TaBTF3基因在小麦中的克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用cDNA末端快速扩增法(Rapid-amplification of cDNA ends, RACE),在小麦中首次克隆出BTF3基因(命名为TaBTF3)的序列全长,并采用VIGS(Virus-inducedgene silencing, VIGS)技术对其进行基因功能鉴定。
     主要研究结果如下:
     1.采用RACE-PCR技术从小麦中首次克隆到TaBTF3基因,其cDNA序列全长882bp,最大ORF序列为534bp,该基因编码一个由177个氨基酸组成的蛋白,预测分子量为20KD。基因组DNA序列全长1742bp,包含5个外显子、4个内含子,内含子和外显子的剪切位点严格符合GT/AC规律。实时定量PCR检测表明,TaBTF3在小麦根、叶、叶鞘、旗叶和幼穗中均有不同程度的表达,在旗叶中表达量最高,且受PEG、冷(4℃)、NaCl、MeJA、ABA和SA诱导上调表达。蛋白亚细胞定位结果表明,TaBTF3蛋白主要定位于细胞核与细胞质。Southern杂交结果显示,TaBTF3是多拷贝基因,以多拷贝的形式存在。
     2.选用大麦条纹花叶病毒(BSMV)载体,在豫麦34中成功沉默报告基因TaPDS(小麦八氢番茄红素脱氢酶基因),TaPDS-VIGS小麦植株叶片呈现明显的光漂白表型。GFP蛋白荧光检测结果表明,在BSMV-GFP植株的叶片与根系中均可以检测到较强的GFP荧光信号,BSMV诱导的基因沉默是系统性沉默,并不仅仅局限于接种叶片。高效稳定的小麦VIGS技术体系的成功建立,为小麦TaBTF3基因功能分析验证提供了技术平台。
     3.成功获得TaBTF3-VIGS植株与BSMV-GFP对照植株,并对BSMV-VIGS植株进行鉴定、生理指标检测。沉默TaBTF3基因导致叶绿素含量降低、MDA与H2O2含量显著升高。通过荧光定量PCR检测线粒体、叶绿体编码基因的表达量变化,结果表明,与BSMV-GFP对照植株相比,沉默TaBTF3基因导致线粒体、叶绿体编码基因的表达量显著下降。进一步采用石蜡切片技术观察TaBTF3-VIGS植株叶肉细胞的变化,结果显示,与对照相比,TaBTF3-VIGS植株的叶肉细胞发育异常、体积变小、排列松散、无序、胞间隙较大。由此表明,TaBTF3可能与线粒体、叶绿体和叶肉细胞的生长发育有关。
     4.通过荧光定量PCR检测小麦逆境相关基因的表达量,并对TaBTF3-VIGS植株与BSMV-GFP对照植株进行胁迫耐受性检测。结果表明,在正常生长条件下,沉默TaBTF3基因导致逆境相关基因的表达被抑制。逆境胁迫处理结果显示,TaBTF3-VIGS植株的相对电导率与失水率显著高于对照,而相对含水量与游离脯氨酸含量则明显降低。沉默TaBTF3降低了小麦植株对干旱和冻害胁迫的耐受性。这些结果表明,TaBTF3参与了植物逆境胁迫耐受性过程。
In this paper, the full length cDNA sequences of wheat BTF3gene (named TaBTF3)was first cloned by using the RACE (Rapid-amplification of cDNA ends, RACE)method, and the VIGS (Virus-induced gene silencing, VIGS) method was used toidentify the functions of TaBTF3gene.
     The main results were as follows:
     1. The first TaBTF3gene was cloned from wheat by RACE-PCR method, thefull-length cDNA sequence of the TaBTF3gene was882bp with an open readingframe (ORF) of534bp, and the predicted TaBTF3protein has177amino acids with acalculated molecular mass of20KD. The genomic DNA sequence of TaBTF3was1742bp, containing five exons and four introns, with all splicing sites complying withthe GT-AC. The Real-time fluorescent quantitative PCR analysis showed that theexpression of TaBTF3was constitutive, and the higher level of the transcript wasfound in booting flag leaves, and the expression levels of TaBTF3increasedsignificantly under PEG, cold and NaCl stress conditions, or treated by ABA, MeJAand SA. The subcellular localization of TaBTF3protein was examined by usingpolyethylene glycol (PEG)-mediated Arabidopsis protoplasts transformation method,gene copy number of TaBTF3was tested by using southern blotting. Results showedthat TaBTF3is a multi-copy gene and might be predominantly localized in thenucleus and cytoplasm.
     2. The stable and efficient VIGS system with barley strip mosaic virus (BSMV)vector was established in our laboratory. We successfully silenced the wheat PDSgene (VIGS reporter gene-TaPDS) by using this BSMV derived vector,which resultsin significantly photobleaching phenotype. The strong GFP fluorescence was detectedin both leaves and roots of the BSMV-GFP wheat plants, thus, the spreading ofBSMV is systematic, not only limited to the inoculation sites. The established VIGSsystem will be beneficial to the gene function analysis of TaBTF3in wheat for thenext step.
     3. The TaBTF3-VIGS and BSMV-GFP transgenic wheat plants were successfullyobtained by using the VIGS method, the identification and physiological parameterstest of the BSMV-VIGS plants were carried out. Results showed that silencing ofTaBTF3leads to a significant decrease in the chlorophyll content, but increased inMDA and H2O2contents. The transcript levels of chloroplast-and mitochondrial-encoded genes were examined by using the real-time quantitative PCRmethod. To further investigate the structural changes of the wheat mesophyll cells ofTaBTF3-VIGS plants, paraffin slices were prepared and observed under lightmicroscopy. Compared with the BSMV-GFP control plants, the expression levels ofthe chloroplast-and mitochondrial-encoded genes were significantly inhibited, andthe significant differences in the mesophyll cell structure were also observed, the cellswere smaller in size, irregularly shaped, disorderly and loosely arranged, and hadenlarged intercellular spaces. These results indicated that TaBTF3may involve in thegrowth and development of chloroplast, mitochondria and mesophyll cell in wheat.
     4. The transcript accumulation of stress-related genes were examined by using thereal-time quantitative PCR method, and the abiotic stresses tolerance ofTaBTF3-VIGS plants and BSMV-GFP control plants were examined. Results showedthat the transcript accumulation of stress-related genes was significantly reducedunder normal growth conditions. TaBTF3-silenced wheat plants exhibited markedlyhigher relative electrical conductivity and water loss rate, lower content of the freeproline and relative water content under stress conditions compared to theBSMV-GFP plants. Silencing of TaBTF3results in impaired tolerance to freeze anddrought stresses, the results above implied that TaBTF3may involve in the process ofabiotic stresses tolerance.
引文
[1]雷振生.河南优质小麦规范化栽培技术[M].北京:中原农民出版社,2009.
    [2]王绍中,郑天存,郭天财.河南小麦育种栽培研究进展[M].北京:中国农业出版社,2007:1-39.
    [3]郭天财.小麦经济与小康社会建设[J].河南科技,2003,9:10-11.
    [4]王绍中,田云峰,郭天财,等.河南小麦育种栽培学[M].北京:中国农业科学技术出版社,2010.
    [5]成林,刘荣花,申双和,李树岩.河南省冬小麦干旱规律分析.气象与环境科学,2007,30(4):3-6.
    [6]刘荣花,朱自玺,方文松,等.华北平原冬小麦干旱灾损风险区划[J].生态学杂志,2005,25(9):1068-1072.
    [7]刘荣花,方文松,赵国强,等.河南省冬小麦干旱评估业务服务系统研究[J].气象与环境科学,2008,31(1):4-9.
    [8]程炳岩,庞天荷.河南气象灾害及防御[M].北京:气象出版社,1994,2:175-183.
    [9]华北平原作物水分胁迫与干旱研究课题组·作物水分胁迫与干旱研究[M].郑州:河南省科学技术出版社,1991:111-129.
    [10]刘荣花,朱自玺,方文松,等.华北地区冬小麦干旱评估指标研究[J].自然灾害学报,2003,12(1):145-150.
    [11]霍治国,姜艳.基于灌溉的北方冬小麦水分供需风险研究[J].农业工程学报,2006,22(11):79-84.
    [12]王永华,李金才,魏凤珍,等.小麦冻害类型与小麦受冻致死原因分析[J].安徽农业科学,2006,34(2):2789-2791.
    [13]吴长城,吴德科.春性小麦品种春季低温冻害的发生及防治[J].农业科技通讯,2007,3:24-25.
    [14]仝文伟,鲁建立,张玉娟,等.春季冬小麦冻害气候及生理生化原因分析[J].安徽农业科学,2011,39(3):1532-1533,1536.
    [15] Buchanan BB, Gruissem W, Jones RL.Biochemistry and Molecular Biology of Plants
    [M].American Society of Plant Physiologists,2000.
    [16] Wang WX, Vinocur B, Shoseyov O, et al. Biotechnology of plant osmotic stress tolerance:physiological and molecular consideration [J]. ISHS Acta Horticulturae,2001,560:285-292.
    [17] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extremetemperatures towards genetic engineering for stress tolerance [J]. Planta,2003,218:1-14.
    [18]孙宪芝,郑成淑,王秀峰.木本植物抗早机理研究进展[J].西北植物学报,2007,27(3):629-634.
    [19] Kiani SP, Tália P, Maury P, et al. Genetic analysis of plant water status and osmoticadjustment in recombinant inbred lines of sunflower under two water treatments [J]. PlantScience,2007,172:773-787.
    [20] Gong D, Zhang C, Chen X, et al. Constitutive activation and transgenic evaluation of thefunction of an Arabidopsis PKS protein kinase [J]. The journal of biological chemistry,2002,277:42088-42096.
    [21] Park SH, Zarrinpar A, Lim WA. Rewiring MAP kinase pathways using alternativescaffold assembly mechanisms [J]. Science,2003,299:1061-1064.
    [22] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements inosmotic-and cold-stress-responsive promoters [J]. Trends in Plant Science,2005,10:88-94.
    [23] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis geneis involved in responsiveness to drought, low-temperature, or high-salt stress [J]. ThePlant Cell,1994,6:251-264.
    [24] Choi H, Hong JH, Ha J, et al. ABFs, a family of ABA-responsive elements binding factors[J]. Journal of Biological Chemistry,2000,275:1723-1730.
    [25] Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisitephosphorylation regulates the activity of a tran-scription activator AREB1[J]. Proceedingsof the National Academy of Sciences, USA,2006,103:1988-1993.
    [26] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcriptionaltranscription factors involved in an abscisic acid-dependent signal transduction pathwayunder drought and high-salinity conditions [J]. Proceedings of the National Academy ofSciences, USA,2000,97:11632-11637.
    [27] Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD26, isinvolved in a novel ABA-dependent stress-signaling pathway [J]. The Plant Journal,2004,39:863-876.
    [28] Kang JY, Choi HI, Im MY, et al. Arabidopsis basic leucine zipper proteins that mediatestress-responsive abscisic acid signaling [J]. The Plant Cell,2002,14:343-357.
    [29]简令成,孙龙华,史国顺.抗寒锻炼中不同抗寒性小麦细胞膜糖蛋白的细胞化学研究[J].实验生物学报,1991,24(3):249-257.
    [30]江福英,李延,翁伯琦.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(2):190-195.
    [31] Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient in thylakoidunsaturation [J]. Plant Physiology,2002,129(2):876-885.
    [32]简令成,孙龙华,林忠平.微管的冷稳定性与植物抗寒性关系的研究[J].植物学报,1989,31(10):737-747.
    [33] Combos Z, Wada H, Murata N. The recovery of photosynthesis from low-temperaturephoto inhibition is accelerated by the unsaturution of membrane lipids:a mechanism ofchilling tolerance [J].Proceedings of the National Academy of Sciences, USA,1994,91(20):8787-8791.
    [34] Carina B, Krause GH. Inhibition of photo systems I and II in chilling-sensitive andchilling-tolerant plants under light and lowt emperature stress [J]. Z Naturfomch,1999,54:645-657.
    [35] Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatorymechanisms [J]. Annual review of plant biology,1999,50(1):571-599.
    [36] Chen AP, Zhong NQ, Qu ZL, et al. Root and vascular tissue-specific expression ofglycine-rich protein atGRP9and its interaction with AtCAD5, a cinnamyl alcoholdehydrogenase, Arabidopsis thaliana [J]. Journal of Plant Research,2007,120(2):337-343.
    [37] Ueki S, Citovsky V. Identification of an interactor of cadmium ion-induced glycine-richprotein involved in regulation of callose levels in plant vasculature [J]. Proceedings of theNational Academy of Sciences, USA,2005,102(34):12089-12094.
    [38] Uemwra M, Steponkus PL. A contrast of the plasma membrane lipid composition of oatand rye leaves in relation to freezing tolerance [J]. Plant Physiology,1994,104(2):479-495.
    [39] Peng Y, Lin W, Wei H, et a1. Phylogenetic analysis and seasonal cold acclimationassociated expression of early light-induced protein genes of rhododendron catawbiense[J]. Physiologia Plantarum,2008,132(1):44-52.
    [40]黄文功,殷奎德,高中超.植物抗冻基因工程研究[J].生物技术通报,2006,2:1-4.
    [41] Novillo F, Alonso JM. Cold acclimation of Arabidopsis thaliana: Affect on plasmamembrane lipid composition an defreeze-induced lesions [J]. Plant Biology,2004,11:3985-3990.
    [42] Goddard NJ, Dunn MA, Zhang L, et a1. Molecular analysis and spatial expression patternof a low temperature-specific barley gene, blt101[J].Plant Molecular Biology,1993,23:871-879.
    [43] Yang TW, Zhang LJ, Zhang TG, et al. Transcriptional regulation network ofcold-responsive genes in higher plants [J]. Plant Science,2005,169:987-995.
    [44] Chinnusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants [J].Physiologia Plantarum,2006,126:52-61.
    [45] Shimada T, Wakita Y, Otani M, et al. Modification of fatty acid comosition in rice plantsby transformation with a tobacco microsomal ω-3fatty acid desaturase gene (NtFAD3).Plant Biotechnology,2000,17(1):43-48.
    [46]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [47] Washburn KB, Davis EA, Ackerman S. Coactivators and TAFs of transcription activationin wheat [J]. Plant Molecular Biology,1997,35(6): l037-1043.
    [48] Goff SA, Cone KC, Chandler VL. Functional analysis of the transcriptional activatorencoded by the maize B gene: evidence for a direct functional interaction between tWOclasses of regulatory proteins [J]. Genes&Deveopment,1992,6(5):864-875.
    [49] Lin Q, Barbas III CF, Schultz PG. Small-molecule switches for zinc finger transcriptionfactors [J]. Journal of the American society,2003,125(3):612-613.
    [50] Kim HS, Delaney TP. Over expression of TGA5,which encodes a bZlP transcriptionfactor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsisthaliana to Peronospora parasitica [J]. The Plant Journal,2002,32(2):151-163.
    [51] Martin C, Pazares J. MYB transcription factors in plants [J]. Trends in Genetics,1997,13(2):67-73.
    [52] Immink RG, Ferrafio S, BusscherLange J, et al. Analysis of the petunia MADS-boxtranscription factor family [J]. Molecular Genetics and Genomics,2003,268(5):598-606.
    [53] Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specificand light-regulated gene expression [J]. The Plant Cell,1998,10(1):75-90.
    [54] Chern MS, Bobb AJ, Bustos MM. The regulator of MAT2(ROM2) protein binds to earlymaturation promoters and represses PvALF-activated transcription [J]. The Plant Cel1,1996,8(2):305-321.
    [55] Guiltinan MJ, Miller L. Molecular characterization of the DNA-binding and dimerizationdomains of the bZIP transcription factor, EmBP1[J]. Plant Molecular Biology,1994,26(4):1041-1053.
    [56] Katagiri F, Seipel K, Chua NH. Identification of a novel dimer stabilization region in aplant bZIP transcription activator [J]. Molecular Cell Biology,1992,12(11):4809-4816.
    [57] Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyaninpromoter by the maize C1protein and comparison of DNA binding by related Mybdomain proteins [J]. The Plant Cell,1997,9(4):611-625.
    [58] Lyck R, Harmening U, Hohfeld I, et al. Intracellular distribution and identification of thenuclear localization signals of two plant heat-stress transcription factors [J]. Planta,1997,202(1): l17-125.
    [59] Imagawa M, Sakaue R, Tanabe A, et al. Two nuclear localization signals are required fornuclear translocation of nuclear factor1A [J]. FEBS Letter,2000,484(2):118-124.
    [60] Wiedmann B, Sakai H, Davis TA, et al. A protein complex required forsignal-sequence-specific sorting and translocation [J]. Nature,1994,370:434-440.
    [61] Lauring B, Sakai H, Kreibich G, et al. Nascent polypeptide associated complex proteinprevents mistargeting of nascent chains to the endoplasmic reticulum [J]. Proceedings ofthe National Academy of Sciences, USA,1995,92:5411-5415.
    [62] Zheng XM, Moncollin V, Egly JM. a general transcription factor from a stable complexwith RNA polymerase B(II)[J]. Cell,1987,50:361-368.
    [63] El-Tanani M, Platt-Higgins A, Rudland PS. Ets gene PEA3cooperates withβ-catenin-Lef-1and c-Jun in regulation of osteopontin transcription [J]. Journal ofBiological,2004.279:20794-20806.
    [64] Hu GZ, Ronne H. Yeast BTF3protein is encoded by duplicated genes and inhibits theexpression of some genes in vivo [J]. Nucleic Acids Research,1994,22:2740-2743.
    [65] Kusumawidjaja G, Kayed H, Giese N. Basic transcription factor3(BTF3) regulatestranscription of tumor-associated genes in pancreatic cancer cells [J]. Cancer Biology&Therapy,2007,6(3):367-76.
    [66] Markesich DC, Gajewski KM, Nazimiec ME, et al. Bicaudal encodes the Drosophila betaNAC homolog, a component of the ribosomal translational machinery [J]. Development,2000,127:559-572.
    [67] Deng JM, Behringer RR. An insertional mutation in the BTF3transcription factor geneleads to an early post-implantation lethality in mice [J]. Transgenic Research,1995,4:264-269.
    [68] Parthun MR, Mangus DA, Jaehning JA. The EGD1product, a yeast homolog of humanBTF3, may be involved in GAL4DNA binding [J]. Molecular Cell Biology,1992,12:5683-5689.
    [69] Bloss TA, Witze ES. Suppression of CED-3-independent apoptosis by mitochondrialbNAC in Caenorhabditis elegans [J]. Nature,2003,424:1066-1071.
    [70] Brockstedt E, Otto A, Rickers A, et al. Preparative high-resolution two-dimensionalelectrophoresis enables the identification of RNA polymerase B transcription factor3asan apoptosis-associated protein in the human BL60-2Burkitt lymphoma cell line [J].Journal of protein,1999,18:225-231.
    [71] Freire MA. Translation initiation factor (iso)4E interacts with BTF3, the β-subunit of thenascent polypeptide-associated complex [J]. Gene,2005,345:271-277.
    [72] Grein S, Pyerin W. BTF3is a potential new substrate of protein kinase CK2[J].Developments in Molecular and Cellular Biochemistry,1999,27:121-128.
    [73] Devos S, Laukens K, Deckers P, et al. A hormone and proteome approach to picturing theinitial metabolic events during Plasmodiophora brassicae infection on Arabidopsis [J].Molecular Plant-Microbe Interactions,2006,19(12):1431-1433.
    [74] Jiang YQ, Yang B, Harris NS, et al. Comparative proteomic analysis of NaClstress-responsive proteins in Arabidopsis roots [J]. Journal of Experimental Botany,2007,58:3591-3607.
    [75] Sheoran IS, Sproule KA, Olson DJH, et al. Proteome profile and functional classificationof proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen [J]. Sexual PlantReproduction,2006,19:185-196.
    [76] Cooper B, Hutchison D, Park S, et al.Identification of rice (Oryza sativa) proteins linkedto the cyclin-mediated regulation of the cell cycle [J]. Plant Molecular Biology,2003,53:273-279.
    [77] Yan SP, Tang ZC, Su WA, et al. Proteomic analysis of salt stress-responsive proteins inrice root [J]. Proteomics,2005,5:235-244.
    [78]李广旭,吴茂森,吴静,等.受病原细菌诱导表达增强的水稻转录因子基因OsBTF3的分子鉴定[J].中国农业科学,2009,42(7):2608-2614.
    [79]李广旭,吴茂森,何晨阳.水稻转录因子OsBTF3对不同病原菌和信号分子的基因表达反应[J].植物病理学报,2009,39(3):272-277.
    [80]何苗,武雪,王喆之.丹参BTF3基因的克隆及生物信息学分析[J].2009,武汉植物学研究,27(6):582-588.
    [81]张中保,张登峰,李会勇,等.玉米干旱诱导表达基因ZmBTF3b的克隆与表达分析[J].中国农业科学,2010,43(16):3280-3287.
    [82] Yang KS, Kim HS, Jin UH, et al. Silencing of NbBTF3results in developmental defectsand disturbed gene expression in chloroplasts and mitochondria of higher plants [J]. Planta,2007,225:1459-1469.
    [83] Huh SU, Kim KJ, Paek KH. Capsicum annuum basic transcription factor3(CaBtf3)regulates transcription of pathogenesis-related genes during hypersensitive response uponTobacco mosaic virus infection [J]. Biochemical and Biophysical ResearchCommunications,2012,417:910-917.
    [84] Marcei T, Rene FK, Ronald HAP. The genetics of RNA silencing [J]. Annual Review ofGenetics,2002,36:489-519.
    [85] Dzitoyeva S, Dimitrijevic N, Manev H. Intra-abdominal injection of double stranded RNAinto anesthetized adult Drosophila triggers RNA interference in the central nervous system[J]. Molecular Psychiatry,2001,6(6):665-670.
    [86] Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNAinterference regulate expression of the small temporal RNAs that control C.elegansdevelopmental timing [J]. Cell,2001,106:23-34.
    [87] Kammen VA. Virus-induced gene silencing in infected and transgenic plants [J]. TrendsPlant science,1997,2:409-411.
    [88] Baulcombe DC. Fast forward genetics based on virus induced gene silencing [J]. Currentopinion in plant biology,1999,2:109-113.
    [89] Kumagai MH, Donson J, della-Cioppa G, et al. Cytoplasmic inhibition of carotenoidbiosynthesis with virus-derived RNA [J]. Proceedings of the National Academy of Sciences,USA,1995,92:1679-1683.
    [90] Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced genesilencing [J]. Plant Cell,1998,10:937-946.
    [91] Ratcliff F, Martin-Hernandez AM, Baulcombe DC. Technical Advanced: Tobacco rattlevirus as a vector for analysis of gene function by silencing [J]. The Plant Journal,2001,25:237-245.
    [92] Holzberg S, Brosio P, Gross C, et al. Barley stripe mosaic virus-induced gene silencing ina monocot plant [J]. The Plant Journal,2002,30:315-327.
    [93] Liu YL, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1and NPR1/NIM1like genes arerequired for N-mediated resistance to tobacco mosaic virus [J]. The Plant Journal,2002,30:415-429.
    [94] Boursiac Y, Lee SM, Romanowsky S, et al. Disruption of the Vacuolar Calcium-ATPasesin Arabidopsis Results in the Activation of a Salicylic Acid-Dependent Programmed CellDeath Pathway [J]. The EMBO Journal,2010,154(3):1158-1171.
    [95] He XX, Jin CW, Li GX, et al. Use of the modified viral satellite DNA vector to silencemineral nutrition-related genes in plants: silencing of the tomato ferric chelate reductasegene, FRO1, as an example [J]. Science in China Series C: Life Sciences,2008,51:402-409.
    [96] Peart JR, Cook G, Feys BJ, et al. Baulcombe DC. An EDS1orthologue is required forN-mediated resistance against Tobacco mosaic virus [J]. The Plant Journal,2002,29:569-579.
    [97] Liu Y, Schiff M, Dinesh-Kumar SP. Involvement of MEK1MAPKK, NTF6MAPK,WRKY/MYB transcription factors, COI1and CTR1in N-mediated resistance to tobaccomosaic virus [J]. The Plant Journal,2004,38:800-809.
    [98] Peart JR, Mestre P, Lu R, et al. NRG1, a CC-NB-LRR protein, together with N, aTIR-NB-LRR protein, mediates resistance against tobacco mosaic virus [J]. Currentbiology,2005,15:968-973.
    [99] Liu Y, Schiff M, Czymmek K, et al. Autophagy regulates programmed cell death duringthe plant innate immune response [J]. Cell,2005,121:567-577.
    [100] Caplan JL, Mamillapalli P, Burch-Smith TM, et al. Chloroplastic protein NRIP1mediatesinnate immune receptor recognition of a viral effector [J]. Cell,2008,132:449-462.
    [101] Tameling WI, Baulcombe DC. Physical association of the NB-LRR resistance protein Rxwith a Ran GTPase-activating protein is required for extreme resistance to potato virus X[J]. Plant Cell,2007,19:1682-1694.
    [102] Stulemeijer IJ, Stratmann JW, Joosten MH. Tomato mitogen-activated protein kinasesLeMPK1, LeMPK2, and LeMPK3are activated during the Cf-4/Avr4-inducedhypersensitive response and have distinct phosphorylation specificities [J]. PlantPhysiology,2007,144:1481-1494.
    [103] Vossen JH, Abd-El-Haliem A, Fradin EF, et al. Identification of tomatophosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role ofPLC4and PLC6in HR and disease resistance [J]. The Plant Journal,2010,62:224-239.
    [104] Zhu XH, Caplan J, Mamillapalli P, et al. Function of endoplasmic reticulum calciumATPase in innate immunity-mediated programmed cell death [J]. The EMBO Journal,2010,29:1007-1018.
    [105] Rowland O, Ludwig AA, Merrick CJ, et al. Functional analysis of Avr9/Cf-9rapidlyelicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependentdisease resistance in tomato [J]. The Plant Cell,2005,17:295-310.
    [106] Gabriels SH, Vossen JH, Ekengren SK, et al. An NB-LRR protein required for HRsignalling mediated by both extra-and intracellular resistance proteins [J]. The PlantJournal,2007,50:14-28.
    [107] Rivas S, Rougon-Cardoso A, Smoker M, et al. CITRX thioredoxin interacts with thetomato Cf-9resistance protein and negatively regulates defence [J]. The EMBO Journal,2004,23:2156-2165.
    [108] Chandok MR, Ekengren SK, Martin GB, et al. Suppression of pathogen-inducible NOsynthase (iNOS) activity in tomato increases susceptibility to Pseudomonas syringae [J].Proceedings of the National Academy of Sciences, USA,2004,101:8239-8244.
    [109] Ekengren SK, Liu YL, Schiff M, et al. Two MAPK cascades, NPR1, and TGAtranscription factors play a role in Pto-mediated disease resistance in tomato [J].The PlantJournal,2003,36:905-917.
    [110] Maimbo M, Ohnishi K, Hikichi Y, et al. S-glycoprotein-like protein regulates defenseresponses in Nicotiana plants against Ralstonia solanacearum [J]. Plant Physiology,2010,152:2023-2035.
    [111] Kanzaki H, Saitoh H, Ito A, et al. Cytosolic HSP90and HSP70are essential componentsof INF1-mediated hypersensitive response and non-host resistance to Pseudomonascichorii in Nicotiana benthamiana [J]. Molecular Plant Pathology,2003,4:383-391.
    [112] Sharma PC, Ito A, Shimizu T, et al. Virus-induced silencing of WIPK and SIPK genesreduces resistance to a bacterial pathogen, but has no effect on the INF1-inducedhypersensitive response (HR) in Nicotiana benthamiana [J]. Molecular Genetics andGenomics,2003,269:583-591.
    [113] Schornack S, Ballvora A, Gurlebeck D, et al. The tomato resistance protein Bs4is apredicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severelytruncated derivatives of AvrBs4and overexpressed AvrBs3[J]. The Plant Journal,2004,37:46-60.
    [114] Leister RT, Dahlbeck D, Day B, et al. Molecular genetic evidence for the role of SGT1inthe intramolecular complementation of Bs2protein activity in Nicotiana benthamiana [J].The Plant Cell,2005,17:1268-1278.
    [115] Hwang IS, Hwang BK. Role of the pepper cytochrome P450gene CaCYP450A in defenseresponses against microbial pathogens [J]. Planta,2010,232:1409-1421.
    [116] Melech-Bonfil S, Sessa G. The SlMKK2and SlMPK2genes play a role in tomato diseaseresistance to Xanthomonas campestris pv. Vesicatoria [J]. Plant Signal&Behavior,2011,6:154-156.
    [117] Lee DH, Choi HW, Hwang BK. The pepper E3ubiquitin ligase RING1gene, CaRING1,is required for cell death and the salicylic acid-dependent defense response [J]. PlantPhysiology,2011,156:2011-2025.
    [118] Li Q, Xie QG, Smith-Becker J, et al. Mi-1-Mediated aphid resistance involves salicylicacid and mitogen-activated protein kinase signaling cascades [J]. Molecular Plant-Microbe Interactions,2006,19:655-664.
    [119] Bhattarai KK, Li Q, Liu YL, Dinesh-Kumar SP, et al. The MI-1-mediated pest resistancerequires Hsp90and Sgt1[J]. Plant Physiology,2007,144:312-323.
    [120] Bhattarai KK, Atamian HS, Kaloshian I, et al. WRKY72-type transcription factorscontribute to basal immunity in tomato and Arabidopsis as well as gene-for-generesistance mediated by the tomato R gene Mi-1[J]. The Plant Journal,2010,63:229-240.
    [121] Mantelin S, Peng HC, Li B, et al. The receptor-like kinase SlSERK1is required forMi-1-mediated resistance to potato aphids in tomato [J]. The Plant Journal,2011,67:459-471.
    [122] Jablonska B, Ammiraju JS, Bhattarai KK, et al. The Mi-9gene from Solanum arcanumconferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1[J]. PlantPhysiology,2007,143:1044-1054.
    [123] Re DA, Dezar CA, Chan RL, et al. Nicotiana attenuata NaHD20plays a role in leaf ABAaccumulation during water stress, benzy-lacetone emission from flowers, and the timing ofbolting and flower transitions [J]. Journal of Experimental Botany,2011,62:155-166.
    [124] Lee SC, Choi du S, Hwang IS, et al. The pepper oxidoreductase CaOXR1interacts withthe transcription factor CaRAV1and is required for salt and osmotic stress tolerance [J].Plant Molecular Biology,2010,73:409-424.
    [125] Guo Y, Huang C, Xie Y, et al. A tomato glutaredoxin gene SlGRX1regulates plantresponses to oxidative, drought and salt stresses [J]. Planta,2010,232:1499-1509.
    [126] Ahn CS, Lee JH, Hwang AR, Kim WT, et al. Prohibitin is involved in mitochondrialbiogenesis in plants [J]. The Plant Journal,2006,46:658-667.
    [127] Held MA, Penning B, Brandt AS, et al. Small-interfering RNAs from natural antisensetranscripts derived from a cellulose synthase gene modulate cell wall biosynthesis inbarley [J]. Proceedings of the National Academy of Sciences, USA,2008,105:20534-20539.
    [128] Burton RA, Gibeaut DM, Bacic A, et al. Virus-induced silencing of a plant cellulosesynthase gene [J]. The Plant Cell,2000,12:691-706.
    [129] Stewart CJ, Kang BC, Liu K, et al. The Pun1gene for pungency in pepper encodes aputative acyltransferase [J]. The Plant Journal,2005,42:675-688.
    [130] Ahn C S, Pai HS. Physiological function of IspE, a plastid MEP pathway gene forisoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotianabenthamiana [J]. Plant Molecular Biology,2008,66:503-517.
    [131] Asai S, Mase K, Yoshioka H. A key enzyme for flavin synthesis is required for nitricoxide and reactive oxygen species production in disease resistance [J]. The Plant Journal,2010,62:911-924.
    [132] Park YJ, Cho HK, Jung HJ, et al. PRBP plays a role in plastid ribosomal RNA maturationand chloroplast biogenesis in Nicotiana benthamiana [J]. Planta,2011,233:1073-1085.
    [133] Anand A, Vaghchhipawala Z, Ryu CM, et al. Identification and characterization of plantgenes involved in Agrobacterium-mediated plant transformation by virus-induced genesilencing [J]. Molecular Plant Microbe Interactions,2007,20:41-52.
    [134] Ahn CS, Lee JH, Pai HS. Silencing of NbNAP1encoding a plastidic SufB-like proteinaffects chloroplast development in Nicotiana benthamiana [J]. Molecules and cells,2005,20:112-118.
    [135] Arsova B, Hoja U, Wimmelbacher M, et al. Plastidial thioredoxin z interacts with twofructokinase-like proteins in a thiol-dependent manner: evidence for an essential role inchloroplast development in Arabidopsis and Nicotiana benthamiana [J]. The Plant Cell,2010,22:1498-1515.
    [136] Cho HS, Lee SS, Kim KD, et al. DNA gyrase is involved in chloroplast nucleoidpartitioning [J]. The Plant Cell,2004,16:2665-2682.
    [137] Kang YW, Lee JY, Jeon Y, et al. In vivo effects of NbSiR silencing on chloroplastdevelopment in Nicotiana benthamiana [J]. Plant Molecular Biology,2010,72:569-583.
    [138] Jeon Y, Hwang AR, Hwang I, et al. Silencing of NbCEP1encoding a chloroplast envelopeprotein containing15leucine-rich-repeats disrupts chloroplast biogenesis in Nicotianabenthamiana [J]. Molecules and cells,2010,29:175-183.
    [139] Page JE, Hause G, Raschke M, et al. Functional analysis of the final steps of the1-deoxy-D-xylulose5-phosphate (DXP) pathway to iso-prenoids in plants usingvirus-induced gene silencing [J]. Plant Physiology,2004,134:1401-1413.
    [140] Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics [J].Trends in plant science,2011,16:656-665.
    [141] Kang GZ, Li GZ, Yang WP, et al. Transcriptional profile of the spring freeze response inthe leaves of bread wheat [J]. Acta Physiologiae Plantarum,2013,35:575-587.
    [1] Xu ZS, Chen M, Li LC, et al. Functions of the ERF transcription factor family in plants [J].Botany,2008,86:969-977.
    [2] Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress [J].The Plant Cell,2002,14:165-183.
    [3] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression inthe drought and cold stress responses [J]. Current Opinion in Plant Biology,2003,6:410-417.
    [4] Seki M, Kamei A, Yamaguchi-Shinozaki K, et al. Molecular responses to drought, salinityand frost:common and different paths for plant protection [J]. Current Opinion inBiotechnology,2003,14:194-199.
    [5] Zheng XM, Moncollin V, Egly JM, et al. A general transcription factor forms a stablecomplex with RNA polymerase B (II)[J]. Cell,1987,50:361-368.
    [6] Wiedmann B, Sakai H, Davis TA, et al. protein complex required forsignal-sequence-specific sorting and translocation [J]. Nature,1994,370:434-440.
    [7] Markesich DC, Gajewski KM, Nazimiec ME, et al. Bicaudal encodes the Drosophila betaNAC homolog a component of the ribosomal translational machinery [J]. Development,2000,127:559-572.
    [8] Deng JM, Behringer RR. An insertional mutation in the BTF3transcription factor geneleads to an early postimplantation lethality in mice [J]. Transgenic Research,1995,4:264-269.
    [9] Cooper B, Hutchison D, Park S, et al.Identification of rice (Oryza sativa) proteins linkedto the cyclin-mediated regulation of the cell cycle [J]. Plant Molecular Biology,2003,53:273-279.
    [10] Sheoran IS, Sproule KA, Olson DJH, et al. Proteome profile and functional classificationof proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen [J]. Sexual PlantReproduction,2006,19:185-196.
    [11] Freire MA. Translation initiation factor (iso)4E interacts with BTF3, the β subunit of thenascent polypeptide-associated complex [J]. Gene,2005,345:271-277.
    [12] Jiang YQ, Yang B, Harris N.S, et al. Comparative proteomic analysis of NaClstress-responsive proteins in Arabidopsis roots [J]. Journal of Experimental Botany,2007,58:3591-3607.
    [13] Devos S, Laukens K, Deckers P, et al. A hormone and proteome approach to picturing theinitial metabolic events during Plasmodiophora brassicae infection on Arabidopsis [J].Molecular Plant Microbe Interactions,2006,19:1431-1433.
    [14] Yang KS, Kim HS, Jin UH, et al. Silencing of NbBTF3results in developmental defectsand disturbed gene expression in chloroplasts and mitochondria of higher plants [J]. Planta,2007,225:1459-1469.
    [15] Huh SU, Kim KJ, Paek KH. Capsicum annuum basic transcription factor3(CaBtf3)regulates transcription of pathogenesis-related genes during hypersensitive response uponTobacco mosaic virus infection [J]. Biochemical and Biophysical ResearchCommunications,2012,417:910-917.
    [16] Kang GK, Li GZ, Yang WP, et al. Transcriptional profile of the spring freeze response inthe leaves of bread wheat (Triticum aestivum L.)[J]. Acta Physiologiae Plantarum,2013,35:575-587.
    [17] Zheng J, Zhao JF, Tao YZ, et al. Isolation and analysis of water stress induced genes inmaize seedlings by subtractive PCR and cDNA macroarray [J]. Plant Molecular Biology,2004,55:807-823.
    [18] Kanneganti V, Gupta AK. Overexpression of OsiSAP8,a member of stress associatedprotein (SAP) gene family of rice confers tolerance to salt, drought and cold stress intransgenic tobacco and rice [J]. Plant Molecular Biology,2008,66:445-462.
    [19] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-timequantitative PCR and the2-△△CTmethod [J]. Methods,2001,25:402-408.
    [20] Lauring B, Sakai H, Kreibich G, et al. Nascent polypeptideassociated complex proteinprevents mistargeting of nascent chains to the endoplasmic reticulum [J]. Proceedings ofthe National Academy of Sciences, USA,1995,92:5411-5415.
    [21]何苗,武雪,王喆之.丹参BTF3基因的克隆及生物信息学分析[J].2009,武汉植物学研究,27,6:582-588.
    [22] Du J, Huang YP, Xi J, et al. Functional gene-mining for salt-tolerance genes with thepower of Arabidopsis [J]. The Plant Journal,2008,56:653-664.
    [23] Yan SP, Tang ZC, Su WA, et al. Proteomic analysis of salt stress-responsive proteins inrice root [J]. Proteomics,2005,5:235-244.
    [24] Karan R, Subudhi PK. Overexpression of a nascent polypeptide associated complex gene(SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenicArabidopsis [J]. Biochemical and Biophysical Research Communications,2012,424:747-752.
    [1] Shah K, Russinova E, Gadella Jr TWJ, et al. The Arabidopsis kinase-associated proteinphosphatase controls internalization of the somatic embryogenesis receptor kinase1[J].Gene and Development,2002,16:1707-1720.
    [2] Yang KS, Kim HS, Jin UH, et al. Silencing of NbBTF3results in developmental defectsand disturbed gene expression in chloroplasts and mitochondria of higher plants [J]. Planta,2007,225:1459-1469.
    [3] Huh SU, Kim KJ, Paek KH. Capsicum annuum basic transcription factor3(CaBtf3)regulates transcription of pathogenesis-related genes during hypersensitive response uponTobacco mosaic virus infection [J]. Biochemical and Biophysical ResearchCommunications,2012,417:910-917.
    [4] Rospert S, Dubaquie Y, Gautschi M. Nascent-polypeptide-associated complex [J].Cellular and Molecular Life Sciences,2002,59:1632-1639.
    [5] Hu GZ, Ronne H. Yeast BTF3protein is encoded by duplicated genes and inhibits theexpression of some genes in vivo [J]. Nucleic Acids Research,1994,22:2740-2743.
    [6] Bhalla PL. Genetic engineering of wheat-current challenges and opportunities [J]. Trendsin Biotechnology,2006,24:305-311.
    [7] Cakir C, Gillespie ME, Scofield SR. Rapid determination of gene function byvirus-induced gene silencing in wheat and barley [J]. Crop Science,2010,50:77-84.
    [8] Cloutier S, McCallum BD, Loutre C, et al. Leaf rust resistance gene Lr1, isolated frombread wheat (Triticum aestivum L.) is a member of the large psr567gene family [J]. PlantMolecular Biology,2007,65:93-106.
    [9] Brueggeman R, A Druka J, Nirmala T, et al. The stem rust resistance gene Rpg5encodes aprotein with nucleotide-binding-site, leucine-rich, and protein kinase domains [J].Proceedings of the National Academy of Sciences, USA,2008,105:14970-14975.
    [10] Scofield SR, Huang L, Brandt AS, et al. Development of a virus-induced gene-silencingsystem for hexaploid wheat and its use in functional analysis of the Lr21-mediated leafrust resistance pathway [J]. Plant Physiology,2005,138:2165-2173.
    [1] Bhalla PL. Genetic engineering of wheat-current challenges and opportunities [J]. Trendsin Biotechnology,2006,24:305-311.
    [2] Cakir C, Gillespie ME, Scofield SR. Rapid determination of gene function byvirus-induced gene silencing in wheat and barley [J]. Crop Science,2010,50:77-84.
    [3] Baulcombe DC. Fast forward genetics based on virus-induced gene silencing [J]. CurrentOpinion in Plant Biology,1999,2:109-113.
    [4] Lindbo JA, Dougherty WG. Untranslatable transcripts of the tobacco etch virus coatprotein gene sequence can interfere with tobacco etch virus replication in transgenic plantsand protoplasts [J]. Virology,1992,189:725-733.
    [5] Petty IT, Hunter BG, Jackson AO. A novel strategy for one-step cloning of full-lengthcDNA and its application to the genome of barley stripe mosaic virus [J]. Gene,1998,74:423-432.
    [6] Petty IT, Hunter BG, Wei N, et al. Infectious barley stripe mosaic virus RNA transcribedin vitro from full-length genomic cDNA clones [J]. Virology,1989,171,342-349.
    [7] Liu E, Page JE. Optimized cDNA libraries for virus-induced gene silencing (VIGS) usingtobacco rattle virus [J]. Plant Methods,2008,4:5.
    [8] Hodges DM, DeLong JM, Forney CF, et al., Improving the thiobarbituricacid-reactive-substances assay for estimating lipid peroxidation in plant tissues containinganthocyanin and other interfering compounds [J]. Planta,1999,207:604-611.
    [9] Bouche N, Bouchez D, Arabidopsis gene knockout: phenotypes wanted [J]. CurrentOpinion in Plant Biology,2001(4):111-117.
    [10] Parinov S, Sundaresan V. Functional genomics in Arabidopsis: large-scale insertionalmutagenesis complements the genome sequencing project [J]. Current Opinion in PlantBiology,2000,11:157-161.
    [11] Henikoff S, Comai L. Single-nucleotide mutations for plant functional genomics [J].Annual Review of Plant Biology,2003,54:375-401.
    [12] Holzberg S, Brosio P, Gross C, et al. Barley stripe mosaic virus–induced gene silencing ina monocot plant [J]. The Plant Journal,2002,30:315-327.
    [13] Scofield SR, Huang L, Brandt AS, et al. Development of a virus-induced gene-silencingsystem for hexaploid wheat and its use in functional analysis of the Lr21-mediated leafrust resistance pathway [J]. Plant Physiology,2005,138:2165-2173.
    [14] Bruun-Rasmussen M, Madsen CT, Jessing S, et al. Stability of barley stripe mosaicvirus–induced gene silencing in barley [J]. Molecular Plant Microbe Interactions,2007,20:1323-1331.
    [15] Pogue GP, Lindbo JA, Garger SJ, et al. Making an ally from an enemy: Plant virology andthe new agriculture [J]. Annual Review of Phytopathology,2002,40:45-74.
    [16] Cakir C, Scofield SR. Evaluating the ability of the barley stripe mosaic virus–inducedgene silencing system to simultaneously silence two wheat genes [J]. Cereal ResearchCommunications,2008,36:217-222.
    [17] Bustin SA. Real-time, fluorescence-based quantitative PCR: A snapshot of currentprocedures and preferences [J]. Expert review of molecular diagnostics,2005,5:493-498.
    [18] Cheng Y, Li C, Yan LJ, et al. A High Throughput Barley Stripe Mosaic Virus Vector forVirus Induced Gene Silencing in Monocots and Dicots [J]. PLoS ONE,2011.6(10):e26468.
    [1] Brockstedt E, Otto A, Rickers A, et al. Preparative high-resolution two-dimensionalelectrophoresis enables the identification of RNA polymerase B transcription factor3asan apoptosisassociated protein in the human BL60-2Burkitt lymphoma cell line [J].Journal of Protein Chemistry,1999,18:225-231.
    [2] Zheng XM, Moncollin V, Egly JM, et al. A general transcription factor forms a stablecomplex with RNA polymerase B (II)[J]. Cell,1987,50:361-368.
    [3] Hu GZ, Ronne H. Yeast BTF3protein is encoded by duplicated genes and inhibits theexpression of some genes in vivo [J]. Nucleic Acids Research,1994,22:2740-2743.
    [4] Parthun MR, Mangus DA, Jaehning JA. The EGD1product, a yeast homolog of humanBTF3, may be involved in GAL4DNA binding [J]. Molecular Cell Biology,1992,12:5683-5689.
    [5] Deng JM, Behringer RR. An insertional mutation in the BTF3transcription factor geneleads to an early postimplantation lethality in mice [J]. Transgenic Ressearch,1995,4:264-269.
    [6] Markesich DC, Gajewski KM, Nazimiec ME, et al. bicaudal encodes the Drosophila betaNAC homolog a component of the ribosomal translational machinery [J]. Development,2000,127:559-572.
    [7] Yang KS, Kim HS, Jin UH, et al. Silencing of NbBTF3results in developmental defectsand disturbed gene expression in chloroplasts and mitochondria of higher plants [J]. Planta,2007,225:1459-1469.
    [8] Huh SU, Kim KJ, Paek KH. Capsicum annuum basic transcription factor3(CaBtf3)regulates transcription of pathogenesis-related genes during hypersensitive response uponTobacco mosaic virus infection [J]. Biochemical and Biophysical ResearchCommunications,2012,417:910-917.
    [9] Almasi A, Apatini D, Boka K, et al. BSMV infection inhibits chlorophyll biosynthesis inbarley plants [J]. Physiological and Molecular Plant Pathology,2000,56:227-33.
    [10] M ller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components inplants [J]. Annual Review of Plant Biology,2007,58:459-481.
    [11] Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the planthypersensitive response [J]. Nature,2001,411:848-853.
    [1] M ller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components inplants [J]. Annual Review of Plant Biology,2007,58:459-481.
    [2] Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the planthypersensitive response [J]. Nature,2001,411:848-853.
    [3] Baba K, Schmidt J, Villarejo A. Organellar gene transcription and early seedlingdevelopment are affected in the rpoT;2mutant of Arabidopsis [J]. The Plant Journal,2004,38:38-48
    [4] Hajdukiewicz PTJ, Allison LA, Maliga P. The two RNA polymerases encoded by thenuclear and the plastid compartments transcribe distinct groups of genes in tobaccoplastids [J]. The EMBO Journal,1997,16:4041-4048.
    [5] Silhavy D, Maliga P. Mapping of promoters for the nucleus-encoded plastid RNApolymerase (NEP) in the iojap maize mutant [J]. Current genetics,1998,33(5):340-344.
    [6] Magee AM, Kavanagh TA. Plastid genes transcribed by the nucleus‐encoded plastidRNA polymerase show increased transcript accumulation in transgenic plants expressing achloroplast-localized phage T7RNA polymerase [J]. Journal of Experimental Botany.,2002,53(379):2341-2349.
    [7] Liere K, Weihe A, B rner T. The transcription machineries of plant mitochondria andchloroplasts: composition, function, and regulation [J]. Journal of Plant Physiology,2011,168:1345-1360.
    [8] Ishizaki Y, Tsunoyama Y, Hatano K, et al. A nuclear-encoded sigma factor ArabidopsisSIG6recognizes sigma-70type chloroplast promoters and regulates early chloroplastdevelopment in cotyledons [J]. The Plant Journal,2005,42:133-144.
    [9] Waters MT, Langdale JA. The making of a chloroplast [J]. The EMBO Journal,2009,28:2861-2873.
    [10] Rospert S, Dubaquie Y, Gautschi M. Nascent-polypeptide-associated complex [J].Cellular and molecular life sciences,2002,59:1632-1639.
    [11] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded proteinresponse [J]. Nature reviews Molecular cell biology,2007,8519-529.
    [12] Grallath S, Schwarz JP, Bottcher UMK, et al. L25functions as a conserved ribosomaldocking site shared by nascent chain-associated complex and signal-recognition particle[J]. EMBO reports,2005,7:78-84.
    [13] Bloss TA, Witze ES, Rothman JH. Suppression of CED-3-independent apoptosis bymitochondrial beta NAC in Caenorhabditis elegans [J]. Nature,2003,424:1066-1071.
    [14] Deng JM, Behringer RR. An insertional mutation in the BTF3transcription factor geneleads to an early post implantation lethality in mice [J]. Transgenic Research,1995,4:264-269.
    [15] Yang KS, Kim HS, Jin UH, et al. Silencing of NbBTF3results in developmental defectsand disturbed gene expression in chloroplasts and mitochondria of higher plants [J]. Planta,2007,225:1459-1469.
    [1] Chakravarthy S, Tuori RP, Dascenzo MD, et al. The tomato transcription factor Pti4regulates defense-related gene expression via GCC box and non-GCC box cis elements [J].Plant Cell,2003,15(12):3033-3050.
    [2] Zhang H, Zhang D, Chen J, et al. Tomato stress-responsive factor TSRF1interacts withethylene responsive element GCC box and regulates pathogen resistance to Ralstoniasolanacearum [J]. Plant Molecular Biology,2004,55:825-834.
    [3] Wu L, Zhang Z, Zhang H, et al. Transcriptional modulation of ethylene response factorprotein JREF3in the oxidative stress response enhances tolerance of tobacco seedlings tosalt drought, and freezing [J]. Plant Physiology,2008,148:1953-1963.
    [4] Zhang ZJ, Li F, Li DJ, et al. Expression of ethylene response factor JERF1in riceimproves tolerance to drought [J]. Planta,2010,232:765-774.
    [5] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptomeand freezing tolerance in Arabidopsis [J]. Genes and Development,2003,17:1043-1054.
    [6] Gilmour SJ, Sebolt AM, Salazar MP, et al. Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with coldacclimation [J]. Plant Physiology,2000,124:1854-1865.
    [7] Danyluk J, Houde M, Rassart E, et al. Differential expression of a gene encoding an acidicdehydrin in chilling sensitive and freezing tolerance gramineae species [J]. FEBS Letters,1994,344:20-24.
    [8] Kane NA, Danyluk J, Tardif G, et al. TaVRT-2, a member of the StMADS-11clade offlowering repressors, is regulated by vernalization and photoperiod in wheat [J]. PlantPhysiology,2005,138:2354-2363.
    [9] Badawi M, Reddy YV, Agharbaoui Z, et al. Structure and functional analysis of wheatICE (inducer of CBF expression) genes [J]. Plant Cell Physiology,2008,49:1237-1249.
    [10] Li F, Guo SY, Zhao YA, et al. Overexpression of a homopeptide repeat-containing Bhlhprotein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerancein transgenic Arabidopsis [J]. Plant Cell Reports,2010,29:977-986.
    [11] Vannini C, Locatelli F, Bracale M, et al. Overexpression of the rice Osmyb4geneincreases chilling and freezing tolerance of Arabidopsis thaliana plants [J]. The PlantJournal,2004,37:115-127.
    [12] Pasquali G, Biricolti S, Locatelli F, et al. Osmyb4expression improves adaptive responsesto drought and cold stress in transgenic apples [J]. Plant Cell Reports,2008,27:1677-1686.
    [13] Su CF, Wang YC, Hsieh TH, et al. A novel MYBS3-dependent pathway confers coldtolerance in rice [J]. Plant Physiology,2010,153:145-158.
    [14] Tondelli A, Francia E, Barabaschi D, et al. Mapping regulatory genes as candidates forcold and drought stress tolerance in barley [J]. Theoretical and Applied Genetics,2006,112:445-454.
    [15] Herman EM, Rotter K, Premakumar R, et al. Additional freeze hardiness in wheatacquired by exposure to3°C is associated with extensive physiological, morphological,and molecular changes [J]. Journal of Experimental Botany,2006,57:3601-3618.