原位增韧Al_2O_3陶瓷基复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以聚丙烯腈预氧化纤维作为先驱纤维,在真空热压烧结过程中制备原位转化碳纤维增韧氧化铝陶瓷基复合材料,研究了复合材料中碳纤维的微观组织结构、增韧机制、碳纤维与基体的界面以及复合材料的综合性能,优化了复合材料的制备工艺。TEM观察发现原位转变生成的碳纤维表层呈现明显的石墨片层结构,碳原子层面的晶面间距约为0.3455nm;在其拉曼谱上1580cm-1和1360cm-1附近观察到天然石墨固有的G线和乱层石墨结构的D线;添加剂的加入显著改善了碳纤维与基体的界面结合,当添加剂含量为3vol.%,先驱纤维含量为20vol.%时,复合材料的抗弯强度为347.88MPa,断裂韧性达8.22MPa·m1/2,其增韧机制主要为纤维拔出、纤维桥联和裂纹偏转。
In situ transformed carbon fibers toughened alumina ceramic matrix compositeswere prepared by vacuum hot-press sintering, and in the sintering processpre-oxidized polyacrylonitrile fibers (below named as pre-oxidized PAN fibers) wereused as the precursors of the in situ transformed carbon fibers. The interface betweencarbon fibers and matrix, microstructure and toughening mechanisms of carbon fibers,as well as the properties of the composites were studied. The fabrication processes ofthe composites were also optimized. The results show that the surface layers of the insitu transformed carbon fibers display the obvious graphite lamellar structure with theobservation of TEM and the lamellar spacing is approximately0.3455nm and that theG line of graphite and the D line of turbostratic structure also exhibit respectively at1580cm-1和1360cm-1in Raman spectra. The additives obviously improve the interfacialbonding strength between carbon fibers and matrix. The flexural strength and fracturetoughness of the composite with3vol.%additive and20vol.%pre-oxidized PANfibers can reach to347.88MPa and8.22MPa·m1/2respectively,. The tougheningmechanisms are mainly fibers pulling-out, fibers bridging and crack deflection.
引文
[1]朱晓辉,夏君旨.从材料科学的发展谈陶瓷的发展前景[J].中国陶瓷,2006,42(5):7~8,76.
    [2]张力强,张雅珊,张学成,等.重介质旋流器氧化铝陶瓷衬里的腐蚀磨损探析[J].煤炭技术,2005,24(12):27~28.
    [3]张力强.矿用耐磨氧化铝陶瓷材料的研究[J].有色金属,2011增刊1:293~296.
    [4]陈华辉,邓海金,李明,等.现代复合材料[M].北京:中国物资出版社,1997.
    [5]周玉.陶瓷材料学[M].北京:科学出版社,2004.
    [6]阎庆甲,摘译.材料科学的发展[J].材料导报,1992,(4):6~10.
    [7]郭景坤.关于陶瓷材料的脆性问题[J].复旦学报(自然科学版),2003,42(6):822~827.
    [8]关长斌主编.陶瓷材料导论[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [9]刘维良主编.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004,166~167.
    [10]严东生主编.硅酸盐物理化学[M].北京:冶金工业出版社,1980,34~45.
    [11] M.V.斯温主编,郭景坤等译.陶瓷的结构与性能[M].北京:科学出版社,1998.
    [12]李国星.氧化铝陶瓷的增韧及其微观机理的研究[D].郑州大学,2004.
    [13]张丽娅,王向丽,崔建奇. α~氧化铝在新型氧化铝陶瓷中的应用[J].河南冶金,2001,(6):35~42.
    [14] R. W. Davidge. Mechanical behavior of ceramics [M]. Cambridge: Cambridge UniversityPress,1980.
    [15]张玉龙,马建平主编.实用陶瓷材料手册[M].北京:化学工业出版社,2006.
    [16]蔡作乾主编.陶瓷材料辞典[M].北京:化学工业出版社,2002.
    [17]马铁成主编.陶瓷工艺学[M].北京:中国轻工业出版社,2011.
    [18]张丽娅,王向丽,崔建奇. α~氧化铝在新型氧化铝陶瓷中的应用[M].河南冶金,2001,(6):35~42.
    [19]朱武斌,郭志军.氧化铝陶瓷的发展与应用[J].陶瓷,2003,1:5~8.
    [20]曲远方主编.现代陶瓷材料及技术[M].上海:华东理工大学出版社,2008.
    [21]王零森.特种陶瓷[M].长沙:中南工业大学出版社,1994:223~230.
    [22]吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响[J].兵器材料科学与工程,2002,25(1):68~72.
    [23] Antonella Tucci, Leonardo Esposito. Second phases and material transfer in alumina ceramicssliding systems [J]. Wear,245(2000):76~83.
    [24]王英姿,陶文宏,吴波.评价氧化铝陶瓷性能与显微结构的关系[J].实验技术与管理,2002,19(4):51~53.
    [25]赵明,黄莉萍等. Sialon、Al2O3和SiC自配对干摩擦研究[J].无机材料学报,1997,12(1):79~84.
    [26] C. P. Dog an, et al. Role of composition and microstructure in the abrasive wear ofhigh~alumina ceramics [J], Wear,1999,225~229:1050~1058.
    [27]张金升编著.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007.
    [28]樊新民,张骋,蒋丹宇.工程陶瓷及其应用[M].北京:机械工业出版社,2006.
    [29]王欣宇,陈小明.氧化铝髋关节股骨头假体的机加工及研究[J].武汉理工大学学报,2004,26(5):29~32.
    [30]周张健编著.陶瓷及其复合材料[M].北京:北京理工大学出版社,2007.
    [31]吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响[J].兵器材料科学与工程,2002,1(1):68~71.
    [32]杨世源,郑昌琼,冉均国.中国陶瓷[J].1995,(3):138~141.
    [33]穆柏春著.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002.
    [34] DEBRA S H, GARY L M. Anisotropic Grain Growth in TiO2~doped Alumina [J]. MaterialsScience and Engineering,1995,(195):69~178.
    [35] Becher P F, Sun E Y, Plucknett K P, et al. Microstructural design of silicon nitride withimproved fracture toughness: ⅠEffect of grain shape and size [J]. Journal of the AmericanCeramic Socitey,1998,81(1):2821~2830.
    [36] Travitzky N A. Effect of Metal Volume Fraction on the Mechanical Proper Ties ofAlumina/aluminum Composites [J]. Journal of Materials Science,2001,(36):4459~4463.
    [37]郭景坤.纤维补强陶瓷基复合材料的进展[A].第二届中国材料研讨会特邀报告.
    [38]黄勇,路学成,余军.氧化铝陶瓷增韧研究进展[J].江苏陶瓷,2007,40(2):11~15.
    [39] Chonghai Xu. Effects of particle size and matrix grain size and volume fraction of particles onthe toughening of ceramic composite by thermal residual stress [J]. Ceramics International,2005(31):537~542.
    [40]饶平根,叶建东,毛骏飙,等. ZrO2~Si3N4陶瓷复合材料中的化学不相容性[J].无机材料学报,1999,14(5):711~715.
    [41]何贤昶著.陶瓷材料概论[M].上海:上海科学普及出版社,2005,184~185.
    [42] Zheng C S, Yan Q Z, Xia M, et al. In situ preparation of SiC/Si3N4~NW composite powdersby combustion synthesis [J]. Ceramics International,2012,38:487~493.
    [43] Suh M S, Shimoda K, Hinoki T. Fabrication of SiC/SiC composites by means of in situcrystallization of SiC fibers [J]. Journal of Nuclear Materials,2011,417:359~362.
    [44] Sun K, Yu J S, Zhang C R, et al. In situ growth carbon nanotube reinforced SiCf/SiCcomposite [J]. Materials Letters,2012,66:92~95.
    [45]张长瑞,郝元恺编著.陶瓷基复合材料:原理、工艺、性能与设计[M].北京:国防科技大学出版社,2001.
    [46]黄康明,李伟信,饶平根,等.陶瓷增韧技术的研究进展[J].中国陶瓷,2007,43(11):6~9.
    [47]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [48]赵稼祥.2002年世界碳纤维前景[J].高科技纤维与应用,2002,27(6):6~9.
    [49]贺福,王润娥,赵建国.聚丙烯睛基碳纤维[J].化工新型材料,1999,27(4):6~11.
    [50]王海英.碳纤维的发展前景与市场分析[J].高科技纤维与应用,2007,32(4):23~26.
    [51]黎小平,张小平,王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用2005,30(5):24~30.
    [52] Dennet J B,Bansal R C著.李仍元,过梅丽(译).碳纤维[M].北京:科学出版社,1989.
    [53]赵稼祥.碳纤维的现状与新发展[J].材料工程,1997,(12):3~6.
    [54]张旺玺.碳纤维前躯体聚丙烯腈原丝[J].合成纤维,1999,28(l):31~34.
    [55]罗益锋.炭纤维的新形势与新技术[J].新型炭材料,1995,(4):13~25.
    [56]陈杰,吴永兴,张振声,等.国内碳纤维发展态势分析[J].高科技纤维与应用,2007,32(2):22~25.
    [57]吕永根,吕春祥,刘杰,等.聚丙烯腈碳纤维结构形成与演变机制[A].第十四届全国复合材料学术会议论文集(上).北京:中国宇航出版社,2006:84~90.
    [58] Edie D D. The effect of processing on the structure and properties of carbon fibers [J]. Carbon,1998,36(4):345~362.
    [59] Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber.Polymer Degradation and Stability,2007,92(8):1421~1432.
    [60] Tse~Hao Ko, Ching~Chyuan Yang, Wen~Tong Chang. The effect of stabilization on theproperties of PAN~based carbon films [J]. Carbon,1993,31(4):583~590.
    [61] Ko T,Day T,Perng J, Lin M. The characterization of PAN~based carbon fibers developed bytwo~stage continuous carbonization [J]. Carbon,1993,31(5):765~771.
    [62]温月芳,曹霞,杨永岗,等. PAN预氧化纤维的炭化过程[J].新型碳材料,2008,23(2):121~126.
    [63]王成国,井敏,王延相,等.碳纤维用聚丙烯腈基预氧丝碳化裂解过程研究进展[J].现代化工,2008,28(7):22~26.
    [64] Watt W, Green J. The pyrolysis of polyacrylonitrile [C]//The plastics institute. Internationalconference on carbon fibers, their composites and applications. London, England: ThePlastics Institute,1971:23~31.
    [65]贾成广,李文履等.陶瓷基复合材料导论[M].冶金工业出版社,1998.
    [66]郭景坤,张玉峰.纤维补强微晶玻璃基复合材料中的匹配及其性质[J].中国科学基金,1997,(1):42~44.
    [67]徐永东,张立同等.陶瓷基复合材料的进展[J].材料科学与工程,1992,10(4):18~25.
    [68]赫元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004:105
    [69] Evans A G, Zok F W, Mackin T J. The mechanical behavior of ceramic matrix composites [J].Acta Metall Mater,1989,37(10):2567~2572.
    [70] Cao H C. Effect of interface on the properties of fiber~reinforced ceramics [J]. J Am CeramSoc,1993,76(9):1691~1696.
    [71] Hemler T. Coating of carbon fiber-the strength of the fibers [J]. J Am Ceram Soc,1995,78(1):133~138.
    [72]陈广立,耿浩然,等.不同处理方法对碳纤维表面形态及Cf/C复合材料强度的影响[J].材料工程,2006,(增刊1):160~164.
    [73]王群,刘欣,李家科,等.陶瓷基复合材料的研究进展[J].现代陶瓷技术,2006,27(2):25~28.
    [74] Aveston J. In properties of fiber composite [A]. National Physical Laboratory ConferenceProceeding,1971:63~74.
    [75]王零森,黄培云.特种陶瓷[M].长沙:中南工业大学出版社,1994.
    [76]何新波,杨辉,张长瑞等.连续纤维增强陶瓷基复合材料概述[J].材料科学与工程,2002,20(2):273~278.
    [77]许震宇,张若京.纤维排列方式对单向纤维加强复合材料弹性常数的影响[J].力学季刊,2002,23(1):59~63.
    [78]马江,周新贵,张长瑞.单向纤维增强SiC基复合材料界面微结构的研究[J].硅酸盐学报,2000,28(5):487~490.
    [79]何新波,张新明,张长瑞,等.先驱体转化~热压烧结法制备Cf/SiC复合材料[J].宇航材料工艺,1999,(6):16~21.
    [80]何新波,张新明,张长瑞,等.碳纤维增强碳化硅复合材料的力学性能与界面[J].中南工业大学学报(自然科学版),2000,(4):342~345.
    [81] Mei Hui, Cheng Laifei, Zhang Litong, et al. Thermal shock behavior of two-dimensionalC/SiC composites in controlled atmospheres [J]. Journal of Materials Science,2005,40:4261~4265.
    [82] Pan Wenge, Jiao Guiqiong, Guan Guoyang. Damage analysis of plain weave carbonfiber/silicon carbide ceramic matrix composites [J]. Journal of the Chinese Ceramic Society.2005,33(11):1321~1325.
    [83]张福平. PIP法制备三维纤维增韧莫来石基复合材料的探索[D].西北工业大学,2002.
    [84]张亚妮,徐永东等.碳/碳化硅复合材料摩擦磨损性能分析[J].航空材料学报,2005,25(2):49~54.
    [85]周长城,周新贵,于海蛟,等.短碳纤维增强碳化硅基复合材料的制备[J].高科技纤维与应用,2004,29(4):35~37.
    [86]黄步玉,任立军,谢华爱,等.短切碳纤维对玻璃陶瓷力学性能的影响[J].广东有色金属学报,2000,10(2):125~128.
    [87]唐汉玲,曾燮榕等.短切碳纤维含量对Csf/SiC复合材料摩擦磨损性能的影响[J].材料科学与工程学报,2008,114:501~505.
    [88] H. Yoshida. The mechanical properties of carbon fiber reinforcement silicon carbidecomposites [J]. Ceramic Engineering and science proceedings,1993,14(9~10):1133~1140.
    [89] Feiyu Yang, xinghong Zhang, Jiecai Han, et al. Processing and mechanical properties of shortcarbon fibers toughened zirconium diboride~based ceramics [J]. Materials and Design.2008.29:1817~1820.
    [90] Feiyu Yang, Xinghong Zhang, Jiecai Han, et al. Mechanical properties of short carbon fiberreinforce ZrB2-SiC ceramic matrix composites [J]. Materials Letters.2008,62:2925~2927.
    [91] FeiYu Yang, Xinghong Zhang, Jiecai Han, et al. Characterization of hot-pressed short carbonfiber reinforced ZrB2-SiC ultra-high temperature ceramic composites [J]. Journal of Alloysand Compounds,2009,472:395~399.
    [92] Wang Mingchao, Zhao Zuoguang, Sun Zhijie, et al. Effect of fiber type on mechanicalproperties of short carbon fiber reinforced B4C composites [J]. Ceramics International,2009,35:1461~1466.
    [93] Guiming Song, Ying Wu, Qiang Li. Elevated temperature and thermal shock behavior ofhot-pressed carbon fiber reinforced TiC composites [J]. Journal of European Ceramic Society.2002,22:559~566.
    [94] C. Kaya, et al. Fabrication and characterization of Ni-coated carbon fiber-reinforced aluminaceramic matrix composites using electrophoretic deposition [J]. Acta mater,2001,49:1189~1197.
    [95] Santi Maensiri, et al. Carbon nanofiber-reinforced alumina nanocomposites: Fabrication andmechanical properties [J]. Materials Science and Engineering,2007, A447:44~50.
    [96]张建良,毛裕文,等.碳纤维补强氧化铝陶瓷的研究[J].硅酸盐学报,1994,22(1):97~100.
    [97]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001,109~121
    [98]关振铎,张中太,焦金生,编著.无机材料物理性能[M].北京:清华大学出版社.1992.
    [99]季敏霞. PAN原丝在预氧化和碳化过程中微观结构的演变[D].山东大学,2008.
    [100] Harald Rennhofer, Dieter Loidl, Stephan Puchegger, Herwig Peterlik. Structural developmentof PAN~based carbon fibers studied by in situ X~ray scattering at high temperatures underload [J]. Carbon.2010,48:964~971.
    [101]张彩红,盛毅,田红,等.全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变[J].物理学报,2011,60(3):1~9.
    [102]葛曷一,陈娟,柳华实,等.聚丙烯腈预氧化纤维碳化中的结构演变与碳纤维微观结构[J].化工学报,2009,60(1):238~243.
    [103]井敏. PAN基预氧丝在碳化过程中的工艺及物化行为研究[D].山东大学,2008.
    [104] Ding Yusheng, Dong Shaoming, et al. Effect of Sintering Temperature on Microstructure andProperties of Cf/SiC Composites [J]. Journal of Inorganic Materials,2008,23(6):1151~1154.
    [105] Song Jiupeng, Barriere Thierry, Liu Baosheng, et al. Effect of heating rates on the sinteringbehaviors of alumina powders [J]. Materials Review,2007,21(3):144~146.
    [106]高占峰.原位生成碳纤维增韧氧化铝陶瓷的制备及其性能研究[D].北京:中国矿业大学(北京),2011.
    [107]王军刚.氧化铝纤维增强氧化错/氧化铝复合材料制备工艺研究[D].山东:山东大学.2007.
    [108] Coleman M M,Sivy G T. Fourier transform IR studies of the degradation of Polyaerylonitrilecopolymers-I: Introduction and comparative rates of the degradation of three copolymersbelow200℃and under recue Pressure[J]. Carbon1981,19:123~126.
    [109] Ra kovicˊV,MarinkovicˊS. Temperature dependence of processes during oxidation ofPAN fibers [J]. Carbon,1975,13(6):535~538.
    [110] Mathur R B,Bahl O P,Mittal J. A new approach to thermal stabilization of PAN fibers [J].Carbon,1992,30(4):657~663.
    [111] Zhang W,Liu J,Wu G. Evolution of structure and properties of PAN precursors during theirconversion to carbon fibers [J]. Carbon,2003,41(14):2805~2812.
    [112] Varma S P, Lal B B, Srivastava N K. IR Studies on preoxidized PAN fibers [J]. Carbon,1976,14(4):207~209.
    [113] Fiter E. Some remarks on Raman spectroscopy of carbon structures [J]. High TemperaturesHigh Pressures,1988,20:449~454.
    [114]贺福.用拉曼光谱研究碳纤维的结构[J].高科技纤维与应用,2005,30(6):20~25.
    [115]华中,王月梅,赵萍,赵书华.应用Raman光谱方法研究PAN基碳纤维中sp2杂化的C-C原子键距与碳化温度的关系[J].吉林师范大学学报(自然科学版),2003,1:77~79.
    [116] Bennett S C, Johnson D J. Electron-microscope studies of structural heterogeneity inPAN-based carbon fibers [J]. Carbon,1979,17(1):25~39.
    [117]马静梅. BAS/SiC陶瓷基复合材料的制备及其组织与性能[D].黑龙江:哈尔滨工业大学,2010.
    [118]熊伟,矫桂琼,刘红霞.纤维桥联对陶瓷基复合材料断裂韧度的影响[J].机械强度,2009,31(5):808~811.
    [119]张鸿,宋迎东.陶瓷基复合材料基体裂纹偏转能量释放率研究[J].航空动力学报,2007,22(10):1730~1736.
    [120]王延斌,苏勋家,侯根良,等.碳纤维增韧陶瓷基复合材料界面的研究[J].材料导报,2007,21(专辑Ⅸ):431~433.
    [121]郝元恺主编.高性能复合材料学[M].北京:化学工业出版社,2004.
    [122]尹洪峰,徐永东,张立同.纤维增韧陶瓷基复合材料界面相的作用及其设计[J].硅酸盐通报,1999,(3):23~28.
    [123]曹峰,彭平,李效东.氧化铝/氧化硅溶胶对碳纤维表面的处理机应用[J].复合材料学报,1999,16(1):22~25.
    [124] Liedtke V, et al. Sol~gel~based carbon/silicon carbide [J]. Journal of European CeramicSociety,2007,(27):1267~1272.
    [125]王松,陈朝辉,李伟.不同碳纤维表面状态及其复合材料界面对比[J].稀有金属材料与工程,2007,36(增刊):608~612.
    [126]吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响[J].兵器材料科学与工程,2002,25(1):68~72.
    [127]张孝文主编.固体材料结构基础[M].北京:中国建筑工业出版社,1980.
    [128]董伟霞,包启富,顾幸勇. ZnO-CaO-MgO-SiO2助烧剂对氧化铝陶瓷性能的影响[J].陶瓷学报,2009,30(2):195~159.
    [129]顾皓,吕珺,黄丽芳,等. MgO-MnO2-TiO2-SiO2烧结助剂中SiO2的量对低温烧结氧化铝陶瓷材料性能的影响[J].硅酸盐通报,2009,28(3):479~484.
    [130] Evans A G, Wilshaw T R. Quasi-static particle damage in brittle solids I: Observations,analysis and implications [J]. Acta Metallurgica,1976,24:939~956.
    [131] Zum Gahr K H, Bundchuh W, Iimmerlin B. Effect of gain size on friction and sliding wear ofoxide ceramics [J]. Wear,1993,162(3):269~279.