. The EMBO journal29(2010)2659-2674.D. Cui, X. Chen, J. Yin, et al. Aberrant activation of Hedgehog/Gli1pathway on angiogenesis in gliomas [J]. NeurologyIndia60(2012)589-596.
    1R. Goold, M. Hubank, A. Hunt, et al. Down-regulation of the dopamine receptor D2in mice lacking ataxin1[J]. Humanmolecular genetics16(2007)2122-2134.
    2X. Tong, H. Gui, F. Jin, et al. Ataxin-1and Brother of ataxin-1are components of the Notch signalling pathway [J].
    3EMBO reports12(2011)428-435.S. Lee, S. Hong, S. Kim, et al. Ataxin-1occupies the promoter region of E-cadherin in vivo and activatesCtBP2-repressed promoter [J]. Biochimica et biophysica acta1813(2011)713-722.
    1N. Levicar, R.K. Nuttall, T.T. Lah, et al. Proteases in brain tumour progression [J]. Acta neurochirurgica145(2003)825-838.
    2P.A. Northcott, D.J.H. Shih, J. Peacock, et al. Subgroup-specific structural variation across1,000medulloblastomagenomes [J]. Nature488(2012)49-56.
    3M.D. Taylor, P.A. Northcott, A. Korshunov, et al. Molecular subgroups of medulloblastoma: the current consensus [J].Acta neuropathologica123(2012)465-472.
    4L.V. Goodrich, L. Milenkovic, K.M. Higgins, et al. Altered neural cell fates and medulloblastoma in mouse patchedmutants [J]. Science277(1997)1109-1113.
    5B.A. Hatton, E.H. Villavicencio, K.D. Tsuchiya,et al. The Smo/Smo model: hedgehog-induced medulloblastoma with90%incidence and leptomeningeal spread [J]. Cancer research68(2008)1768-1776.
    1M. Zbinden, A. Duquet, A. Lorente-Trigos, et al. NANOG regulates glioma stem cells and is essential in vivo acting in a
    2cross-functional network with GLI1and p53[J]. The EMBO journal29(2010)2659-2674.D. Cui, X. Chen, J. Yin, et al. Aberrant activation of Hedgehog/Gli1pathway on angiogenesis in gliomas [J]. NeurologyIndia60(2012)589-596.
    1L. Yang, D.M. Parkin, L. Li, Y. Chen, Time trends in cancer mortality in China:1987-1999[J]. International journal of
    2cancer106(2003)771-783.C. Ginestier, M.H. Hur, E. Charafe-Jauffret, et al. ALDH1is a marker of normal and malignant human mammary stemcells and a predictor of poor clinical outcome [J]. Cell stem cell1(2007)555-567.
    1L.M. Rota, D.A. Lazzarino, A.N. Ziegler, et al. Wood, Determining mammosphere-forming potential: application of thelimiting dilution analysis [J]. Journal of mammary gland biology and neoplasia17(2012)119-123.
    1T. Oskarsson, S. Acharyya, X.H.F. Zhang, et al. Breast cancer cells produce tenascin C as a metastatic niche componentto colonize the lungs [J]. Nature medicine17(2011)867-874.
    1R.W. Storms, A.P. Trujillo, J.B. Springer, et al. Isolation of primitive human hematopoietic progenitors on the basis ofaldehyde dehydrogenase activity [J]. Proceedings of the National Academy of Sciences of the United States of America96(1999)9118-9123.
    2D. Huang, Q. Gao, L. Guo, et al. Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines[J]. Stem cells and development18(2009)465-473.
    3F.B. Rassouli, M.M. Matin, A.R. Bahrami, et al. Evaluating stem and cancerous biomarkers in CD15CD44KYSE30cells.Tumour biology (2013).
    4K.H. Tang, Y.D. Dai, M. Tong, et al. A CD90(+) tumor-initiating cell population with an aggressive signature andmetastatic capacity in esophageal cancer [J]. Cancer research73(2013)2322-2332.
    5R. Zhao, L. Quaroni, A.G. Casson, Identification and characterization of stemlike cells in human esophagealadenocarcinoma and normal epithelial cell lines [J]. The Journal of thoracic and cardiovascular surgery144(2012)1192-1199.
    6G. Zhang, L. Ma, Y.K. Xie, et al. Esophageal cancer tumorspheres involve cancer stem-like populations with elevatedaldehyde dehydrogenase enzymatic activity [J]. Molecular medicine reports6(2012)519-524.
    7X. Zhang, R. Komaki, L. Wang, et al. Treatment of radioresistant stem-like esophageal cancer cells by an apoptoticgene-armed, telomerase-specific oncolytic adenovirus [J]. Clinical cancer research14(2008)2813-2823.
    1Y. Wang, H. Zhe, P. Gao, et al. Cancer stem cell marker ALDH1expression is associated with lymph node metastasis andpoor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China [J]. DisEsophagus25(2012)560-565.
    2C. Ginestier, M.H. Hur, E. Charafe-Jauffret, et al.ALDH1is a marker of normal and malignant human mammary stemcells and a predictor of poor clinical outcome [J]. Cell stem cell1(2007)555-567.
    3B. Chang, G. Liu, F. Xue, et al. ALDH1expression correlates with favorable prognosis in ovarian cancers [J]. Mod Pathol22(2009)817-823.
    4T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells [J]. Nature414(2001)105-111.
    1A.A. Brandes, M.K. Paris, Review of the prognostic factors in medulloblastoma of children and adults [J]. Criticalreviews in oncology/hematology50(2004)121-128.
    2A. Rossi, V. Caracciolo, G. Russo, K. Reiss, A. Giordano, Medulloblastoma: from molecular pathology to therapy [J].Clinical cancer research14(2008)971-976.
    3A. Ray, M. Ho, J. Ma, et al. A clinicobiological model predicting survival in medulloblastoma [J]. Clinical cancerresearch10(2004)7613-7620.
    4R.J. Packer, G. Vezina, Management of and prognosis with medulloblastoma: therapy at a crossroads [J]. Arch Neurol65(2008)1419-1424.
    5J.H. Wright, Neurocytoma or neuroblastoma, a kind of tumor not generally recognized [J]. The Journal of experimentalmedicine12(1910)556-561.
    6H.C. P. Bailey, Medulloblastoma Cerebelli. A Common Type of Midcerebellar Glioma of Childhood [J]. Arch NeurolPsychiatry2(1925)192-224.
    1A. Ray, M. Ho, J. Ma, R.K. Parkes, et al. A clinicobiological model predicting survival in medulloblastoma. Clinicalcancer research10(2004)7613-7620.
    2P. Frange, C. Alapetite, G. Gaboriaud, D. Bours, et al. Doz, From childhood to adulthood: long-term outcome ofmedulloblastoma patients. The Institut Curie experience (1980-2000). Journal of neuro-oncology95(2009)271-279.
    3R.J. Packer, Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinalradiation therapy. Current neurology and neuroscience reports7(2007)129,132.
    4V. R, Pathol Anat Physiol Klin Med. Editorial. Virchows arch.1855(1885)23.
    5C. J.,(Ueber entzuendung und eiterung). Path Anat Physiol Klin Med (1867)1-79.
    6T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature414(2001)105-111.
    7C.A. O'Brien, A. Kreso, C.H. Jamieson, Cancer stem cells and self-renewal. Clinical cancer research16(2010)3113-3120.
    8J. Dahlstrand, V.P. Collins, U. Lendahl, Expression of the class VI intermediate filament nestin in human central nervoussystem tumors. Cancer research52(1992)5334-5341.
    1D.N. Louis, H. Ohgaki, O.D. Wiestler, et al.The2007WHO classification of tumours of the central nervous system. Actaneuropathologica114(2007)97-109.
    2C.G. Eberhart, J.L. Kepner, P.T. Goldthwaite, et al. Histopathologic grading of medulloblastomas: a Pediatric OncologyGroup study. Cancer94(2002)552-560.
    3C.S. McManamy, J. Pears, C.L. Weston, et al. Clinical Brain Tumour, Nodule formation and desmoplasia inmedulloblastomas-defining the nodular/desmoplastic variant and its biological behavior. Brain pathology17(2007)151-164.
    4M.D. Taylor, P.A. Northcott, A. Korshunov, et al.Molecular subgroups of medulloblastoma: the current consensus. Actaneuropathologica123(2012)465-472.
    5D.W. Ellison, Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Actaneuropathologica120(2010)305-316.
    6B. Manoranjan, X. Wang, R.M. Hallett, et al. FoxG1Interacts with Bmi1to Regulate Self-Renewal and Tumorigenicityof Medulloblastoma Stem Cells. Stem Cells31(2013)1266-1277.
    7K.R. Thomas, M.R. Capecchi, Targeted disruption of the murine int-1proto-oncogene resulting in severe abnormalitiesin midbrain and cerebellar development. Nature346(1990)847-850.
    8Y. Pei, S.N. Brun, S.L. Markant, et al. WNT signaling increases proliferation and impairs differentiation of stem cells inthe developing cerebellum. Development (Cambridge, England)139(2012)1724-1733.
    9S.R. Hamilton, B. Liu, R.E. Parsons, et al. The molecular basis of Turcot's syndrome. The New England journal ofmedicine332(1995)839-847.
    10P.A. Northcott, A. Korshunov, H. Witt, et al. Medulloblastoma comprises four distinct molecular variants. Journal ofclinical oncology29(2011)1408-1414.
    1D.W. Ellison, O.E. Onilude, J.C. Lindsey, et al. United Kingdom Children's Cancer Study Group Brain Tumour,beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's CancerStudy Group Brain Tumour Committee. Journal of clinical oncology23(2005)7951-7957.
    2S. Fattet, C. Haberler, P. Legoix, et al. Janoueix-Lerosey, O. Delattre, Beta-catenin status in paediatric medulloblastomas:correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. The
    3Journal of pathology218(2009)86-94.P. Gibson, Y. Tong, G. Robinson, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature468(2010)1095-1099.
    4V.Y. Wang, H.Y. Zoghbi, Genetic regulation of cerebellar development. Nature reviews. Neuroscience2(2001)484-491.
    5M.R. Gailani, S.J. Bale, D.J. Leffell, et al.Developmental defects in Gorlin syndrome related to a putative tumorsuppressor gene on chromosome9. Cell69(1992)111-117.
    6H. Hahn, C. Wicking, P.G. Zaphiropoulous, et al. Mutations of the human homolog of Drosophila patched in the nevoidbasal cell carcinoma syndrome. Cell85(1996)841-851.
    7T.G. Oliver, T.A. Read, J.D. Kessler, et al. Loss of patched and disruption of granule cell development in a pre-neoplasticstage of medulloblastoma. Development132(2005)2425-2439.
    8C. Raffel, R.B. Jenkins, L. Frederick, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer research57(1997)842-845.
    9L.V. Goodrich, L. Milenkovic, K.M. Higgins, M.P. Scott, Altered neural cell fates and medulloblastoma in mousepatched mutants. Science277(1997)1109-1113.
    10U. Schuller, V.M. Heine, J. Mao, et al. Acquisition of granule neuron precursor identity is a critical determinant ofprogenitor cell competence to form Shh-induced medulloblastoma. Cancer cell14(2008)123-134.
    11Z.-J. Yang, T. Ellis, S.L. Markant, et al. Wechsler-Reya, Medulloblastoma can be initiated by deletion of Patched inlineage-restricted progenitors or stem cells. Cancer cell14(2008)135-145.
    1M. Kool, A. Korshunov, M. Remke, et al.Molecular subgroups of medulloblastoma: an international meta-analysis oftranscriptome, genetic aberrations, and clinical data of WNT, SHH, Group3, and Group4medulloblastomas. Actaneuropathologica123(2012)473-484.
    2Y. Pei, C.E. Moore, J. Wang, et al. An animal model of MYC-driven medulloblastoma. Cancer cell212012)155-167.
    3D. Kawauchi, G. Robinson, T. Uziel, et al. Gilbertson, M.F. Roussel, A mouse model of the most aggressive subgroup of
    4human medulloblastoma. Cancer cell21(2012)168-180.M.D. Taylor, P.A. Northcott, A. Korshunov, et al. Molecular subgroups of medulloblastoma: the current consensus. Actaneuropathologica123(2012)465-472.
    5M. Kool, J. Koster, J. Bunt, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct geneticprofiles, pathway signatures and clinicopathological features. PloS one3(2008) e3088.
    6X. Wang, C. Venugopal, B. Manoranjan, et al. Sonic hedgehog regulates Bmi1in human medulloblastoma braintumor-initiating cells. Oncogene31(2012)187-199.
    7M.H. Yang, D.S. Hsu, H.W. Wang, et al. Bmi1is essential in Twist1-induced epithelial-mesenchymal transition. Nature
    8cell biology12(2010)982-992.R. Sutter, O. Shakhova, H. Bhagat, et al. Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse modeland a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene29(2010)1845-1856.
    1D. Hambardzumyan, O.J. Becher, M.K. Rosenblum, et al.PI3K pathway regulates survival of cancer stem cells residingin the perivascular niche following radiation in medulloblastoma in vivo. Genes&development22(2008)436-448.
    2X. Fan, W. Matsui, L. Khaki, et al.Notch pathway inhibition depletes stem-like cells and blocks engraftment inembryonal brain tumors. Cancer research66(2006)7445-7452.
    3L. Garzia, I. Andolfo, E. Cusanelli, et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation ofHES1in medulloblastoma. PloS one4(2009) e4998.
    4B. Keith, M.C. Simon, Hypoxia-inducible factors, stem cells, and cancer. Cell129(2007)465-472.
    5F. Pistollato, E. Rampazzo, L. Persano, et al. Interaction of hypoxia-inducible factor-1alpha and Notch signalingregulates medulloblastoma precursor proliferation and fate. Stem Cells28(2010)1918-1929.
    1S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman, M.D. Cusimano, P.B. Dirks,Identification of human brain tumour initiating cells. Nature432(2004)396-401.
    2A. Soeda, A. Inagaki, N. Oka, et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human braintumor stem cells. The Journal of biological chemistry283(2008)10958-10966.
    3R. Galli, E. Binda, U. Orfanelli,et al. Isolation and characterization of tumorigenic, stem-like neural precursors fromhuman glioblastoma. Cancer research64(2004)7011-7021.
    4H.S. Gunther, N.O. Schmidt, H.S. Phillips, et al.Glioblastoma-derived stem cell-enriched cultures form distinctsubgroups according to molecular and phenotypic criteria. Oncogene27(2008)2897-2909.
    5T. Kondo, T. Setoguchi, T. Taga, Persistence of a small subpopulation of cancer stem-like cells in the C6glioma cell line.Proceedings of the National Academy of Sciences of the United States of America101(2004)781-786.
    6A.T. Ogden, A.E. Waziri, R.A. Lochhead,et al. Identification of A2B5+CD133-tumor-initiating cells in adult humangliomas. Neurosurgery62(2008)505-514; discussion514-505.
    7M. Rasper, A. Schafer, G. Piontek, et al.Aldehyde dehydrogenase1positive glioblastoma cells show brain tumor stemcell capacity. Neuro-Oncology12(2010)1024-1033.
    8V. Clement, D. Marino, C. Cudalbu, et al. Marker-independent identification of glioma-initiating cells. Nat Methods7(2010)224-228.
    9M.J. Son, K. Woolard, D.-H. Nam, et al. SSEA-1is an enrichment marker for tumor-initiating cells in humanglioblastoma. Cell stem cell4(2009)440-452.
    10T.-A. Read, M.P. Fogarty, S.L. Markant, et al. Identification of CD15as a marker for tumor-propagating cells in amouse model of medulloblastoma. Cancer cell15(2009)135-147.
    11A. Flora, T.J. Klisch, G. Schuster, et al. Deletion of Atoh1disrupts Sonic Hedgehog signaling in thedeveloping cerebellum and prevents medulloblastoma. Science326(2009)1424-1427.
    1D.M. Berman, S.S. Karhadkar, A.R. Hallahan, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade.Science297(2002)1559-1561.
    2G. Canettieri, L. Di Marcotullio, A. Greco, S. Coni, et al. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitinligase interplay regulates Hedgehog signalling through Gli acetylation. Nature cell biology12(2010)132-142.
    3E. De Smaele, L. Di Marcotullio, M. Moretti, et al. Identification and characterization of KCASH2and KCASH3,2novel Cullin3adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia13(2011)374-385.
    4X. Wang, C. Venugopal, B. Manoranjan, et al. Sonic hedgehog regulates Bmi1in human medulloblastoma braintumor-initiating cells. Oncogene31(2012)187-199.
    1H.T. Orr, M.Y. Chung, S. Banfi, et al. Expansion of an unstable trinucleoti-de CAG repeat in spinocerebellar ataxia type1. Nature genetics4(1993)221-226.
    2T. Matilla, V. Volpini, D. Genis, et al. Presymptomatic analysis of spinocerebellar ataxia type1(SCA1) via theexpansion of the SCA1CAG-repeat in a large pedigree displaying anticipation and parental male bias. Human moleculargenetics2(1993)2123-2128.
    3A. Servadio, B. Koshy, D. Armstrong, et al. Expression analysis of the ataxin-1protein in tissues from normal andspinocerebellar ataxia type1individuals. Nature genetics10(1995)94-98.
    4S. Banfi, A. Servadio, M. Chung, et al.ng and developmental expression analysis of the murine homolog of thespinocerebellar ataxia type1gene (Sca1). Human molecular genetics5(1996)33-40.
    1A.R. Mushegian, D.E. Bassett, Jr., M.S. Boguski, et al. Positionally cloned human disease genes: patterns ofevolutionary conservation and functional motifs. PNAS94(1997)5831-5836.
    2A. Mizutani, L. Wang, H. Rajan, et al. an AXH domain protein, suppresses the cytotoxicity of mutantataxin-1. The EMBO journal24(2005)3339-3351
    3Y.W. Chen, M.D. Allen, D.B. Veprintsev, et al. The structure of the AXH domain of spinocerebellar ataxin-1.The Journal of biological chemistry279(2004)3758-3765.
    4C. de Chiara, R.P. Menon, S. Adinolfi, et al. The AXH domain adopts alternative folds the solution structureof HBP1AXH. Structure13(2005)743-753.
    5S. Yue, H.G. Serra, H.Y. Zoghbi, H.T. Orr, The spinocerebellar ataxia type1protein, ataxin-1, hasRNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet10(2001)25-30.
    6I.A. Klement, P.J. Skinner, M.D. Kaytor, et al.Ataxin-1nuclear localization and aggregation: role inpolyglutamine-induced disease in SCA1transgenic mice. Cell95(1998)41-53.
    1E.S. Emamian, M.D. Kaytor, L.A. Duvick, et al. Serine776of ataxin-1is critical for polyglutamine-induced disease inSCA1transgenic mice. Neuron38(2003)375-387.
    2B.E. Riley, H.Y. Zoghbi, H.T. Orr, SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on afunctional nuclear localization signal. The Journal of biological chemistry280(2005)21942-21948.
    3I. Al-Ramahi, Y.C. Lam, H.-K. Chen, et al. CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1and
    4promotes their ubiquitination and degradation. The Journal of biological chemistry281(2006)26714-26724.H.-K. Chen, P. Fernandez-Funez, S.F. Acevedo, et al. Interaction of Akt-phosphorylated ataxin-1with14-3-3mediatesneurodegeneration in spinocerebellar ataxia type1. Cell113(2003)457-468.
    5K.M. Carlson, L. Melcher, S. Lai, H.Y. Zoghbi, et al. Characterization of the zebrafish atxn1/axh gene family. Journal ofneurogenetics23(2009)313-323.
    6S. Lai, B. O'Callaghan, H.Y. Zoghbi, et al.14-3-3Binding to ataxin-1(ATXN1) regulates its dephosphorylation atSer-776and transport to the nucleus. The Journal of biological chemistry286(2011)34606-34616.
    7S. Banfi, A. Servadio, M. Chung, et al.ng and developmental expression analysis of the murine homolog of the
    8spinocerebellar ataxia type1gene (Sca1). Human molecular genetics5(1996)33-40.L. Duvick, J. Barnes, B. Ebner, et al. SCA1-like disease in mice expressing wild-type ataxin-1with a serine to asparticacid replacement at residue776. Neuron67(2010)929-935.
    1R.K. Graham, Y. Deng, E.J. Slow, et al.age at the caspase-6site is required for neuronal dysfunction and degenerationdue to mutant huntingtin. Cell125(2006)1179-1191.
    2X. Gu, E.R. Greiner, R. Mishra, et al. Serines13and16are critical determinants of full-length human mutant huntingtininduced disease pathogenesis in HD mice. Neuron64(2009)828-840.
    3H. Tsuda, H. Jafar-Nejad, A.J. Patel, et al. The AXH domain of Ataxin-1mediates neurodegeneration through itsinteraction with Gfi-1/Senseless proteins. Cell122(2005)633-644.
    4S. Yue, H.G. Serra, H.Y. Zoghbi, H.T. Orr, The spinocerebellar ataxia type1protein, ataxin-1, has RNA-binding activity
    5that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet10(2001)25-30.S. Irwin, M. Vandelft, D. Pinchev, et al. RNA association and nucleocytoplasmic shuttling by ataxin-1. Journal of cellscience118(2005)233-242.
    6R. Goold, M. Hubank, A. Hunt, et al. Down-regulation of the dopamine receptor D2in mice lacking ataxin1. Humanmolecular genetics16(2007)2122-2134.
    7E.M. Sampson, Z.K. Haque, M.C. Ku, et al. Negative regulation of the Wnt-beta-catenin pathway by the transcriptionalrepressor HBP1. The EMBO journal20(2001)4500-4511.
    8L. Ciani, P.C. Salinas, WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nature reviews
    9Neuroscience6(2005)351-362.J.C. Glover, J.-S. Renaud, F.M. Rijli, Retinoic acid and hindbrain patterning. Journal of neurobiology66(2006)705-725.
    10K.A. Neve, J.K. Seamans, H. Trantham-Davidson, Dopamine receptor signaling. Journal of receptor and signaltransduction research24(2004)165-205.
    11S.C. Fowler, T.J. Zarcone, E. Vorontsova, et al. Motor and associative deficits in D2dopamine receptorknockout mice. International journal of developmental neuroscience: the official journal of the InternationalSociety for Developmental Neuroscience20(2002)309-321.
    2E.N. Burright, J.D. Davidson, L.A. Duvick, B. Koshy, H.Y. Zoghbi, H.T. Orr, Identification of a self-association regionwithin the SCA1gene product, ataxin-1. Human molecular genetics6(1997)513-518.
    3J.D. Davidson, B. Riley, E.N. Burright, L.A. Duvick, H.Y. Zoghbi, H.T. Orr, Identification and characterization of anataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Human molecular genetics9(2000)2305-2312
    4J. Lim, T. Hao, C. Shaw, A.J. Patel, G. Szabo, J.-F. Rual, C.J. Fisk, N. Li, A. Smolyar, D.E. Hill, A.-L. Barabasi, M.Vidal, H.Y. Zoghbi, A protein-protein interaction network for human inherited ataxias and disorders of Purkinje celldegeneration. Cell125(2006)801-814.
    5A. Matilla, B.T. Koshy, C.J. Cummings, T. Isobe, H.T. Orr, H.Y. Zoghbi, The cerebellar leucine-rich acidic nuclearprotein interacts with ataxin-1. Nature389(1997)974-978.
    6A. Mizutani, L. Wang, H. Rajan, P.J.S. Vig, W.A. Alaynick, J.P. Thaler, C.-C. Tsai, Boat, an AXH domain protein,suppresses the cytotoxicity of mutant ataxin-1. The EMBO journal24(2005)3339-3351.
    7S. Hong, S. Ka, S. Kim, Y. Park, S. Kang, p80coilin, a coiled body-specific protein, interacts with ataxin-1, the SCA1gene product. Biochimica et biophysica acta1638(2003)35-42.
    8C.-C. Tsai, H.-Y. Kao, A. Mitzutani, E. Banayo, H. Rajan, M. McKeown, R.M. Evans, Ataxin1, a SCA1neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormonereceptors. Proceedings of the National Academy of Sciences of the United States of America101(2004)4047-4052.
    1J. Lim, T. Hao, C. Shaw, A.J. Patel, G. Szabo, J.-F. Rual, C.J. Fisk, N. Li, A. Smolyar, D.E. Hill, A.-L. Barabasi, M.Vidal, H.Y. Zoghbi, A protein-protein interaction network for human inherited ataxias and disorders of Purkinje celldegeneration. Cell125(2006)801-814.
    2S. Hong, S.-J. Kim, S. Ka, I. Choi, S. Kang, USP7, a ubiquitin-specific protease, interacts with ataxin-1, the SCA1geneproduct. Molecular and cellular neurosciences20(2002)298-306.
    3H.-K. Chen, P. Fernandez-Funez, S.F. Acevedo, Y.C. Lam, M.D. Kaytor, M.H. Fernandez, A. Aitken, E.M.C. Skoulakis,H.T. Orr, J. Botas, H.Y. Zoghbi, Interaction of Akt-phosphorylated ataxin-1with14-3-3mediates neurodegeneration inspinocerebellar ataxia type1. Cell113(2003)457-468.
    4S.C. Fowler, T.J. Zarcone, E. Vorontsova, et al. Motor and associative deficits in D2dopamine receptor knockout mice.International journal of developmental neuroscience: the official journal of the International Society for DevelopmentalNeuroscience20(2002)309-321.
    5X. Tong, H. Gui, F. Jin, et al. Ataxin-1and Brother of ataxin-1are components of the Notch signalling pathway. EMBOreports12(2011)428-435.
    6S. Lee, S. Hong, S. Kim, et al. Ataxin-1occupies the promoter region of E-cadherin in vivo and activates
    7CtBP2-repressed promoter. Biochimica et biophysica acta1813(2011)713-722.Y. Lee, J.D. Fryer, H. Kang, et al. ATXN1protein family and CIC regulate extracellular matrix remodeling and lungalveolarization. Developmental cell21(2011)746-757.
    1C. Bettegowda, N. Agrawal, Y. Jiao, et al. Mutations in CIC and FUBP1contribute to human oligodendroglioma.Science333(2011)1453-1455.
    2A.M. Duenas, R. Goold, P. Giunti, Molecular pathogenesis of spinocerebellar ataxias. Brain: a journal of neurology129(2006)1357-1370.
    3T. Matilla, V. Volpini, D. Genis, et al. Presymptomatic analysis of spinocerebellar ataxia type1(SCA1) via theexpansion of the SCA1CAG-repeat in a large pedigree displaying anticipation and parental male bias. Human moleculargenetics2(1993)2123-2128.
    4C. Jodice, P. Malaspina, F. Persichetti, A. Novelletto, M. Spadaro, P. Giunti, C. Morocutti, L. Terrenato, A.E. Harding,M. Frontali, Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I.American journal of human genetics54(1994)959-965.
    5L.P. Ranum, M.Y. Chung, S. Banfi, A. Bryer, L.J. Schut, R. Ramesar, L.A. Duvick, A. McCall, S.H. Subramony, L.Goldfarb, et al., Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the ageat onset. American journal of human genetics55(1994)244-252.
    6C. de Chiara, C. Giannini, S. Adinolfi, J. de Boer, S. Guida, A. Ramos, C. Jodice, D. Kioussis, A. Pastore, The AXHmodule: an independently folded domain common to ataxin-1and HBP1. FEBS letters551(2003)107-112.
    1C. de Chiara, R.P. Menon, M. Strom, T.J. Gibson, A. Pastore, Phosphorylation of S776and14-3-3bindingmodulate ataxin-1interaction with splicing factors. PloS one4(2009) e8372.
    2E.S. Emamian, M.D. Kaytor, L.A. Duvick, et al. Serine776of ataxin-1is critical for polyglutamine-induceddisease in SCA1transgenic mice. Neuron38(2003)375-387.
    3H.-K. Chen, P. Fernandez-Funez, S.F. Acevedo, et al. Interaction of Akt-phosphorylated ataxin-1with14-3-3mediates neurodegeneration in spinocerebellar ataxia type1. Cell113(2003)457-468.
    4L. Duvick, J. Barnes, B. Ebner, et al. SCA1-like disease in mice expressing wild-type ataxin-1with a serineto aspartic acid replacement at residue776. Neuron67(2010)929-935.
    5A. Servadio, B. Koshy, D. Armstrong, et al. Expression analysis of the ataxin-1protein in tissues fromnormal and spinocerebellar ataxia type1individuals. Nature genetics10(1995)94-98.
    6S. Banfi, A. Servadio, M. Chung, et al.ng and developmental expression analysis of the murine homolog ofthe spinocerebellar ataxia type1gene (Sca1). Human molecular genetics5(1996)33-40.
    7A. Matilla, B.T. Koshy, C.J. Cummings, et al. The cerebellar leucine-rich acidic nuclear protein interactswith ataxin-1. Nature389(1997)974-978.
    8P.J. Skinner, B.T. Koshy, C.J. Cummings, et al. Ataxin-1with an expanded glutamine tract alters nuclearmatrix-associated structures. Nature389(1997)971-974
    9I.A. Klement, P.J. Skinner, M.D. Kaytor, et al.Ataxin-1nuclear localization and aggregation: role inpolyglutamine-induced disease in SCA1transgenic mice. Cell95(1998)41-53.
    10L. Mapelli, C. Canale, D. Pesci, et al. Toxic effects of expanded ataxin-1involve mechanical instability ofthe nuclear membrane. Biochimica et biophysica acta1822(2012)906-917.
    11A. Matilla, E.D. Roberson, S. Banfi, et al. Mice lacking ataxin-1display learning deficits and decreasedhippocampal paired-pulse facilitation. The Journal of neuroscience18(1998)5508-5516.
    1E.N. Burright, H.B. Clark, A. Servadio, et al. SCA1transgenic mice: a model for neurodegeneration causedby an expanded CAG trinucleotide repeat. Cell82(1995)937-948.
    2H.B. Clark, E.N. Burright, W.S. Yunis, et al. Purkinje cell expression of a mutant allele of SCA1intransgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellardysfunction and histological alterations. The Journal of neuroscience17(1997)7385-7395.
    3J.R. Gatchel, H.Y. Zoghbi, Diseases of unstable repeat expansion: mechanisms and common principles. NatRev Genet6(2005)743-755.
    [1]T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stemcells. Nature414(2001)105-111.
    [2]M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H. Jamieson, D.L. Jones, J. Visvader,I.L. Weissman, G.M. Wahl, Cancer stem cells--perspectives on current status andfuture directions: AACR Workshop on cancer stem cells. Cancer research66(2006)9339-9344.
    [3]C.A. O'Brien, A. Kreso, C.H. Jamieson, Cancer stem cells and self-renewal. Clinicalcancer research: an official journal of the American Association for CancerResearch16(2010)3113-3120.
    [4]E. Sugihara, H. Saya, Complexity of cancer stem cells. International journal of cancer.Journal international du cancer132(2013)1249-1259.
    [5]A.A. Brandes, M.K. Paris, Review of the prognostic factors in medulloblastoma ofchildren and adults. Critical reviews in oncology/hematology50(2004)121-128.
    [6]P. Frange, C. Alapetite, G. Gaboriaud, et al. From childhood to adulthood: long-termoutcome of medulloblastoma patients. The Institut Curie experience (1980-2000).Journal of neuro-oncology95(2009)271-279.
    [7]X. Yuan, J. Curtin, Y. Xiong, G. Liu, S. Waschsmann-Hogiu, D.L. Farkas, K.L. Black, J.S.Yu, Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene23(2004)9392-9400.
    [8]A. Inagaki, A. Soeda, N. Oka, et al. Long-term maintenance of brain tumor stem cellproperties under at non-adherent and adherent culture conditions. Biochemical andbiophysical research communications361(2007)586-592.
    [9]C. Jodice, P. Malaspina, F. Persichetti, et al. Effect of trinucleotide repeat length andparental sex on phenotypic variation in spinocerebellar ataxia I. American journal ofhuman genetics54(1994)959-965.
    [10]A. Matilla-Duenas, R. Goold, P. Giunti, Clinical, genetic, molecular, andpathophysiological insights into spinocerebellar ataxia type1. Cerebellum (London,England)7(2008)106-114.
    [11]A. Rossi, V. Caracciolo, G. Russo, et al. Medulloblastoma: from molecular pathology totherapy. Clinical cancer research: an official journal of the American Association forCancer Research14(2008)971-976.
    [12]A. Ray, M. Ho, J. Ma, R.K. Parkes, T.G. Mainprize, S. Ueda, J. McLaughlin, E. Bouffet,J.T. Rutka, C.E. Hawkins, A clinicobiological model predicting survival inmedulloblastoma. Clinical cancer research: an official journal of the AmericanAssociation for Cancer Research10(2004)7613-7620.
    [13]R.J. Packer, G. Vezina, Management of and prognosis with medulloblastoma: therapy ata crossroads. Arch Neurol65(2008)1419-1424.
    [14]P.F. Jacobsen, D.J. Jenkyn, J.M. Papadimitriou, Establishment of a humanmedulloblastoma cell line and its heterotransplantation into nude mice. Journal ofneuropathology and experimental neurology44(1985)472-485.
    [15]H.S. Friedman, P.C. Burger, S.H. Bigner, J.Q. Trojanowski, C.J. Wikstrand, E.C.Halperin, D.D. Bigner, Establishment and characterization of the humanmedulloblastoma cell line and transplantable xenograft D283Med. J Neuropath ExpNeur44(1985)592-605.
    [16]H.S. Friedman, P.C. Burger, S.H. Bigner, et al. Halperin, Phenotypic and genotypicanalysis of a human medulloblastoma cell line and transplantable xenograft (D341Med) demonstrating amplification of c-myc. The American journal of pathology130(1988)472-484.
    [17]F. Giangaspero, A. Pession, D. Trere, et al. Establishment of a human medulloblastomacell line (BO-101) demonstrating skeletal muscle differentiation. Tumori77(1991)196-205.
    [18]T. Mikami, K. Kurisu, K. Kawamoto, et al. Establishment and characterization ofhuman medulloblastoma xenograft line. Hiroshima J Med Sci40(1991)41-45.
    [19]M. Yamada, K. Shimizu, K. Tamura, et al. Establishment and biological characterizationof human medulloblastoma cell lines. No To Shinkei41(1989)695-702.
    [20]A. Korshunov, M. Remke, W. Werft, et al. Adult and pediatric medulloblastomas aregenetically distinct and require different algorithms for molecular risk stratification.Journal of clinical oncology: official journal of the American Society of ClinicalOncology28(2010)3054-3060.
    [21]S. Pfister, M. Remke, A. Benner, et al. Outcome prediction in pediatricmedulloblastoma based on DNA copy-number aberrations of chromosomes6q and17q and the MYC and MYCN loci. Journal of clinical oncology: official journal ofthe American Society of Clinical Oncology27(2009)1627-1636.
    [22]P. Dalerba, R.W. Cho, M.F. Clarke, Cancer stem cells: models and concepts. Annu RevMed58(2007)267-284.
    [23]J.E. Visvader, G.J. Lindeman, Cancer stem cells in solid tumours: accumulatingevidence and unresolved questions. Nat Rev Cancer8(2008)755-768.
    [24]L. Cheng, S. Bao, J.N. Rich, Potential therapeutic implications of cancer stem cells inglioblastoma. Biochem Pharmacol80(2010)654-665.
    [25]S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman,M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells.Nature432(2004)396-401.
    [26]T.-A. Read, M.P. Fogarty, S.L. Markant, R.E. McLendon, Z. Wei, D.W. Ellison, P.G.Febbo, R.J. Wechsler-Reya, Identification of CD15as a marker fortumor-propagating cells in a mouse model of medulloblastoma. Cancer cell15(2009)135-147.
    [27]M.F. Clarke, J.E. Dick, P.B. Dirks, et al. Cancer stem cells--perspectives on currentstatus and future directions: AACR Workshop on cancer stem cells. Cancer research66(2006)9339-9344.
    [28]B.A. Reynolds, S. Weiss, Clonal and population analyses demonstrate that anEGF-responsive mammalian embryonic CNS precursor is a stem cell.Developmental biology175(1996)1-13.
    [29]R. Roy, J. Yang, M.A. Moses, Matrix metalloproteinases as novel biomarkers andpotential therapeutic targets in human cancer. J Clin Oncol27(2009)5287-5297.
    [30]B. Ortensi, M. Setti, D. Osti, G. Pelicci, Cancer stem cell contribution to glioblastomainvasiveness. Stem cell research&therapy4(2013)18.
    [31]J.T. Chang, S.A. Mani, Sheep, wolf, or werewolf: Cancer stem cells and theepithelial-to-mesenchymal transition. Cancer letters (2013).
    [32]N. Facompre, H. Nakagawa, M. Herlyn, D. Basu, Stem-like cells and therapy resistancein squamous cell carcinomas. Adv Pharmacol65(2012)235-265.
    [33]D.W. Ellison, J. Dalton, M. Kocak, et al. Medulloblastoma: clinicopathologicalcorrelates of SHH, WNT, and non-SHH/WNT molecular subgroups. Actaneuropathologica121(2011)381-396.
    [34]A.M. Duenas, R. Goold, P. Giunti, Molecular pathogenesis of spinocerebellar ataxias.Brain: a journal of neurology129(2006)1357-1370.
    [35]T. Matilla, V. Volpini, D. Genis, et al. Presymptomatic analysis of spinocerebellar ataxiatype1(SCA1) via the expansion of the SCA1CAG-repeat in a large pedigreedisplaying anticipation and parental male bias. Human molecular genetics2(1993)2123-2128.
    [36]L.P. Ranum, M.Y. Chung, S. Banfi, et al. Molecular and clinical correlations inspinocerebellar ataxia type I: evidence for familial effects on the age at onset.American journal of human genetics55(1994)244-252.
    [37]Y. Lee, J.D. Fryer, H. Kang, J. Crespo-Barreto, et al. ATXN1protein family and CICregulate extracellular matrix remodeling and lung alveolarization. Developmentalcell21(2011)746-757.
    [38]X. Wang, C. Venugopal, B. Manoranjan, et al. Sonic hedgehog regulates Bmi1inhuman medulloblastoma brain tumor-initiating cells. Oncogene31(2012)187-199.
    [39]M. Zbinden, A. Duquet, A. Lorente-Trigos, et al. NANOG regulates glioma stem cellsand is essential in vivo acting in a cross-functional network with GLI1and p53. TheEMBO journal29(2010)2659-2674.
    [40]D. Cui, X. Chen, J. Yin, W. Wang, M. Lou, S. Gu, Aberrant activation ofHedgehog/Gli1pathway on angiogenesis in gliomas. Neurology India60(2012)589-596.
    [41]R. Goold, M. Hubank, A. Hunt, J. Holton, R.P. Menon, T. Revesz, M. Pandolfo, A.Matilla-Duenas, Down-regulation of the dopamine receptor D2in mice lackingataxin1. Human molecular genetics16(2007)2122-2134.
    [42]X. Tong, H. Gui, F. Jin, B.W. Heck, P. Lin, J. Ma, J.D. Fondell, C.-C. Tsai, Ataxin-1andBrother of ataxin-1are components of the Notch signalling pathway. EMBO reports12(2011)428-435.
    [43]S. Lee, S. Hong, S. Kim, S. Kang, Ataxin-1occupies the promoter region of E-cadherinin vivo and activates CtBP2-repressed promoter. Biochimica et biophysica acta1813(2011)713-722.
    [44]N. Levicar, R.K. Nuttall, T.T. Lah, R.K. Nutall, Proteases in brain tumour progression.Acta neurochirurgica145(2003)825-838.
    [45]P.A. Northcott, D.J.H. Shih, J. Peacock, et al. Subgroup-specific structural variationacross1,000medulloblastoma genomes. Nature488(2012)49-56.
    [46]M.D. Taylor, P.A. Northcott, A. Korshunov, et al. Molecular subgroups ofmedulloblastoma: the current consensus. Acta neuropathologica123(2012)465-472.
    [47]L.V. Goodrich, L. Milenkovic, K.M. Higgins, M.P. Scott, Altered neural cell fates andmedulloblastoma in mouse patched mutants. Science (New York, N Y)277(1997)1109-1113.
    [48]B.A. Hatton, E.H. Villavicencio, K.D. Tsuchiya, et al. The Smo/Smo model:hedgehog-induced medulloblastoma with90%incidence and leptomeningeal spread.Cancer research68(2008)1768-1776.
    [49]L. Yang, D.M. Parkin, L. Li, Y. Chen, Time trends in cancer mortality in China:1987-1999. International journal of cancer Journal international du cancer106(2003)771-783.
    [50]C. Ginestier, M.H. Hur, E. Charafe-Jauffret, et al. ALDH1is a marker of normal andmalignant human mammary stem cells and a predictor of poor clinical outcome. Cellstem cell1(2007)555-567.
    [51]L.M. Rota, D.A. Lazzarino, A.N. Ziegler, et al. Determining mammosphere-formingpotential: application of the limiting dilution analysis. Journal of mammary glandbiology and neoplasia17(2012)119-123.
    [52]T. Oskarsson, S. Acharyya, X.H.F. Zhang, et al. Massague, Breast cancer cells producetenascin C as a metastatic niche component to colonize the lungs. Nature medicine17(2011)867-874.
    [53]R.W. Storms, A.P. Trujillo, J.B. Springer, et al. Isolation of primitive humanhematopoietic progenitors on the basis of aldehyde dehydrogenase activity.Proceedings of the National Academy of Sciences of the United States of America96(1999)9118-9123.
    [54]D. Huang, Q. Gao, L. Guo, C. Zhang, et al. Isolation and identification of cancerstem-like cells in esophageal carcinoma cell lines. Stem cells and development18(2009)465-473.
    [55]J.S. Zhao, W.J. Li, D. Ge, et al.Tumor initiating cells in esophageal squamous cellcarcinomas express high levels of CD44. PloS one6(2011) e21419.
    [56]F.B. Rassouli, M.M. Matin, A.R. Bahrami, et al. Evaluating stem and cancerousbiomarkers in CD15CD44KYSE30cells. Tumour biology: the journal of theInternational Society for Oncodevelopmental Biology and Medicine (2013).
    [57]K.H. Tang, Y.D. Dai, M. Tong, Y.P. Chan, et al.A CD90(+) tumor-initiating cellpopulation with an aggressive signature and metastatic capacity in esophageal cancer.Cancer research73(2013)2322-2332.
    [58]R. Zhao, L. Quaroni, A.G. Casson, Identification and characterization of stemlike cellsin human esophageal adenocarcinoma and normal epithelial cell lines. The Journalof thoracic and cardiovascular surgery144(2012)1192-1199.
    [59]G. Zhang, L. Ma, Y.K. Xie, X.B. Miao, C. Jin, Esophageal cancer tumorspheres involvecancer stem-like populations with elevated aldehyde dehydrogenase enzymaticactivity. Molecular medicine reports6(2012)519-524.
    [60]X. Zhang, R. Komaki, L. Wang, B. Fang, J.Y. Chang, Treatment of radioresistantstem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specificoncolytic adenovirus. Clinical cancer research: an official journal of the AmericanAssociation for Cancer Research14(2008)2813-2823.
    [61]Y. Wang, H. Zhe, P. Gao, N. Zhang, G. Li, J. Qin, Cancer stem cell marker ALDH1expression is associated with lymph node metastasis and poor survival in esophagealsquamous cell carcinoma: a study from high incidence area of northern China. DisEsophagus25(2012)560-565.
    [62]B. Chang, G. Liu, F. Xue, D.G. Rosen, L. Xiao, X. Wang, J. Liu, ALDH1expressioncorrelates with favorable prognosis in ovarian cancers. Mod Pathol22(2009)817-823.
    [1]A.A. Brandes, M.K. Paris, Review of the prognostic factors in medulloblastoma ofchildren and adults. Critical reviews in oncology/hematology50(2004)121-128.
    [2]A. Rossi, V. Caracciolo, G. Russo, K. Reiss, A. Giordano, Medulloblastoma: frommolecular pathology to therapy. Clinical cancer research: an official journal of theAmerican Association for Cancer Research14(2008)971-976.
    [3]A. Ray, M. Ho, J. Ma, R.K. Parkes, et al. A clinicobiological model predicting survivalin medulloblastoma. Clinical cancer research: an official journal of the AmericanAssociation for Cancer Research10(2004)7613-7620.
    [4]R.J. Packer, G. Vezina, Management of and prognosis with medulloblastoma: therapy ata crossroads. Arch Neurol65(2008)1419-1424.
    [5]J.H. Wright, Neurocytoma or neuroblastoma, a kind of tumor not generally recognized.The Journal of experimental medicine12(1910)556-561.
    [6]H.C. P. Bailey, Medulloblastoma Cerebelli. A Common Type of Midcerebellar Gliomaof Childhood. Arch Neurol Psychiatry2(1925)192-224.
    [7]P. Frange, C. Alapetite, G. Gaboriaud, et al. From childhood to adulthood: long-termoutcome of medulloblastoma patients. The Institut Curie experience (1980-2000).Journal of neuro-oncology95(2009)271-279.
    [8]R.J. Packer, Standard-risk medulloblastoma treated by adjuvant chemotherapy followedby reduced-dose craniospinal radiation therapy. Current neurology and neurosciencereports7(2007)129,132.
    [9]V. R, Pathol Anat Physiol Klin Med. Editorial. Virchows arch.1855(1885)23.
    [10]C. J.,(Ueber entzuendung und eiterung). Path Anat Physiol Klin Med (1867)1-79.
    [11]T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancerstem cells. Nature414(2001)105-111.
    [12]C.A. O'Brien, A. Kreso, C.H. Jamieson, Cancer stem cells and self-renewal. Clinicalcancer research: an official journal of the American Association for CancerResearch16(2010)3113-3120.
    [13]J. Dahlstrand, V.P. Collins, U. Lendahl, Expression of the class VI intermediatefilament nestin in human central nervous system tumors. Cancer research52(1992)5334-5341.
    [14]U. Lendahl, L.B. Zimmerman, R.D. McKay, CNS stem cells express a new class ofintermediate filament protein. Cell60(1990)585-595.
    [15]D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W.Scheithauer, P. Kleihues, The2007WHO classification of tumours of the centralnervous system. Acta neuropathologica114(2007)97-109.
    [16]C.G. Eberhart, J.L. Kepner, P.T. Goldthwaite, L.E. Kun, P.K. Duffner, H.S. Friedman,D.R. Strother, P.C. Burger, Histopathologic grading of medulloblastomas: aPediatric Oncology Group study. Cancer94(2002)552-560.
    [17]C.S. McManamy, J. Pears, C.L. Weston, et al. Clinical Brain Tumour, Noduleformation and desmoplasia in medulloblastomas-defining the nodular/desmoplasticvariant and its biological behavior. Brain pathology (Zurich, Switzerland)17(2007)151-164.
    [18]M.D. Taylor, P.A. Northcott, A. Korshunov, et al. Molecular subgroups ofmedulloblastoma: the current consensus. Acta neuropathologica123(2012)465-472.
    [19]M. Kool, A. Korshunov, M. Remke, et al. Molecular subgroups of medulloblastoma: aninternational meta-analysis of transcriptome, genetic aberrations, and clinical data ofWNT, SHH, Group3, and Group4medulloblastomas. Acta neuropathologica123(2012)473-484.
    [20]D.W. Ellison, Childhood medulloblastoma: novel approaches to the classification of aheterogeneous disease. Acta neuropathologica120(2010)305-316.
    [21]B. Manoranjan, X. Wang, R.M. Hallett, et al. FoxG1Interacts with Bmi1to RegulateSelf-Renewal and Tumorigenicity of Medulloblastoma Stem Cells. Stem Cells31(2013)1266-1277.
    [22]K.R. Thomas, M.R. Capecchi, Targeted disruption of the murine int-1proto-oncogeneresulting in severe abnormalities in midbrain and cerebellar development. Nature346(1990)847-850.
    [23]Y. Pei, S.N. Brun, S.L. Markant, et al. WNT signaling increases proliferation andimpairs differentiation of stem cells in the developing cerebellum. Development(Cambridge, England)139(2012)1724-1733.
    [24]S.R. Hamilton, B. Liu, R.E. Parsons, et al.The molecular basis of Turcot's syndrome.The New England journal of medicine332(1995)839-847.
    [25]P.A. Northcott, A. Korshunov, H. Witt, et al. Medulloblastoma comprises four distinctmolecular variants. Journal of clinical oncology: official journal of the AmericanSociety of Clinical Oncology29(2011)1408-1414.
    [26]S.C. Clifford, M.E. Lusher, J.C. Lindsey, et al. Wnt/Wingless pathway activation andchromosome6loss characterize a distinct molecular sub-group of medulloblastomasassociated with a favorable prognosis. Cell Cycle5(2006)2666-2670.
    [27]D.W. Ellison, O.E. Onilude, J.C. Lindsey, et al. United Kingdom Children's CancerStudy Group Brain Tumour, beta-Catenin status predicts a favorable outcome inchildhood medulloblastoma: the United Kingdom Children's Cancer Study GroupBrain Tumour Committee. Journal of clinical oncology: official journal of theAmerican Society of Clinical Oncology23(2005)7951-7957.
    [28]S. Fattet, C. Haberler, P. Legoix, et al. Beta-catenin status in paediatricmedulloblastomas: correlation of immunohistochemical expression with mutationalstatus, genetic profiles, and clinical characteristics. The Journal of pathology218(2009)86-94.
    [29]P. Gibson, Y. Tong, G. Robinson, M.C. Thompson et al. Subtypes of medulloblastomahave distinct developmental origins. Nature468(2010)1095-1099.
    [30]V.Y. Wang, H.Y. Zoghbi, Genetic regulation of cerebellar development. Naturereviews. Neuroscience2(2001)484-491.
    [31]M.R. Gailani, S.J. Bale, D.J. Leffell, et al. Developmental defects in Gorlin syndromerelated to a putative tumor suppressor gene on chromosome9. Cell69(1992)111-117.
    [32]H. Hahn, C. Wicking, P.G. Zaphiropoulous, et al. Mutations of the human homolog ofDrosophila patched in the nevoid basal cell carcinoma syndrome. Cell85(1996)841-851.
    [33]T.G. Oliver, T.A. Read, J.D. Kessler, et al.Loss of patched and disruption of granulecell development in a pre-neoplastic stage of medulloblastoma. Development132(2005)2425-2439.
    [34]C. Raffel, R.B. Jenkins, L. Frederick, D. Hebrink, B. Alderete, D.W. Fults, C.D. James,Sporadic medulloblastomas contain PTCH mutations. Cancer research57(1997)842-845.
    [35]L.V. Goodrich, L. Milenkovic, K.M. Higgins, M.P. Scott, Altered neural cell fates andmedulloblastoma in mouse patched mutants. Science277(1997)1109-1113.
    [36]U. Schuller, V.M. Heine, J. Mao, et al.Acquisition of granule neuron precursor identityis a critical determinant of progenitor cell competence to form Shh-inducedmedulloblastoma. Cancer cell14(2008)123-134.
    [37]Z.-J. Yang, T. Ellis, S.L. Markant, T.-A. Read, et al. Medulloblastoma can be initiatedby deletion of Patched in lineage-restricted progenitors or stem cells. Cancer cell14(2008)135-145.
    [38]Y. Pei, C.E. Moore, J. Wang, A.K. Tewari, et al. An animal model of MYC-drivenmedulloblastoma. Cancer cell21(2012)155-167.
    [39]D. Kawauchi, G. Robinson, T. Uziel, P. Gibson, J. Rehg, C. Gao, D. Finkelstein, C. Qu,S. Pounds, D.W. Ellison, R.J. Gilbertson, M.F. Roussel, A mouse model of the mostaggressive subgroup of human medulloblastoma. Cancer cell21(2012)168-180.
    [40]M. Kool, A. Korshunov, M. Remke, et al. Molecular subgroups of medulloblastoma: aninternational meta-analysis of transcriptome, genetic aberrations, and clinical data ofWNT, SHH, Group3, and Group4medulloblastomas. Acta neuropathologica123(2012)473-484.
    [41]M.D. Taylor, P.A. Northcott, A. Korshunov, et al. Molecular subgroups ofmedulloblastoma: the current consensus. Acta neuropathologica123(2012)465-472.
    [42]M. Kool, J. Koster, J. Bunt, N.E. Hasselt, et al. Integrated genomics identifies fivemedulloblastoma subtypes with distinct genetic profiles, pathway signatures andclinicopathological features. PloS one3(2008) e3088.
    [43]X. Wang, C. Venugopal, B. Manoranjan, et al.Sonic hedgehog regulates Bmi1inhuman medulloblastoma brain tumor-initiating cells. Oncogene31(2012)187-199.
    [44]M.H. Yang, D.S. Hsu, H.W. Wang, et al. Bmi1is essential in Twist1-inducedepithelial-mesenchymal transition. Nature cell biology12(2010)982-992.
    [45]R. Sutter, O. Shakhova, H. Bhagat, et al. Cerebellar stem cells act asmedulloblastoma-initiating cells in a mouse model and a neural stem cell signaturecharacterizes a subset of human medulloblastomas. Oncogene29(2010)1845-1856.
    [46]D. Hambardzumyan, O.J. Becher, M.K. Rosenblum, P.P. Pandolfi, et al. PI3K pathwayregulates survival of cancer stem cells residing in the perivascular niche followingradiation in medulloblastoma in vivo. Genes&development22(2008)436-448.
    [47]X. Fan, W. Matsui, L. Khaki, et al.Notch pathway inhibition depletes stem-like cellsand blocks engraftment in embryonal brain tumors. Cancer research66(2006)7445-7452.
    [48]L. Garzia, I. Andolfo, E. Cusanelli, et al. MicroRNA-199b-5p impairs cancer stem cellsthrough negative regulation of HES1in medulloblastoma. PloS one4(2009) e4998.
    [49]B. Keith, M.C. Simon, Hypoxia-inducible factors, stem cells, and cancer. Cell129(2007)465-472.
    [50]F. Pistollato, E. Rampazzo, L. Persano, et al. Interaction of hypoxia-induciblefactor-1alpha and Notch signaling regulates medulloblastoma precursor proliferationand fate. Stem Cells28(2010)1918-1929.
    [51]S.K. Singh, C. Hawkins, I.D. Clarke, et al. Identification of human brain tumourinitiating cells. Nature432(2004)396-401.
    [52]A. Soeda, A. Inagaki, N. Oka, Y. Ikegame, et al. Epidermal growth factor plays acrucial role in mitogenic regulation of human brain tumor stem cells. The Journal ofbiological chemistry283(2008)10958-10966.
    [53]R. Galli, E. Binda, U. Orfanelli, et al. Isolation and characterization of tumorigenic,stem-like neural precursors from human glioblastoma. Cancer research64(2004)7011-7021.
    [54]H.S. Gunther, N.O. Schmidt, H.S. Phillips, et al. Glioblastoma-derived stemcell-enriched cultures form distinct subgroups according to molecular andphenotypic criteria. Oncogene27(2008)2897-2909.
    [55]T. Kondo, T. Setoguchi, T. Taga, Persistence of a small subpopulation of cancerstem-like cells in the C6glioma cell line. Proceedings of the National Academy ofSciences of the United States of America101(2004)781-786.
    [56]A.T. Ogden, A.E. Waziri, R.A. Lochhead, et al. Identification of A2B5+CD133-tumor-initiating cells in adult human gliomas. Neurosurgery62(2008)505-514;discussion514-505.
    [57]M. Rasper, A. Schafer, G. Piontek, et al. Aldehyde dehydrogenase1positiveglioblastoma cells show brain tumor stem cell capacity. Neuro-Oncology12(2010)1024-1033.
    [58]V. Clement, D. Marino, C. Cudalbu, et al.Marker-independent identification ofglioma-initiating cells. Nat Methods7(2010)224-228.
    [59]M.J. Son, K. Woolard, D.-H. Nam, J. Lee, H.A. Fine, SSEA-1is an enrichment markerfor tumor-initiating cells in human glioblastoma. Cell stem cell4(2009)440-452.
    [60]T.-A. Read, M.P. Fogarty, S.L. Markant, et al.Identification of CD15as a marker fortumor-propagating cells in a mouse model of medulloblastoma. Cancer cell15(2009)135-147.
    [61]A. Flora, T.J. Klisch, G. Schuster, H.Y. Zoghbi, Deletion of Atoh1disrupts SonicHedgehog signaling in the developing cerebellum and prevents medulloblastoma.Science326(2009)1424-1427.
    [62]D.M. Berman, S.S. Karhadkar, A.R. Hallahan, et al.Medulloblastoma growth inhibitionby hedgehog pathway blockade. Science297(2002)1559-1561.
    [63]G. Canettieri, L. Di Marcotullio, A. Greco, et al. Histone deacetylase andCullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signallingthrough Gli acetylation. Nature cell biology12(2010)132-142.
    [64]E. De Smaele, L. Di Marcotullio, M. Moretti, et al. Identification and characterizationof KCASH2and KCASH3,2novel Cullin3adaptors suppressing histonedeacetylase and Hedgehog activity in medulloblastoma. Neoplasia13(2011)374-385.
    [1]H.T. Orr, M.Y. Chung, S. Banfi, et al. Expansion of an unstable trinucleotide CAGrepeat in spinocerebellar ataxia type1. Nature genetics4(1993)221-226.
    [2]T. Matilla, V. Volpini, D. Genis, et al. Presymptomatic analysis of spinocerebellar ataxiatype1(SCA1) via the expansion of the SCA1CAG-repeat in a large pedigreedisplaying anticipation and parental male bias. Human molecular genetics2(1993)2123-2128.
    [3]A. Servadio, B. Koshy, D. Armstrong, et al. Expression analysis of the ataxin-1proteinin tissues from normal and spinocerebellar ataxia type1individuals. Nature genetics10(1995)94-98.
    [4]S. Banfi, A. Servadio, M. Chung, et al. Cloning and developmental expression analysisof the murine homolog of the spinocerebellar ataxia type1gene (Sca1). Humanmolecular genetics5(1996)33-40.
    [5]A.R. Mushegian, D.E. Bassett, Jr., M.S. Boguski, et al. Positionally cloned humandisease genes: patterns of evolutionary conservation and functional motifs.Proceedings of the National Academy of Sciences of the United States of America94(1997)5831-5836.
    [6]A. Mizutani, L. Wang, H. Rajan, P.J. Vig, et al. Boat, an AXH domain protein,suppresses the cytotoxicity of mutant ataxin-1. The EMBO journal24(2005)3339-3351.
    [7]Y.W. Chen, M.D. Allen, D.B. Veprintsev, et al. The structure of the AXH domain ofspinocerebellar ataxin-1. The Journal of biological chemistry279(2004)3758-3765.
    [8]C. de Chiara, R.P. Menon, S. Adinolfi, et al. The AXH domain adopts alternative foldsthe solution structure of HBP1AXH. Structure13(2005)743-753.
    [9]S. Yue, H.G. Serra, H.Y. Zoghbi, et al. The spinocerebellar ataxia type1protein,ataxin-1, has RNA-binding activity that is inversely affected by the length of itspolyglutamine tract. Human molecular genetics10(2001)25-30.
    [10]I.A. Klement, P.J. Skinner, M.D. Kaytor, et al. Ataxin-1nuclear localization andaggregation: role in polyglutamine-induced disease in SCA1transgenic mice. Cell95(1998)41-53.
    [11]E.S. Emamian, M.D. Kaytor, L.A. Duvick, et al. Serine776of ataxin-1is critical forpolyglutamine-induced disease in SCA1transgenic mice. Neuron38(2003)375-387.
    [12]B.E. Riley, H.Y. Zoghbi, H.T. Orr, SUMOylation of the polyglutamine repeat protein,ataxin-1, is dependent on a functional nuclear localization signal. The Journal ofbiological chemistry280(2005)21942-21948.
    [13]I. Al-Ramahi, Y.C. Lam, H.-K. Chen, et al. CHIP protects from the neurotoxicity ofexpanded and wild-type ataxin-1and promotes their ubiquitination and degradation.The Journal of biological chemistry281(2006)26714-26724.
    [14]H.-K. Chen, P. Fernandez-Funez, S.F. Acevedo, et al. Interaction ofAkt-phosphorylated ataxin-1with14-3-3mediates neurodegeneration inspinocerebellar ataxia type1. Cell113(2003)457-468.
    [15]K.M. Carlson, L. Melcher, S. Lai, et al. Characterization of the zebrafish atxn1/axhgene family. Journal of neurogenetics23(2009)313-323.
    [16]S. Lai, B. O'Callaghan, H.Y. Zoghbi, H.T. Orr,14-3-3Binding to ataxin-1(ATXN1)regulates its dephosphorylation at Ser-776and transport to the nucleus. The Journalof biological chemistry286(2011)34606-34616.
    [17]L. Duvick, J. Barnes, B. Ebner, et al. SCA1-like disease in mice expressing wild-typeataxin-1with a serine to aspartic acid replacement at residue776. Neuron67(2010)929-935.
    [18]R.K. Graham, Y. Deng, E.J. Slow, B. Haigh, N. Bissada, et al. Cleavage at thecaspase-6site is required for neuronal dysfunction and degeneration due to mutanthuntingtin. Cell125(2006)1179-1191.
    [19]X. Gu, E.R. Greiner, R. Mishra, et al. Serines13and16are critical determinants offull-length human mutant huntingtin induced disease pathogenesis in HD mice.Neuron64(2009)828-840.
    [20]H. Tsuda, H. Jafar-Nejad, A.J. Patel, et al. The AXH domain of Ataxin-1mediatesneurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell122(2005)633-644.
    [21]S. Irwin, M. Vandelft, D. Pinchev, et al. RNA association and nucleocytoplasmicshuttling by ataxin-1. Journal of cell science118(2005)233-242.
    [22]R. Goold, M. Hubank, A. Hunt, et al. Down-regulation of the dopamine receptor D2inmice lacking ataxin1. Human molecular genetics16(2007)2122-2134.
    [23]E.M. Sampson, Z.K. Haque, M.C. Ku, et al. Negative regulation of theWnt-beta-catenin pathway by the transcriptional repressor HBP1. The EMBOjournal20(2001)4500-4511.
    [24]L. Ciani, P.C. Salinas, WNTs in the vertebrate nervous system: from patterning toneuronal connectivity. Nature reviews Neuroscience6(2005)351-362.
    [25]J.C. Glover, J.-S. Renaud, F.M. Rijli, Retinoic acid and hindbrain patterning. Journal ofneurobiology66(2006)705-725.
    [26]K.A. Neve, J.K. Seamans, H. Trantham-Davidson, Dopamine receptor signaling.Journal of receptor and signal transduction research24(2004)165-205.
    [27]E.N. Burright, J.D. Davidson, L.A. Duvick, B. Koshy, H.Y. Zoghbi, H.T. Orr,Identification of a self-association region within the SCA1gene product, ataxin-1.Human molecular genetics6(1997)513-518.
    [28]J.D. Davidson, B. Riley, E.N. Burright, L.A. Duvick, H.Y. Zoghbi, H.T. Orr,Identification and characterization of an ataxin-1-interacting protein: A1Up, aubiquitin-like nuclear protein. Human molecular genetics9(2000)2305-2312.
    [29]J. Lim, T. Hao, C. Shaw, A.J. Patel, G. Szabo, J.-F. Rual, C.J. Fisk, N. Li, A. Smolyar,D.E. Hill, A.-L. Barabasi, M. Vidal, H.Y. Zoghbi, A protein-protein interactionnetwork for human inherited ataxias and disorders of Purkinje cell degeneration.Cell125(2006)801-814.
    [30]A. Matilla, B.T. Koshy, C.J. Cummings, T. Isobe, H.T. Orr, H.Y. Zoghbi, Thecerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature389(1997)974-978.
    [31]A. Mizutani, L. Wang, H. Rajan, P.J.S. Vig, W.A. Alaynick, J.P. Thaler, C.-C. Tsai,Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. TheEMBO journal24(2005)3339-3351.
    [32]S. Hong, S. Ka, S. Kim, Y. Park, S. Kang, p80coilin, a coiled body-specific protein,interacts with ataxin-1, the SCA1gene product. Biochimica et biophysica acta1638(2003)35-42.
    [33]C.-C. Tsai, H.-Y. Kao, A. Mitzutani, et al.Ataxin1, a SCA1neurodegenerative disorderprotein, is functionally linked to the silencing mediator of retinoid and thyroidhormone receptors. Proceedings of the National Academy of Sciences of the UnitedStates of America101(2004)4047-4052.
    [34]H. Okazawa, T. Rich, A. Chang, et al. Interaction between mutant ataxin-1and PQBP-1affects transcription and cell death. Neuron34(2002)701-713.
    [35]S. Hong, S.-J. Kim, S. Ka, et al. USP7, a ubiquitin-specific protease, interacts withataxin-1, the SCA1gene product. Molecular and cellular neurosciences20(2002)298-306.
    [36]S.C. Fowler, T.J. Zarcone, E. Vorontsova, R. Chen, Motor and associative deficits inD2dopamine receptor knockout mice. International journal of developmentalneuroscience: the official journal of the International Society for DevelopmentalNeuroscience20(2002)309-321.
    [37]X. Tong, H. Gui, F. Jin, et al. Ataxin-1and Brother of ataxin-1are components of theNotch signalling pathway. EMBO reports12(2011)428-435.
    [38]S. Lee, S. Hong, S. Kim, S. Kang, Ataxin-1occupies the promoter region of E-cadherinin vivo and activates CtBP2-repressed promoter. Biochimica et biophysica acta1813(2011)713-722.
    [39]Y. Lee, J.D. Fryer, H. Kang, et al. ATXN1protein family and CIC regulateextracellular matrix remodeling and lung alveolarization. Developmental cell21(2011)746-757.
    [40]C. Bettegowda, N. Agrawal, Y. Jiao, et al. Mutations in CIC and FUBP1contribute tohuman oligodendroglioma. Science333(2011)1453-1455.
    [41]A.M. Duenas, R. Goold, P. Giunti, Molecular pathogenesis of spinocerebellar ataxias.Brain: a journal of neurology129(2006)1357-1370.
    [42]C. Jodice, P. Malaspina, F. Persichetti, et al. Effect of trinucleotide repeat length andparental sex on phenotypic variation in spinocerebellar ataxia I. American journal ofhuman genetics54(1994)959-965.
    [43]L.P. Ranum, M.Y. Chung, S. Banfi, et al. Molecular and clinical correlations inspinocerebellar ataxia type I: evidence for familial effects on the age at onset.American journal of human genetics55(1994)244-252.
    [44]C. de Chiara, C. Giannini, S. Adinolfi, et al.The AXH module: an independently foldeddomain common to ataxin-1and HBP1. FEBS letters551(2003)107-112.
    [45]C. de Chiara, R.P. Menon, M. Strom, T.J. et al.Phosphorylation of S776and14-3-3binding modulate ataxin-1interaction with splicing factors. PloS one4(2009)e8372.
    [46]P.J. Skinner, B.T. Koshy, C.J. Cummings, et al. Ataxin-1with an expanded glutaminetract alters nuclear matrix-associated structures. Nature389(1997)971-974.
    [47]L. Mapelli, C. Canale, D. Pesci, et al. Toxic effects of expanded ataxin-1involvemechanical instability of the nuclear membrane. Biochimica et biophysica acta1822(2012)906-917.
    [48]A. Matilla, E.D. Roberson, S. Banfi, et al. Mice lacking ataxin-1display learningdeficits and decreased hippocampal paired-pulse facilitation. The Journal ofneuroscience: the official journal of the Society for Neuroscience18(1998)5508-5516.
    [49]E.N. Burright, H.B. Clark, A. Servadio et al. SCA1transgenic mice: a model forneurodegeneration caused by an expanded CAG trinucleotide repeat. Cell82(1995)937-948.
    [50]H.B. Clark, E.N. Burright, W.S. Yunis, et al. Purkinje cell expression of a mutant alleleof SCA1in transgenic mice leads to disparate effects on motor behaviors, followedby a progressive cerebellar dysfunction and histological alterations. The Journal ofneuroscience: the official journal of the Society for Neuroscience17(1997)7385-7395.
    [51]J.R. Gatchel, H.Y. Zoghbi, Diseases of unstable repeat expansion: mechanisms andcommon principles. Nat Rev Genet6(2005)743-755.